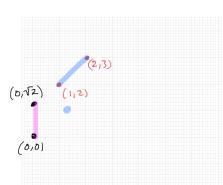
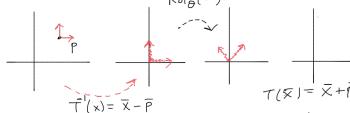
1.11/



Translate, then rotate:

Method for rotating by angle θ about P, $\cos \theta - \sin \theta$ in coordinates. Roto $(\bar{0}', \bar{x}) = P(\bar{x}) = (\sin \theta - \cos \theta)$



$$\int_{S^{N-p}}^{\infty} (x) dx - S^{N-p} dx + \int_{S^{N-p}}^{\infty} (x) dx + \int_{S^{$$

In ex. above 1 Translate Fryst

$$T_{i}(\bar{x}) = \bar{x} + (\bar{z})$$
 gives some map as

ex. above:

$$(d, (1/2) \leftrightarrow (2)$$

 $(d, (1/2) \leftrightarrow (2)$
 $(d, (1/2) \leftrightarrow (2)$

This relates to (1.8)!

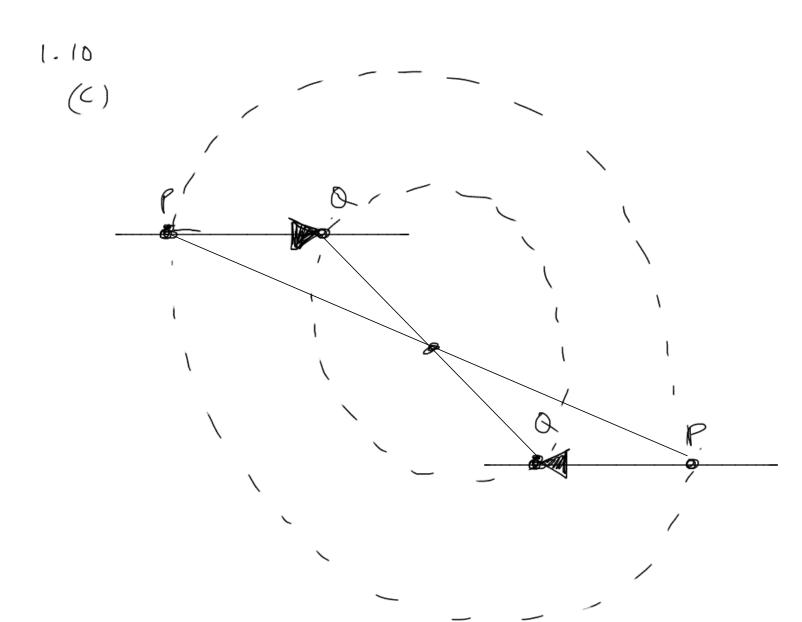
Find angle of Rotation'
$$= \frac{1}{2} \left(\frac{3}{3} \right)$$
 we will votate by $-\frac{\pi}{4}$ equiv. angle blu $(0,\sqrt{2}) \cdot (1,1) = \frac{1}{2} \left(\frac{3}{3} \right)$ taking $0 = \cos^2 \left(\frac{0,\sqrt{2} \cdot (1,1)}{\sqrt{2} \cdot \sqrt{2}} \right) = \cos^2 \left(\frac{\sqrt{2}}{2} \right) = \frac{\pi}{4}$

$$\mathcal{Q}(\bar{x}) = \begin{pmatrix}
\cos^{-t}/4 & -\sin^{-t}/4 \\
\sin^{-t}/4 & \cos^{-t}/4
\end{pmatrix} \begin{pmatrix}
-1 & -\sin^{-t}/4 \\
-1 & -\sin^{-t}/4
\end{pmatrix} \begin{pmatrix}
-1 & -\sin^{-t}/4 \\
-1 & -\sin^{-t}/4
\end{pmatrix} \begin{pmatrix}
-1 & -\sin^{-t}/4 \\
-1 & -\sin^{-t}/4
\end{pmatrix} \begin{pmatrix}
-1 & -\sin^{-t}/4 \\
-1 & -\sin^{-t}/4
\end{pmatrix} \begin{pmatrix}
-1 & -\sin^{-t}/4 \\
-1 & -\sin^{-t}/4
\end{pmatrix} \begin{pmatrix}
-1 & -\cos^{-t}/4 \\
-1 & -\cos^{-t}/4
\end{pmatrix} \begin{pmatrix}
-1 & -\cos^{-t}/4 \\
-1 & -\cos^{-t}/4
\end{pmatrix} \begin{pmatrix}
-1 & -\cos^{-t}/4 \\
-1 & -\cos^{-t}/4
\end{pmatrix} \begin{pmatrix}
-1 & -\cos^{-t}/4 \\
-1 & -\cos^{-t}/4
\end{pmatrix} \begin{pmatrix}
-1 & -\cos^{-t}/4 \\
-1 & -\cos^{-t}/4
\end{pmatrix} \begin{pmatrix}
-1 & -\cos^{-t}/4 \\
-1 & -\cos^{-t}/4
\end{pmatrix} \begin{pmatrix}
-1 & -\cos^{-t}/4 \\
-1 & -\cos^{-t}/4
\end{pmatrix} \begin{pmatrix}
-1 & -\cos^{-t}/4 \\
-1 & -\cos^{-t}/4
\end{pmatrix} \begin{pmatrix}
-1 & -\cos^{-t}/4 \\
-1 & -\cos^{-t}/4
\end{pmatrix} \begin{pmatrix}
-1 & -\cos^{-t}/4 \\
-1 & -\cos^{-t}/4
\end{pmatrix} \begin{pmatrix}
-1 & -\cos^{-t}/4 \\
-1 & -\cos^{-t}/4
\end{pmatrix} \begin{pmatrix}
-1 & -\cos^{-t}/4 \\
-1 & -\cos^{-t}/4
\end{pmatrix} \begin{pmatrix}
-1 & -\cos^{-t}/4 \\
-1 & -\cos^{-t}/4
\end{pmatrix} \begin{pmatrix}
-1 & -\cos^{-t}/4 \\
-1 & -\cos^{-t}/4
\end{pmatrix} \begin{pmatrix}
-1 & -\cos^{-t}/4 \\
-1 & -\cos^{-t}/4
\end{pmatrix} \begin{pmatrix}
-1 & -\cos^{-t}/4 \\
-1 & -\cos^{-t}/4
\end{pmatrix} \begin{pmatrix}
-1 & -\cos^{-t}/4 \\
-1 & -\cos^{-t}/4
\end{pmatrix} \begin{pmatrix}
-1 & -\cos^{-t}/4 \\
-1 & -\cos^{-t}/4
\end{pmatrix} \begin{pmatrix}
-1 & -\cos^{-t}/4 \\
-1 & -\cos^{-t}/4
\end{pmatrix} \begin{pmatrix}
-1 & -\cos^{-t}/4 \\
-1 & -\cos^{-t}/4
\end{pmatrix} \begin{pmatrix}
-1 & -\cos^{-t}/4 \\
-1 & -\cos^{-t}/4
\end{pmatrix} \begin{pmatrix}
-1 & -\cos^{-t}/4 \\
-1 & -\cos^{-t}/4
\end{pmatrix} \begin{pmatrix}
-1 & -\cos^{-t}/4 \\
-1 & -\cos^{-t}/4
\end{pmatrix} \begin{pmatrix}
-1 & -\cos^{-t}/4 \\
-1 & -\cos^{-t}/4
\end{pmatrix} \begin{pmatrix}
-1 & -\cos^{-t}/4 \\
-1 & -\cos^{-t}/4
\end{pmatrix} \begin{pmatrix}
-1 & -\cos^{-t}/4 \\
-1 & -\cos^{-t}/4
\end{pmatrix} \begin{pmatrix}
-1 & -\cos^{-t}/4 \\
-1 & -\cos^{-t}/4
\end{pmatrix} \begin{pmatrix}
-1 & -\cos^{-t}/4 \\
-1 & -\cos^{-t}/4
\end{pmatrix} \begin{pmatrix}
-1 & -\cos^{-t}/4 \\
-1 & -\cos^{-t}/4
\end{pmatrix} \begin{pmatrix}
-1 & -\cos^{-t}/4 \\
-1 & -\cos^{-t}/4
\end{pmatrix} \begin{pmatrix}
-1 & -\cos^{-t}/4 \\
-1 & -\cos^{-t}/4
\end{pmatrix} \begin{pmatrix}
-1 & -\cos^{-t}/4 \\
-1 & -\cos^{-t}/4
\end{pmatrix} \begin{pmatrix}
-1 & -\cos^{-t}/4 \\
-1 & -\cos^{-t}/4
\end{pmatrix} \begin{pmatrix}
-1 & -\cos^{-t}/4 \\
-1 & -\cos^{-t}/4
\end{pmatrix} \begin{pmatrix}
-1 & -\cos^{-t}/4 \\
-1 & -\cos^{-t}/4
\end{pmatrix} \begin{pmatrix}
-1 & -\cos^{-t}/4 \\
-1 & -\cos^{-t}/4
\end{pmatrix} \begin{pmatrix}
-1 & -\cos^{-t}/4 \\
-1 & -\cos^{-t}/4
\end{pmatrix} \begin{pmatrix}
-1 & -\cos^{-t}/4 \\
-1 & -\cos^{-t}/4
\end{pmatrix} \begin{pmatrix}
-1 & -\cos^{-t}/4 \\
-1 & -\cos^{-t}/4
\end{pmatrix} \begin{pmatrix}
-1 & -\cos^{-t}/4 \\
-1 & -\cos^{-t}/4
\end{pmatrix} \begin{pmatrix}
-1 & -\cos^{-t}/4 \\
-1 & -\cos^{-t}/4
\end{pmatrix} \begin{pmatrix}
-1 & -\cos^{-t}/4 \\
-1 & -\cos^{-t}/4
\end{pmatrix} \begin{pmatrix}
-1 & -\cos^{-t}/4 \\
-1 & -\cos^{-t}/4
\end{pmatrix} \begin{pmatrix}
-1 & -\cos^{-t}/4 \\
-1 & -\cos^{-t}/4
\end{pmatrix} \begin{pmatrix}
-1 & -\cos^{-t}/4 \\
-1 & -\cos^{-t}/4
\end{pmatrix} \begin{pmatrix}
-1 & -\cos^{-t}/4 \\
-1 & -\cos^{-t}/4
\end{pmatrix} \begin{pmatrix}
-1 & -\cos^{-t}/4 \\
-1 & -\cos^{-t}/4
\end{pmatrix} \begin{pmatrix}
-1 & -\cos^{-t}/4 \\
-1 & -\cos^{-t}/4
\end{pmatrix} \begin{pmatrix}
-1 & -\cos^{-t}/4 \\
-1 & -\cos^{-t}/4
\end{pmatrix} \begin{pmatrix}
-1 & -\cos^{-t}/4 \\
-1 & -\cos^{-t}/4
\end{pmatrix} \begin{pmatrix}
-$$

From 1,8 We know

$$Ax + b = x$$
 has some solution.

this
$$Q(x) \stackrel{\text{also}}{=} Rot_p(\theta)$$
 Find that point P.



Composite of two 1/2 turns = translation