Mon wh 14
Finish Royster

$$
\begin{aligned}
& P_{1} 122 \text { E11, }{ }^{c} \\
& \varphi(z) \longleftrightarrow\left(\begin{array}{cc}
\cos \dot{\beta} & -\sin \beta \\
\sin \beta & \cos \beta
\end{array}\right) \text { by } \varphi(z)=\frac{\cos (\beta) \cdot z-\sin (\beta)}{\sin \beta z+\cos \beta} \\
& \varphi(i)=\frac{\cos (\beta) \cdot i-\sin \beta}{\sin (\beta) i+\cos \beta} \frac{\sin (\beta) i-\cos \beta}{\sin (\beta) i-\cos \beta}=\frac{-\cos \beta \sin \beta-\left(\cos ^{2} \beta+\sin ^{2} \beta\right) i \sin \beta \cos \beta}{-\sin ^{2} \beta-\cos ^{2} \beta}=i
\end{aligned}
$$

How to find H-dict L/w poits P, Q

How to defin Mobins Trans thet
semds

$$
M \underset{(3 \text { suffiv) }}{\rightleftarrows}, p i, Q \rightarrow Q^{\prime}, N \rightarrow \infty
$$

$$
\left.\begin{array}{rl}
(z, p, m, N) & =(w, i ; 0, \infty) \quad(w \in \quad \text { on imasinam axis } \\
\underline{w}=c^{i}
\end{array}\right)
$$

so $\quad z=Q \Rightarrow$

$$
(Q, P ; M, N)=c
$$

$$
\text { so } \quad d(P, Q)=\log (c)=(Q, P, ; M, N)
$$

Interpet ' c
$\log (c)$ is the H-dist b/w i and $Q^{\prime}=c i$.

Connect H wI Poincare disk
Use mobius transformation that sends $\underset{\|}{H} \longleftrightarrow$ Unit circle

$$
\begin{aligned}
& \varphi=\left[\begin{array}{rr}
1 & -i \\
-i & 1
\end{array}\right] \\
& \varphi(z)=\frac{z-i}{1-i z} \\
& \varphi(0)=\frac{0-i}{1}=-i \\
& \varphi(-i)=\frac{z-(-i)}{1-i(-i)}=\frac{z+i}{0}=\infty \\
& \varphi(\infty)=\frac{\infty-i}{1-i \bar{\infty}}=\frac{\infty}{-i \phi}=\frac{1}{-i}=i
\end{aligned}
$$

D

To see where l goes consider $\varphi((R)$

Usually, coords in Poincare disc: $P=\left\{r e^{1 \theta} \mid 0 \leq r<1\right\}$

$$
d s=\frac{2 \sqrt{d r^{2}+r^{2} d \theta^{2}}}{1-r^{2}} \quad \text { arc length }
$$

Lemma
Let $\theta=$ oisin, If $d_{p}(0, B)=x$ then

$$
d(0, B)=\frac{1-e^{x}}{e^{x}+1}
$$

prowl

let Ω, Ω be ends of diameter thru $O B$

$$
\begin{aligned}
x & =\log (0, B ; \Omega, \Omega) \\
e^{x} & =(O, B ; \Omega, \Omega) \\
& =\frac{(O-\Omega)(B-\Lambda)}{(O-\Lambda)(B-\Omega)}=\frac{O \Omega B \Lambda}{0 \Omega B \Omega}=\frac{B \Omega}{B \Omega} \\
& =\frac{1-O B}{1+O B} \quad \text { solve fo } O B
\end{aligned}
$$

$$
\begin{aligned}
e^{x}+e^{x} O B=1-O B \quad \Rightarrow \quad\left(e^{x}+1\right) O B & =1-e^{x} \\
O B & =\frac{1-e^{x}}{1+e^{x}}
\end{aligned}
$$

