Archimedes Neusis Construction of trisecting angle.

$$
\begin{array}{rlrl}
\angle A O B & =\angle O C B+\angle O B C & & \text { Ext. Angle } \\
& =\angle D O C+\angle O B C & & \text { isoceles } \\
\angle O B D & +\angle O B C=180 & & \text { supplementary angles } \\
\angle O B C & =180-\angle O B D & & \text { subtracting } \\
& =180-\angle O D B & & \text { isosceles } \\
& =180-\angle O D C & \text { colinear } \\
& =\angle D O C+\angle D C D & =2 D O C \quad \text { Euclidean } A^{\prime} ' s .
\end{array}
$$

1. The Isosceles Triangle theorem

The angles apposite equal sides of a triangle are congruent.
proof: (Look up "Bridge of Asses")
given

(2) Form segment $D B \in A E$
(3) NOW $\triangle C D B \cong \triangle C E A$ by $S A S$ ($\angle D C B=\angle C E A)$
(4) So $\angle C D B \cong \angle C E A \frac{1}{\xi} D B \cong A E$ by (3)
(5) Since $\angle A D E \cong \angle C D B, \angle B E A \cong \angle C E A$ $\therefore A B \cong A B$ we conclude
$\triangle A D B \cong \triangle B E A$ by $S A S$
(6) Now $\angle D A B \cong \angle E B A$.
(7) Since

$$
\begin{aligned}
& \text { inge } \\
& \angle D A B+\angle B A C \cong \angle E B H+\angle A B C
\end{aligned}
$$

we have $\angle B A C \cong \angle A B C$
2. The \perp-bisector of the isosceles Δ bisects the opposite angle.

(1) By Isosceles \triangle the $\angle C A B \cong \angle C B A$.
(2) Find the midpoint M of $A B$

(3) Form MC.

NOW $\triangle A M C \cong \triangle B M C$ by $S A S$.
(4) By (3) $\angle A C M \cong \angle B C M \frac{1}{4}<A M C \frac{1}{\xi} \angle B M C$ are congruent supplementary angles, thus are right.
(5) CM is the \perp bisector to $A B \frac{1}{2}$ it bisects $\angle A C B$.

Construct the 1 -bisector of $A B$

(1) Intersect circles of radius $A B$
centered @ A,B respectively to give points C, D
(2) Form $C D$
(3) By construction $A C \cong B C \cong A D \cong B D$
(4) By isosceles \triangle the $\angle C A B \stackrel{N}{=} \angle C B A$ $\angle D A B \stackrel{\wedge}{=} \angle D B A$

$$
\angle C A D \cong \angle C B D
$$

(5) By SAS $\triangle C A D \cong \triangle C B D$, then $\angle A D C \cong \angle B D C$
(b) BY SAS $\triangle A D E \cong \triangle B D E \sin \varphi \quad D E \cong D E$
(7) By (6) $\angle A E D \cong \angle B E D \frac{1}{4}$ are supplements so $\angle A E D, \angle A E C, \angle B E D, \angle B E C$ are all right angles_ (supplement of right angle is right)
(8) By (7) $A E \cong E B$ and $C D$ is a + -bisector to $A B$

