Frcidence Geometry Axioms
(lies on)
(I.1) \forall distinct points A, B, B ! line incident with then (two pto give unique lino)
(土.2) \forall lines, \exists at least tho pts on it.
(ITS) $\exists 3$ distinct nom-colliver points
Def. 3 or mare points ave collinear if f line incidat on $/ \mathrm{Hem}$
all

See:
Mans exercise

Fane's Clove. Finite Gears
\Rightarrow duality (in projective geometry lines ave dual to $\frac{\text { points. }}{\text {. }}$

Incidence Geometry - Geometry of (just) points $\frac{1}{4}$ limes

Proposition 2.1. If l and m are distinct lines that are not parallel, then l and m have a unique point in common.

Proposition 2.2. There exist three distinct lines that are not concurrent.

Proposition 2.3. For every line, there is at least one point not plying on it.

Proposition 2.4. For every point, there is at least one line not passing through it.

Proposition 2.5. For every point P, there exist at least two distinct lines through P.

Points $=\{A, B, C\}$ Lines - pairs

Model 2

$$
\text { Points }=\left\{A_{1} B, C, D T\right.
$$

Point:
The parallel property can not be proved from incideno axioms alone.

