1	-	\bullet		
	1			

$$
\begin{aligned}
& f(\bar{x})=\bar{x}+\binom{0}{1} \\
& g(\bar{x})=\bar{x}+\binom{1}{0} \\
& <f, g)=\text { Subsroys }
\end{aligned}
$$

Normal Form of orthogond Matrices

Rut

See p. 10 to know where $\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$ (rotation) comer from.

3 dim's reflections that act $\left(\begin{array}{cc}\operatorname{sis} \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right)$ (reflector) as axes of rotations

Frames P.14
Euclidean Frame: \mathbb{R}^{n}
$n+1$ points, $Q_{0}, Q_{1} \ldots Q_{n}, \quad \vec{Q}_{0} Q_{i} \perp \vec{Q}_{0} Q_{j} \quad \omega / d\left(Q_{0}, Q_{i}\right)=1$
than: If we fix a frame
the set of motions $\begin{gathered}\text { (isometries) }\end{gathered} \stackrel{1-1}{\longrightarrow}$ Euclidean Frames (isometries)

Ex. $n=1$,

$$
\left\{\begin{array}{r}
\text { Set of Motions } \\
x \longmapsto x+1 \\
x \longmapsto-x+1 \\
x n=2 \quad \mathbb{R}^{2}
\end{array}\right.
$$

$\left\{\right.$ Set of Motions of $\left.\mathbb{R}^{2}\right\} \longleftrightarrow \begin{aligned} & \text { Euclidean } \\ & \text { a-frames }\end{aligned}$
From \#1

$$
\begin{aligned}
& \left\{\binom{p_{0}}{q_{0}},\binom{p_{1}}{q_{1}},\binom{p_{2}}{q_{2}}\right\} \\
& \binom{p_{i}}{q_{i}} \cdot\binom{p_{j}}{q_{j}}=0 \\
& i \neq i \quad E x\left(\theta, x_{1}, y_{1}\right) \in S^{1} \times \mathbb{R}^{2} \quad \text { cire } \\
& \stackrel{\perp}{\operatorname{rot}_{0}(\theta)} \text { 交 translate by }(x, y)
\end{aligned}
$$

Ans rotation $\&$ fix $(0,0)$, still get frame

$$
S^{1} \times \mathbb{R}^{2} \cup S^{1} \times \mathbb{R}^{2}
$$

circle

$$
S^{n}=\text { set of } \mathbb{R}^{n+1} \text { norm }=1
$$

Ex $n=3 \mathbb{R}^{3}$
Set of Motions of $\left.\mathbb{R}^{3}\right\} \longleftrightarrow$ End. $\longleftrightarrow 3$-frames $\longleftrightarrow S^{2} \times \mathbb{R}^{3} \cup S^{2} \times \mathbb{R}^{3}$

$$
T(x)=\left(\begin{array}{ccc}
\pm 1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right)(\bar{x})+\bar{b}
$$

Motions are nard,
Prop: A motion of E^{2} is determined by what it does to 3 points, $P, Q, R \frac{1}{\varepsilon}$, what it does to 2 points leaves only a possibilities.

Ex Let's prove the ∂^{n} - Half first.
Suppose $P \rightarrow P^{\prime}, Q \rightarrow Q^{\prime}$,
Fix frame P_{0}, P_{1}, P_{2}. sit

$$
\begin{aligned}
& \text { Fix frame } P_{0}, P_{1}, P_{2} \text { Sit } \\
& P_{0}=P, P_{1}=\frac{|P Q|}{d(P, Q)}, P_{2}=\begin{array}{c}
\text { Something, } \\
\text { that } \\
\text { works }
\end{array}
\end{aligned}
$$

Note that I have now fixed a frame \qquad
Now fix another frame

$$
\begin{aligned}
& P_{0}^{\prime}=p^{\prime} \\
& P_{1}^{\prime}=\frac{\left|P^{\prime} Q^{\prime}\right|}{d\left(P!Q^{\prime}\right)}
\end{aligned}
$$

How many choices do I have?

$$
P_{2}^{\prime}=2 \text { choices }
$$

Prop Any motion of \mathbb{E}^{2} is either

- $\operatorname{rot}_{p}(\theta)$
- refl (L)
- trans (\bar{b})
- glide (V)
proof:
Let $P \longmapsto P^{\prime}, Q \longmapsto Q^{\prime}$ via some motion, 2 possibilities.

$$
\begin{aligned}
& \bar{u}=P Q \\
& \bar{v}=P Q^{\prime}
\end{aligned}
$$

$$
\theta=\text { angl } b / w P, Q
$$

$\frac{1}{2}(\bar{u}+\bar{v})=$ vector spans line" L to reltect, takin $P Q \| P^{\prime} Q^{\prime}$
cop \perp for P, P^{\prime} to L
determines A, A^{\prime} trans vector $\bar{A} A^{\prime}$ takes $P \rightarrow P^{\prime}$

For a rotation taking

