Hus Barrens

$$\frac{1}{1050 = \frac{a - b}{(a + 1/b)}} \quad \text{wl} \quad \underbrace{\left(\sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{n$$

Let A be a real orthogonal matrix and let e,f be real (a) eigenvectos of A with distinct eigenvalues, lambda and mu. Show that e and f are orthogonal.

(b)
$$Z \in \mathbb{C}^{n}$$
 eigenvector, w) complex eigenvelue $\lambda \notin IR$
show $\overline{z} \cdot \overline{z} = \overline{0}$
Fact $|\chi| = 1$ (step $\overline{z} p \cdot I\overline{2}$) $\overline{b} \neq 0, t\overline{t}$
 $\lambda = \cos \theta + Lsh \delta$
 $\overline{z} \cdot \overline{z} = A\overline{z} \cdot A\overline{z} = \lambda \overline{z} \cdot \lambda \overline{z} = \lambda^{2} \overline{z} \cdot \overline{z}$
 $\lambda^{b} = (\cos \theta + Lsh \theta)^{T} = \cos^{2} \theta + \overline{d} sh \theta \cos \theta - sh^{2} \theta$
 $= \cos^{2} \theta - sh^{2} \theta + (\overline{d} sh \theta \cos \theta) \overline{t}$
 $\overline{z} \cdot \overline{z} - \lambda^{2} \overline{z} \cdot \overline{z} = 0$
 $(1 - \chi^{2})(\overline{z} \cdot \overline{z}) = 0$
 $\overline{z} \cdot \overline{z} = 0$

,

More on
$$\overline{z} \cdot \overline{z} = 0$$

 $\overline{z} = \binom{1}{0} + \frac{1}{0}\binom{1}{1} = \binom{1}{1}$
 $\overline{z} \cdot \overline{z} = \binom{1}{1} \cdot \binom{1}{1} = 1 + \frac{1^2}{1} = 0$
 $\overline{z \cdot \overline{z}} = \binom{1}{1} \cdot \binom{1}{1} = 1 + \frac{1^2}{1} = 0$
 $\overline{z \cdot \overline{z}} = \binom{1}{1} \cdot \binom{1}{1} = 1 + \frac{1^2}{1} = 0$
 $\overline{z \cdot \overline{z}} = \binom{1}{1} \cdot \binom{1}{1} = 1 + \frac{1^2}{1} = 0$
 $\overline{z \cdot \overline{z}} = \binom{1}{1} \cdot \binom{1}{1} = \binom{1}{1} \cdot \binom{1}{1} + \binom{1}{1} = \binom{1}{1} \cdot \binom{1}{1} \cdot \binom{1}{1} \cdot \binom{1}{1} \cdot \binom{1}{1} = 0$
 $\overline{z \cdot \overline{z}} = \binom{1}{1} \cdot \binom{1}{1} \cdot \binom{1}{1} \cdot \binom{1}{1} = \binom{1}{1} \cdot \binom{1}{1} \cdot \binom{1}{1} \cdot \binom{1}{1} \cdot \binom{1}{1} = \binom{1}{1} \cdot \binom{1}{1} \cdot \binom{1}{1} \cdot \binom{1}{1} \cdot \binom{1}{1} \cdot \binom{1}{1} \cdot \binom{1}{1} = \binom{1}{1} \cdot \binom{1}{1} \cdot$

Eigh beans
$$A = X + X + A = 0 = \overline{X} + \overline{X} + A = 0 = \overline{X} + \overline{X} + X = X + X + X = 0$$

$$(aso = \overline{X} + \overline{X$$

$$(y) = \left(\begin{array}{c} y \\ y \end{array}\right) = \left(\begin{array}{c} y \\ y \end{array}\right) = \left(\begin{array}{c} y \\ z \end{array}\right) = \left(\begin{array}{c} y \end{array}\right) = \left(\begin{array}{c} y \\ z \end{array}\right) = \left(\begin{array}{c} y \\ z \end{array}\right) = \left(\begin{array}{c} y \\ z \end{array}\right) = \left(\begin{array}{c} y \end{array}\right) = \left(\begin{array}{c} y \\ z \end{array}\right) = \left(\begin{array}{c} y \end{array}\right)$$

P.21

