Ho Review

$$
\cos \theta=\frac{a \cdot b}{|a| \cdot|b|}
$$

use Schwartz inequality
1.5/Let $\lambda=\cos \theta+i \sin \theta, \theta \neq 0, \pi, A \bar{z}=\lambda \bar{z}, \bar{z}=\bar{x}+i \bar{y}$. Show real $\bar{\xi}$ imam parts

$$
\begin{aligned}
A \bar{z} & =A(x+i y)=A \bar{x}+i A \bar{y} \\
& =\lambda \bar{z}=(\cos \theta+i \sin \theta)(\bar{x}+i \bar{y}) \\
& =\underbrace{\cos \theta \bar{x}+i \cos \theta \bar{y}+i \sin \theta \bar{x}-\sin \theta \bar{y}}_{A \bar{x}} \\
& =(\underbrace{\cos \theta \bar{x}-\sin \theta \bar{y}}_{A \bar{y}})+(\underbrace{\sin }_{\sin ^{\sin } \bar{x}+\cos \phi \bar{y}}) i
\end{aligned}
$$

$A \in O(n), \quad|A \bar{x}|^{2}=|\bar{x}|^{2}$,

Now recall that $A \in O(n)$ preserves angles too, i.e., dot product i.e., Motions $\longleftrightarrow \underset{\text { Matrices }}{ } \longrightarrow \underset{\text { Orthogonal }}{\substack{\text { Matproluct }}} \rightarrow$ preserve dot rigid distance \leftrightarrow dot product n angle preserving
dot product
(1) $A \bar{x} \cdot A \bar{y}=\bar{x} \cdot \bar{y} \quad b / c \quad A \in O(r)$
(2) $x \cdot \bar{y}=0$

$$
\bar{x} \cdot \bar{y}=A \bar{x} \cdot A \bar{y}=\cos \theta \sin \theta|x|^{2}+\left(\cos ^{2} \theta-\sin ^{2} \theta\right) \bar{x} \cdot \bar{y}-\sin \theta \cos \theta\left(\left.\bar{y}\right|^{2}\right.
$$

$$
0=\sin \theta \cos \theta\left(|x|^{2}-|\bar{y}|^{2}\right)
$$

$$
\Rightarrow|\bar{x}|^{2}=|\bar{y}|^{2}
$$

$$
\begin{aligned}
& 11 \\
& A \bar{X} \cdot A \bar{x}=(\cos \theta \bar{x}-\sin \theta \bar{y}) \cdot(\cos \theta \bar{x}-\sin \theta \bar{y}) \\
& |x|^{2}=\cos ^{2} \theta|\bar{x}|^{2}-2 \sin \theta \cos \theta \bar{x} \cdot \bar{y}+\sin ^{2} \theta|\bar{y}|^{2} \\
& \left(1-\cos ^{2} \theta\right)|x|^{2}=-\partial \sin \theta \cos \theta \bar{x} \cdot \bar{y}+\sin ^{2} \theta|y|^{2} \\
& \binom{2}{3} \cdot\binom{4}{5}=23 \\
& \Rightarrow \bar{x} \cdot \bar{y}=0 \\
& \left(\binom{5}{5}-\binom{3}{2}\binom{6}{6}-2.1\right) \\
& =\binom{5}{5} \cdot\binom{6}{6}-\binom{5}{5}\binom{2}{1}-\binom{3}{2}\binom{6}{6}+\binom{3}{2}\binom{2}{1} \\
& 60-15-30+8 \\
& 30+8-15=23
\end{aligned}
$$

(a) eigenvectos of A with distinct eigenvalues, lambda and mu. Show that e and f are orthogonal.
(b) $z \in \mathbb{C}^{n}$ eigenvector, w) complex eigenvalue $\lambda \notin \mathbb{R}$
show $\bar{z} \cdot \bar{z}=0$
Fact $|\underline{x}|=1 \quad($ step a p.12) $\quad \theta \neq 0, \pi$

$$
\begin{aligned}
\lambda=\cos \theta+i \sin \theta \\
\overline{\bar{z}} \cdot \overline{\bar{z}}=A \bar{z} \cdot A \bar{z}=\lambda \bar{z} \cdot \lambda \bar{z}=\lambda^{\alpha} \bar{z} \cdot \bar{z} \\
\begin{aligned}
\lambda^{\alpha}=(\cos \theta+i \sin \theta)^{\gamma} & =\cos ^{2} \theta+2 i \sin \theta \cos \theta-\sin ^{2} \theta \\
& =\cos ^{2} \theta-\sin ^{2} \theta+(\underbrace{\partial \sin \theta \cos \theta}_{\neq 0}) i \\
\bar{z} \cdot \bar{z}-\lambda^{2} \bar{z} \cdot \bar{z} & =0 \\
(\underbrace{1-\lambda^{2}}_{\neq 0})(\bar{z} \cdot \bar{z}) & =0 \\
& \Rightarrow \bar{z} \cdot \bar{z}=0
\end{aligned}
\end{aligned}
$$

More on $\bar{z} \cdot \bar{z}=0$

$$
\begin{aligned}
& \bar{z}=\binom{1}{0}+i\binom{0}{1}=\binom{1}{i} \\
& \bar{z} \cdot \bar{z}=\binom{1}{i} \cdot\binom{1}{i}=1+i^{2}=0
\end{aligned}
$$

step 3 :
If $\bar{z}=\bar{x}+i \bar{y}$ eigh erector of A w/ λ eigenvalue $\lambda \in \mathbb{C}$
then $\bar{z} \cdot \bar{z}=0$ (prenous) form es

$$
(\bar{x}+i \bar{y})(\bar{x}+\mid \bar{y})=(\underbrace{|x|^{2}-|y|^{2}}_{=0})+(\underbrace{\partial \bar{x}-\bar{y})}_{=0} i=0=0+0 i
$$

Exercise:
Let $T: E^{2} \rightarrow E^{2}$ be the motion: reflect in x-axis, then rotate through angle θ around origin.
(a) show $T=$ reflection about a line, s describe the line.

Know: $T(x)=A x+\bar{b}, \bar{b}=\gamma \quad b / c$ No translation

$$
\begin{aligned}
& =A x \\
& \text { Rotation: }\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right) \quad \begin{array}{c}
\text { Reflection: } \\
\text { about } \\
x \text {-axis }
\end{array} \\
& T(x)=\left(\begin{array}{cc}
\cos \theta & \sin 0 \\
\sin \theta & -\cos \theta
\end{array}\right)
\end{aligned}
$$

Line: $\theta / 2$
Vector orthogonal to lire $\binom{\cos \left(\frac{\pi}{2}+2\right)}{\sin \left(\frac{\pi}{2}+\frac{\theta}{2}\right)}$

compute

$$
\left.\begin{array}{l}
\operatorname{con} \text { cute } \\
\cos \theta \\
\sin \theta \\
\sin \theta \\
\hline \cos \theta
\end{array}\right)\binom{\cos \left(\frac{\pi}{2}+\frac{\theta}{2}\right)}{\sin \left(\frac{\pi}{2}+\frac{\theta}{2}\right)}=\binom{\cos \theta \cos \left(\frac{\pi+\theta}{2}\right)+\sin \theta \sin \left(\frac{\pi+\theta}{2}\right)}{\sin \theta \cos \left(\frac{\pi+\theta}{2}\right)-\cos \theta \sin \left(\frac{\pi+\theta}{2}\right)}=\binom{\cos \left(\theta-\left(\frac{\pi+\theta}{2}\right)\right)}{\sin \left(\theta-\left(\frac{\pi+\theta}{2}\right)\right.}
$$

Next, find the eigenvectors of this matrix

$$
=\binom{\cos \left(\frac{\theta-\pi}{\partial}\right)}{\sin \left(\frac{\theta-\pi}{2}\right)}
$$

Eigh Decong. $A x=\lambda x$ s $A \bar{x}-\lambda \bar{x}=0$ so $A \bar{x}-\lambda I \bar{x}=0$ s $(A-\lambda I) \bar{x}=0$

$$
\begin{aligned}
& \left(\begin{array}{cc}
\cos \theta & \sin \theta \\
\sin \theta & -\cos \theta
\end{array}\right) \\
& \xi \\
& \operatorname{det}\left(\begin{array}{cc}
\cos \theta-\lambda & \sin \theta \\
\sin \theta & -\cos \theta-\lambda
\end{array}\right)=-\cos ^{2} \theta+\lambda^{2}-\sin ^{2} \theta=\lambda^{2}-1=0 \\
& \lambda^{2}=1 \\
& \lambda=1 \Rightarrow \\
& \left(\begin{array}{cc}
\cos \theta-1 & \sin \theta \\
\sin \theta & -\cos \theta-1
\end{array}\right)\binom{x}{y}=\binom{0}{0} \\
& \lambda= \pm 1 \\
& \text { Eige Values }
\end{aligned}
$$

mull. botfon row x vecto

$$
\left(\begin{array}{cc}
\cos \theta-1 & \sin \theta \\
1 & -\frac{\cos \theta-1}{\sin \theta}
\end{array}\right)\binom{x}{y}=\binom{0}{0} \text { so } \begin{array}{r}
x-\frac{1+\cos \theta}{\sin \theta y}=0 \\
\\
\\
x=\frac{\cos \theta}{\sin \theta} y
\end{array}
$$

$$
\begin{aligned}
& A x=\lambda x \\
& A(2 x)=\lambda(2 x) \\
& \operatorname{mul} H \cdot b y \\
& \sin \frac{\theta}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Eigenvecto } \\
& \left.\binom{x}{y}=\left(\begin{array}{c}
1+\cos \theta \\
\sin \theta \\
y
\end{array}\right)=y\binom{\frac{1+\cos \theta}{\sin \theta}}{1}=y\left(\frac{\partial \cos ^{2} \frac{\theta}{2}}{2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}} 1\right)=y\left(\begin{array}{c}
\cos \frac{\theta}{2} \\
\sin \frac{\theta}{2} \\
1
\end{array}\right)=\begin{array}{c}
(\operatorname{scalins}) \\
\sin \frac{\theta}{2}
\end{array}\right)
\end{aligned}
$$

Half-Angle: $\cos \frac{\theta}{2}= \pm \sqrt{\frac{\cos \theta+1}{2}} \Rightarrow 2 \cos ^{2} \frac{\theta}{2}=1+\cos \theta$
Double: $\sin \theta \theta=2 \sin \theta \cos \theta \Rightarrow \sin (\theta)=\sin \left(2 \cdot \frac{\theta}{2}\right)=2 \operatorname{si} \frac{\theta}{2} \cos \frac{\theta}{2}$
P. 21

Similar $\Delta{ }^{\prime}$ s:

- common angle es ratios of ∂ sides the same
centroid

$L M \|$ and $L C^{\prime} \| \sim \in \underset{\substack{\text { lire } \\ \text { error }}}{\substack{\text { an }}}$
should san
$L M\left\|A^{\prime} C\right\| B^{\prime} C^{\prime}$ and $M C^{\prime}\|G A\| L B^{\prime}$
$L M A^{\prime} C^{\prime}$ parallel
$L G C^{\prime}$ is straight

