Congruence Axioms
C.1. You can lay off any length on any ray.
A, B distrust $p t s, A^{\prime}$ any p^{\prime}, \forall ray emanaty fin A^{\prime} \exists ! B^{\prime} sit. $B^{\prime} \neq A^{\prime} \quad \frac{1}{\varepsilon} \quad A B \cong N^{\prime} B^{\prime}$
C. 2 Transitivity for congruence of segments $\geqslant(A B \cong A B$)

C-3 sum of congruent segments is congrvat

$$
\begin{array}{ll}
A * B * C \\
A^{\prime} * B^{\prime} * C,
\end{array} \quad A B \approx A^{\prime} B^{\prime} \quad B C \cong B_{B^{\prime}} \Rightarrow A C \cong A^{\prime} C
$$

C-4 Any giver angle can be laid off.
 C-5 transitivity of congruent angles CHG SAL

Corto One can lay off a given \triangle on a given site of a lie.
Thin: Given hin l, point P g the m, mil tho P.

1. chare $A, B \in l$
2. Lay off $\triangle P A B$ on other sizzle ($Q A B$)
3. $\angle P A C \cong Q A C, A C \cong A C, P A \cong Q A$
$\Rightarrow \angle P C A \cong \angle Q C A$
t are suppleness.
\therefore right anglo
thm (Pappus) (Euctiil 1,5) the base angles of an isosceles Δ are \cong. (welve seen Pons Asinorum) $(3 \times$ SASs)

$$
\begin{aligned}
& \left.\begin{array}{l}
A B \cong B C \\
B C \cong A B \\
\angle A B C \cong \angle C B A
\end{array}\right\} \quad 5 A S \Rightarrow \angle B A C \cong \text { if } \begin{cases}A B & B C \\
\angle A B C & <C B A \\
B L & A B \\
\text { than } \angle B H C & \cong B C A\end{cases} \\
& \left.\begin{array}{l}
A B \cong B C \\
B C \cong A B \\
\angle A B C \cong \angle C B A
\end{array}\right\} \quad 5 A S \Rightarrow \angle B A C \cong \text { if } \begin{cases}A B & B C \\
\angle A B C & <C B A \\
B L & A B \\
\text { than } \angle B A C & \cong B C A\end{cases} \\
& \text { then } \angle B H \cong \cong B C A
\end{aligned}
$$

Pros. 3.14 - Supplemants of \cong angls cre \cong

Given:

$$
\begin{aligned}
& B A C \cong B^{\prime} A^{\prime} C^{\prime} \\
& S A S \cong \triangle A^{\prime} \cong \triangle B^{\prime} A^{\prime} C^{\prime} \Rightarrow C C C \\
& B C \cong B^{\prime} C^{\prime} \\
& D C \cong D^{\prime} C^{\prime} \\
& \Rightarrow \triangle D B C \cong \triangle D^{\prime} B^{\prime} C^{\prime} \\
& \Rightarrow D B^{\prime} \cong D^{\prime} B^{\prime}, \angle D \cong \angle D^{\prime} \\
& \Rightarrow \triangle D A B \cong \triangle D^{\prime} A^{\prime} B^{\prime} \\
& \\
& \Rightarrow \angle D A B \cong \angle D^{\prime} A^{\prime} B^{\prime}
\end{aligned}
$$

Prop. Vertical Angles are Equal.
know: supplements of \cong are \cong

$$
\begin{aligned}
\angle A B E \cong & \angle A B E \\
& \angle A B C \text { is supplement of } \angle A B E \\
& \angle D B E \text { is sugptemant of } \angle A B E \\
& \text { Pro } \Rightarrow \angle A B C \cong \angle D B E
\end{aligned}
$$

