Happy - Week 11 [4 more lecture] + 1 week of finds

- Exercise p. 198, 22
- Exercises, p. 269, 1,3,4,8,9,10,11, 12,15
$p .198$

22. Given $\mathrm{A} * \mathrm{~B} * \mathrm{C}$ and $\overleftrightarrow{\mathrm{DC}} \perp \overleftrightarrow{\mathrm{AC}}$. Prove that $\mathrm{AD}>\mathrm{BD}>\mathrm{CD}$ (Figure 4.32; use Proposition 4.5).
(Katie)

Week 11 Assignment:
F assign you 1 problem this week to present.
the other problems are suggested (only).
Friday: you present sols to your exercise.
-You can trade) w/ others of you like.
as last Friday a way to write or slide or picture -

H10 (Euclidean) Proof of Circumsorbed Triangle H^{2}.
Megan) - Use computes model to show it fails in
\#11 Property of
(Hunter) intersecting 1 's of Δ
\#12 Hyperbolic AM (Chris)

Defect of a triangle

$$
D(\Delta)=180^{\circ}-(\alpha+\beta+\gamma)
$$

Defect is additive:

$$
\begin{array}{rlr}
D(\triangle A D C)+D(\triangle D B C)=D(\triangle A B C) & \\
\left.\begin{array}{rlr}
D(\triangle A B C) & =180-\alpha-\beta-(\theta+\gamma) & \\
& =-(\gamma+\epsilon) \\
D(\triangle A D C) & =180-\alpha-8-\theta \\
D(\triangle B D C) & =180-\beta-\epsilon-\gamma
\end{array}\right\} \text { add } 360-\alpha-\beta-(\theta+\gamma)-\delta-\epsilon \\
B \quad & =180-\alpha-\beta-(\theta+\gamma)=D(\Delta A B C)
\end{array}
$$

Defect of a Euclidean Δ is 0 .

Next: Some properties of parallels that admit a common 1 .

not
still
parallel

Proposition 6.3. In a plane in which rectangles do not exist, if $l \| l^{\prime}$, then any set of points on l equidistant from l^{\prime} has at most two points in it, ie., \exists exactly two points on l that are equidistant from l '.

If there were 3 , points of l equidistant from l^{\prime}, A, B, C, then of $A^{\prime}, B, C^{\prime}$ are feet of A lines to A, B, C on l^{\prime} the

$$
A A^{\prime} \cong B B^{\prime} \cong C C^{\prime}
$$

$\square A^{\prime} B^{\prime} B A$ is Saccteri, so summit angles are $\cong \angle A^{\prime} A B \cong \angle B^{\prime} B A$ similarly
$\square A^{\prime} C^{\prime} C A$ is Sacchen, s $\angle A^{\prime} A B \cong \angle C^{\prime} C B$ lekeinse

$$
\square B^{\prime} C^{\prime} C B \text { is Saccter } \Rightarrow \angle B^{\prime} B C \cong \angle C^{\prime} C B
$$

Compare to Euclidean Celom:

$$
y=x+1 \quad \frac{1}{\xi} y=x+2
$$

$B K C \angle B^{\prime} B^{\prime} \frac{1}{2} \angle B^{\prime} B C$ are supplementary $\frac{1}{\&} \cong \Rightarrow$ all angles are right θ.

Proposition 6.4. In a Hilbert plane satisfying the acute angle hypothesis, if $l \| l^{\prime}$ and if there exists a pair of points A and B on l equidistant from l^{\prime}, then l and l^{\prime} have a unique common perpendicular segment $M M^{\prime}$ dropped from the midpoint M of $A B$. M^{\prime} is the shortest segment joining a point of l to a point of l^{\prime}, and the segments AA^{\prime} and $B B^{\prime}$ increase as A, B recede from M.

Previously, we've seen segment joining midpoints of base's suint are 1 to each:
uniqueness comes from no rectangles

$M M^{\prime}$ is shortest b/c: we've proven
 thus $B B^{\prime}>M M^{\prime}$.

As B recedes away from M, it becomes say C show $C C^{\prime}>B B^{\prime}$
$\square M^{\prime} B^{\prime} B M \frac{1}{\&} \square M^{\prime} C^{\prime} C M$ are Lambert Quad in A,A,H.
supplementary, $\angle B^{\prime} B M+\angle B^{\prime} B C=180$ larger sid is $\Rightarrow \angle B^{\prime} B C$ is obtuse iss lane angle

Proposition 6.5. In a Hilbert plane in which rectangles do not exist, if lines l and l^{\prime} have a common perpendicular segment MM^{\prime}, then they are parallel and that common perpendicular segment is unique. Moreover, if A and B are any points on l such that M is the midpoint of $A B$, then A and B are equidistant from l^{\prime}.

$A M \stackrel{N}{=} B M$ by hypothesis
$\angle A M M^{\prime}$ I $\angle B M M^{\prime}$ are right by hypothen

$$
M M^{\prime}=M M^{\prime}
$$

$$
\Rightarrow \triangle A M M^{\prime} \cong \triangle B M M^{\prime}
$$

- By $A I A, A A^{\prime}$ is tronsiersl tr $l, l^{\prime}, l l l l^{\prime}$. - uniqueness by no rectangles

AAS-thm:
In $\triangle M^{\prime} A^{\prime} A, \triangle M^{\prime} B^{\prime} B$ we have $A A S$ congruence $\left(A M^{\prime} \cong B M^{\prime}\right.$ by

$$
\Rightarrow \quad A A^{\prime}=B B^{\prime}
$$

