Study Guide: \qquad

1. Note: P-model refers to the Poincaré model which is the usual (Euclidean) unit disk in \mathbb{R}^{2}.

I Computations in Hyperbolic Geometry

1. Briefly explain why the Incidence \& Betweenness Axioms hold in the Poincaré Model. '
2. Sketch the inversion of the square below about the circle.

3. Breifly describe how inversions and rotations can be used to show that SAS congruence holds in hyperbolic geometry. (Work in the Poincaré model.)

4. One way to construct the midpoint of a segment AB in Euclidean geometry is to choose a point C on one side of $A B$, mark of the angle $\measuredangle C A B$ and then form the congruent $\measuredangle A B D$ on the other side of the line $A B$ as shown. The line $C D$ then bisects $A B$. (Why?) Apply this same argument to hyperbolic geometry as follows:

(a) Let AB be a P-segment in the P-model. Show how to construct its midpoint.

(b) Show how to find the perpendicular bisector of a segment in the P-model. By the preceding problem, all that remains is to describe how to find the perpendicular P-line to AB through a point M .

5. Show how to find the P-angle bisector of an angle in the P-model.

6. How does one construct the center of P-circle in the P-model?

7. Draw a picture in the P-model which describes Exercise 8, p. 272, and Exercise 9, p. 273.

8. Let $\left(x_{1}, y_{1}\right)=(-0.85663050725,-0.515930396354)$ and $\left(x_{2}, y_{2}\right)=(-0.026468-0.999)$.
(a) Find the Euclidean distance between $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right) . \quad d(A, B)=\log |(A B, P Q)|$
(b) Find the Poincaré distance between $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$. bey: what is P, Q ?
9. Describe how to find the P -line through points P and Q in the P -model.

10. What must be true if δ is a circle, R is an inverson about circle γ and $R(\delta)=\delta$? Intuitively, why must this be?
11. Is hyperbolic geometry consistent?
12. Does the existence of multiple lines through a single point which are all parallel to a given line suggest anything philosophically interesting to you?
