Wed. Wk 13
$S L_{2}(\mathbb{R})=2 \times 2$ matrizes, real entriee
Specual Linéear
\uparrow
determinat $=1$

(15) isormonphic to the group of Hyperlalic, orientation preserving

Amost the groyp of hyo simetries

$$
\left(\begin{array}{ll}
1 & 2 \\
2 & 5
\end{array}\right) \in S L_{2}(\mathbb{Z}) \subset S L_{2} \mathbb{R}
$$

I molius transf.
$\frac{z+2}{2 z+5} \quad$ hyperbslic is ometry
but this associate isnt unigue $\sin \varphi$

$$
\left(\begin{array}{ll}
1 & 2 \\
2 & 5
\end{array}\right)\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right)=\left(\begin{array}{ll}
-1 & -2 \\
-2 & -5
\end{array}\right) \xrightarrow{\operatorname{det}}=1 \text { so this } \begin{aligned}
& \text { is also in } \\
& \\
& \text { SL2R }
\end{aligned}
$$

\uparrow and gives the same Mobus

$$
\frac{-z-2}{-2 z-5}=\frac{z+2}{2 z+5}
$$

Thm $S L_{2} \mathbb{R}$ is generated by tho elements, a translation and $\varphi=$ inversion about unit circh followed bs a reflection throye $x=0$
prof

$$
\begin{gathered}
T_{a}(x, y)=(x+a, y) \leftrightarrow\left[\begin{array}{ll}
1 & a \\
0 & 1
\end{array}\right]=T_{a} \\
\varphi(x, y)=\left(\frac{-x}{x^{2}+y^{2}}, \frac{y}{x^{2}+y^{2}}\right) \sim \frac{12 \cong(\operatorname{set} z=x+i y)}{\sim}\binom{12+i y}{x^{2}+y^{2}} \frac{(x-i y)}{(x+i y)(x-i y)}=\frac{-1}{z} \\
=\frac{0 z-1}{1 z+0} \leftrightarrow\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)=\sigma
\end{gathered}
$$

Look @ three compositions:

$$
\begin{aligned}
& \sigma \cdot T_{r}=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & r \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
0 & -1 \\
1 & r
\end{array}\right) \\
& \sigma \cdot T_{s}=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & s \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
0 & -1 \\
1 & s
\end{array}\right) \\
& \sigma \cdot T_{t} \quad\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & t \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
0 & -1 \\
1 & t
\end{array}\right)
\end{aligned}
$$

Finals,

$$
\left(\sigma \cdot T_{t}\right)\left(\sigma \cdot T_{s}\right)\left(\sigma \cdot T_{r}\right)=\left(\begin{array}{ll}
-s & 1-r s \\
s t-1 & r s t-r-t
\end{array}\right)
$$

So we must show $\operatorname{any}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S L_{2} \mathbb{R}$ can be written like this
\qquad

So express r, s, t via $a, b c$.
For $a \neq 0,-\frac{s e t}{}=a$ so $1-r s=b \Rightarrow 1+r a=b$ thus $r=\frac{b-1}{a}$ continue to get t via a, b, c, d.

Cor
Since translations is circe inversions $\operatorname{map}\{$ circles, 11 res $\}$ to $\{$ circe, 1 ins $\}$ $S L_{2} \mathbb{R}$ presewes circles \& lines

Cross -Ratio
Let $a, b, c, d \in \widehat{\mathbb{C}}=\mathbb{C} \cup\{\infty\}$ (@ Least 3 distinct)

$$
\begin{aligned}
& {[a, b ; c, d]=\frac{(a-c)(b-d)}{(a-d)(b-c)}} \\
& {[a, b ; c, a]=\frac{(a-c)(b-a)}{(a-1)(b-c)}=\infty}
\end{aligned}
$$

Hyp. Ism presere the cross-rateo.

Commonly, think of III word as variable

$$
[z, a ; b, c]^{\infty}=\frac{(z-b)(a-c)}{(z-c)(a-b)}=\text { mobins } \operatorname{transf}
$$

Note:
$\operatorname{sub} z=a^{\prime} \Rightarrow$ get out put $=1$

$$
z=b \rightarrow \text { get } \otimes
$$

Ex Create a Robins Trans sending $1 \mapsto 1,-i \mapsto 0,-1 \longmapsto \infty$

$$
[z, 1,-i,-1]=\frac{(z+i)(1+1)}{(z+1)(1+i)}=\frac{2 z+2 i}{(1+i) z+(1+i)}=f(z)
$$

verify:

$$
f(-1)=\frac{-2+2 i}{0}=\infty \left\lvert\, f(1)=\frac{2+21}{(1+i)+(1+1)}=1\right.
$$

EX

want

$$
\gamma=\gamma_{2}^{-1} \cdot \gamma_{1}
$$

chat

$$
\gamma(i)=\gamma_{2}^{-1} \cdot \gamma_{1}(i)=\gamma_{2}^{-1}(1)=1
$$

$$
\gamma(\infty)=\gamma_{2}^{-1} \gamma_{1}(\infty)=\gamma_{2}^{-1}(0)=\gamma
$$

$$
\gamma(0)=3
$$

How to find the marius tree?
set $\quad \gamma(z)=\omega$

$$
\begin{array}{r}
\gamma_{2}^{-1} \cdot \gamma_{1}(z)=\omega \\
\Rightarrow \\
\Rightarrow \gamma_{1}(z)=\gamma_{2}(w) \\
{\left[z_{1} ; \infty, 0\right]=[w, 1 ; 2,3]}
\end{array}
$$

$$
\begin{aligned}
& \frac{(z-\infty)(i-0)}{(z-0)(i-\infty)}=\frac{(\omega-2)(1-3)}{(\omega-3)(1-2)} \\
& \frac{i}{z}=\frac{4-2 \omega}{3-\omega} \Rightarrow 3 i-\omega i=4 z-2 \omega z \\
& 3 i-4 z=\omega i-2 \omega z=\omega(i-2 z) \\
& \gamma(i)=\frac{3 i-4 i}{-i-2 i=\frac{-i}{-i}=1}
\end{aligned}
$$

goal: of z
$S L_{2} \mathbb{R}$ acts transitively on group

$$
H_{1}^{2}
$$

\qquad
group G acts on space x means $f_{g \in G \quad \exists \quad X_{g} \in X}$

$$
0-9 x_{5}
$$

transively:
$G \ll x$ transitively if $\quad x, y \in X \quad$ if $g \in G$ sit

$$
g(x)=y
$$

you can from any point in X to any other by an element in G
Theoren' Given any tho points $P,\left.Q \in \mathbb{H}\right|^{2} \quad \exists$ isometry st $f(P)=Q$.

$$
P=a+b i, Q=c+d i
$$

Choose one that fixes ∞, ie, $f(\infty)=\infty \frac{1}{\xi} f(a+b i)=c+d i$
\therefore so \circ takes the $x=a$ line to $x=c$ lire (of preserve

$$
\begin{aligned}
& \text { (ide, } f(a)=c \\
& {[z, a+b i ; a, \infty]=[w, c+d i ; c, \infty]} \\
& \frac{z-a}{b i}=\frac{w-c}{d i} \text { so }(w-c) b i=d i(z-a) \\
& (w-c) b=d(z-a) \\
& f(z)=w=\frac{d(z-a)}{b}+C \\
& =\frac{d z-d a}{b}+\frac{c b}{b} \\
& =\frac{d}{b} z+\frac{c b-d a}{b} \\
& \because\left(\begin{array}{cc}
d / b & c b-d a / b \\
0 & 1
\end{array}\right) \\
& \text { same } \\
& \begin{array}{cc}
\operatorname{mat} \\
\operatorname{scaling} \\
\text { scaling }
\end{array}\left(\begin{array}{cc}
d & c b-d a \\
0 & b
\end{array}\right)
\end{aligned}
$$

What are fixed points of our mop?

$$
\begin{aligned}
z=\frac{d(z-a)}{b}+c \Rightarrow(z-c) b & =d(z-a) \\
b z-b c & =d z-d a \\
d a-b c & =z(d-b)
\end{aligned}
$$

If $b=d \Rightarrow z=\infty$

$$
\frac{d a-b c}{d-b}=z
$$

If $b \neq d$ then $\frac{d a-b c}{d-b} \in \mathbb{R} \sin a \quad a, b, c, d$ are all real, \Rightarrow NO fixed points in HI?

$$
H^{2}
$$

tined axis

Ex.
Question: give a Mobins
Model. transtomti- takin,

$$
\begin{gathered}
\left(\begin{array}{cc}
d \\
0 & c b-d a \\
b
\end{array}\right) \\
\begin{array}{c}
5+7 i \\
a \\
b
\end{array} \\
\left(\begin{array}{cc}
6 & 3 \cdot 7-6 \cdot 5 \\
6 & 7
\end{array}\right)=\left(\begin{array}{cc}
6 & -9 \\
0 & i \\
0 & 7
\end{array}\right) \\
b(z)=\frac{6 z-9}{7}=\frac{6}{7} 7-\frac{9}{7} \\
f(5+7 i)=\frac{6(5+7 i)}{7}-\frac{9}{7}=\frac{30+42 i-9}{7}=\frac{21+42 i}{7}=3+6 i
\end{gathered}
$$

Figure 3.3.7. Three types of hyperbolic transformations

