Mon w w 4
Error in notes, typo in text
Ch. 2
Composing Maps:

$$
\begin{aligned}
& T_{1}(z)=A \bar{z}+\bar{b} \\
& T_{2}(\bar{z})=C \bar{z}+d \\
& T_{1} \circ T_{2}(z)=T_{1}(\underbrace{C \bar{z}+\bar{d})}_{\text {vector }}=A(C \bar{z}+\bar{d})+\bar{b}=A C \bar{z}+A \bar{d}+b
\end{aligned}
$$

Exercise:

$$
\alpha: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}
$$

2.1 Linear \Rightarrow Algebra \Rightarrow Any linear map n is given by a matrix. Why? Standard frame $\left(\bar{e}_{1}, \bar{e}_{2}, \ldots, \bar{e}_{n}\right)$ to column The linear map sends the standard frame $\left(\bar{e}_{1}, \bar{e}_{2}, \ldots, \bar{e}_{n}\right)$ to column of A
Idea: T is given. T does something to $\bar{e}_{1}, \ldots, \bar{e}_{n}$.

$$
A=\left[\begin{array}{llll}
T\left(e_{1}\right) & T\left(e_{2}\right) & \ldots & T\left(e_{n}\right)
\end{array}\right]
$$

this "woks" bole.

$$
\begin{aligned}
& \alpha: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \\
& \beta: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n} \\
& \text { ineary } \\
& \text { mops }
\end{aligned}
$$

$\bar{e}_{i}=i$ th $s+d$. basis vector
$A_{i}^{\prime}=$ ith element of 1 st column

$$
\begin{aligned}
& A=\left[\frac{\sum \overline{\bar{A}_{i}^{\prime} \bar{e}_{i}}}{\text { columns }} \cdot \underline{\sum \overline{\bar{A}}_{i}^{2} \bar{e}_{i}} \quad \ldots \quad . \quad\left[\bar{A}_{i}^{3} \bar{e}_{i}^{n} \bar{e}_{i}\right]\right. \\
& A=\left[\frac{\sum \overline{\bar{A}_{i}^{\prime} \bar{e}_{i}}}{\text { columns }} \cdot \underline{\sum \bar{A}_{i}^{2} \bar{e}_{i}} \quad \ldots \quad\left[\begin{array}{l}
\bar{A}_{i}^{3} \bar{e}_{i}^{n} \\
\bar{A}_{i}
\end{array}\right]\right. \\
& {\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]=\left[1(3)+3\binom{0}{1} \quad 2\binom{1}{0}+4\binom{0}{1}\right]}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Beni } \\
& \beta\left(\alpha\left(\bar{e}_{i}\right)\right)=\beta\left[e_{i} \bar{A}_{1}+e_{i 2} \bar{A}_{2}+\ldots+e_{i m} \bar{A}_{m}\right] \\
& =e_{i 1} B\left(\bar{A}_{1}\right)+e_{i 2} B\left(\bar{A}_{2}\right)+\ldots+e_{i m} B\left(\bar{A}_{n a}\right) \\
& =\quad B A\left(\bar{e}_{i}\right)
\end{aligned}
$$

gives $\quad B 0 \alpha(\bar{r}) \leftrightarrow B A(\bar{v})$

Composition of linear maps IS matrix multiplication
matrices
A, B
$\bar{A}_{i}=i \underline{\text { th column of } A}$

The set of all motions form a group: eg, $T(x)=A \bar{x}+\bar{b}$

1. id: $T(x)=x, \quad A=I, \quad \bar{b}=\overline{0}$
2. inverse: If $T(\bar{x})=A \bar{y}+f$ whet is τ^{-1} ?

$$
\begin{aligned}
& A \bar{x}+\bar{b}=\bar{y} \\
& A x=\bar{y}-\bar{b} \\
& x=A^{-1}(\bar{y}-\bar{b}) \\
& \longrightarrow \text { exist } \quad b / c \quad A \in O(r), \quad|A|=1
\end{aligned}
$$

3. closed: $T_{1} \circ T_{2}(x)=\stackrel{\text { matrix }}{\widetilde{A C}(x)+\widetilde{A d}+b}=E x+\bar{f}$
4. associative: yes see exercise.

$$
A C=E \in O(n)
$$

theorem: Every motion of \mathbb{R}^{\sim} is generated by reflections.
Idea:
Let T be a motion. If $T(x)=x \in \mathbb{R}^{n} \Rightarrow T=$ id
Else, \exists sone $x \in \mathbb{R}^{n} s+\quad T(x) \not f^{i} x$.

$$
=R \cdot R
$$

w) $R=$ some re (lection.

Find a reflector (taking $x \longmapsto T(x)$.
Algorithm: reflect across 1 bisect
So $R_{1} \circ T(x)=x$. if $R_{1} \circ T=1 d$, dove bic $\Rightarrow T=R_{\text {, }}^{=}$
Repeat.
this process stops after e most $n+1$ reflections. Here's why,
$1 R^{2}$
Table of Products of Reflections

