Last time:

- AIA, Isosceles: equal sides \Leftrightarrow equal angles, ASA, $\underset{\perp-\text { bisector goes the vertex }}{(2)}$ Today ' $\operatorname{Cor} A \mid A$ S SSS, EA, applicher of that

AIA! Cor unique Feet

(2) l is transersd t o m, k
(2) AlA's are $\cong, ~ k l 1 \mathrm{~m} \otimes P$.
(1)
(2) $\mathbb{l} \begin{aligned} & \text { isosceles pass } \\ & \text { 1-brectr the thertex } \\ & \text { of base }\end{aligned}$

SSS:

A
$\triangle A B C \cong \triangle A B F^{\prime}$ by $S A S$. the $B F^{\prime} \cong B C$
get isosceles Δ 's (2)
the 1 -bisects to ear gives contradicts

Next EA

EA theorem: Exterior Angle Thesren

- (an exterior angle of a triangle $\triangle A B C$. is ar angle suppenentay to an interior angle of a trizugl.
$\angle A C D$ is an ext angle of $\triangle A B C$.
$\angle A C D$ is greater than either of the remote interior angles
Proof: If $\angle A C D \cong \angle B A C$ then
$A C$ is a transversal cutting $A B \frac{1}{2} C D \frac{1}{2}$ this molas $\angle A C D \frac{1}{2}<B A C$ alternate intanor anger that are congmet $\Rightarrow A B \| C D$ cortraduts existive of $A($ (as a member of
bott (ines)
Else, if $\angle A C D>C D A C$ weir dow.
So assure
$\angle A C D<\triangle B A C$ (yon can cut the create point E sot $\subset C A E \cong \angle A C D$. lesser

SAB

$A S A \Rightarrow \triangle A B C \xlongequal{\approx} \triangle D E G$
$\angle D G E$ is exterior angle to $\triangle E G F$
yet $\angle D C E \cong \angle C \cong F$, yet Ext. Ans the says it is $>$.
(ext angle isn't alwap obtuse)

Th:

If $A B\rangle A C$ then $\langle C\rangle<B$
extend $\overrightarrow{A C}$ to D st $A D \stackrel{N}{\cong} A B$. Get isosules. $\langle D \cong$ ® $\angle A B D\rangle\langle B$ $\langle C$ is ext to $\triangle C D B .\langle C\rangle\langle D\rangle\langle B$

