1.11/

Translate, then rotate:
Method for rotating by angle θ about P, in coordinates.

$$
\begin{aligned}
& \text { angle } \theta \text { about } P, \\
& \operatorname{Rot}_{\theta}(\bar{\theta}, \bar{X})=R(\bar{x})=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& T^{-1}(x)=\bar{x}-\bar{p} \\
& R \circ T^{-1}(\bar{x})= \\
& \text { compos.tiomotions }
\end{aligned}
$$

$$
T \circ R \circ T^{-1}(\bar{x})=\left(\begin{array}{c}
\cos \theta-\sin \theta \\
\sin \theta \cos \theta \mid(\bar{x}-\bar{p})+\bar{P} \\
\operatorname{compostin} \text { 隹 }
\end{array}\right.
$$

rotation about p , by angle theta
In ex. above
Translate First
id. $(1,2) \longleftrightarrow\binom{1}{2}$
$T_{1}(\bar{x})=\bar{x}+\binom{1}{2}$ gives same $m g p$ as

Find angle of Rotation'
equiv. angle blu $(0, \sqrt{2})$ \& $(1,1)=\tau^{-1}\binom{2}{3}$

$$
\theta=\cos ^{-1}\left(\frac{(0, \sqrt{2}) \cdot(1,1)}{\sqrt{2} \cdot \sqrt{2}}\right)=\cos ^{-1}\left(\frac{\sqrt{2}}{2}\right)=\pi / 4
$$

$$
Q(\bar{x})=\left(\begin{array}{cc}
\cos ^{-\pi / 4} & -\sin ^{-\pi / 4} \\
\sin ^{-\pi / 4} & \cos ^{-\pi / 4}
\end{array}\right)(\bar{x})+\binom{1}{2}=\frac{\sqrt{2}}{2}\left(\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right)(\bar{x})+\binom{1}{2}
$$

Fro 1.8 we know

$$
A x+b=x \text { has some solution. }
$$

this $\varphi(x) \stackrel{\text { also }}{=} \operatorname{Rot}_{p}(\theta)$ Find that point \mathbb{P}.
From $1.8 \quad P=$
$1.8 /$

$$
A=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)
$$

$$
\begin{aligned}
& A \bar{x}+b=\bar{x} \quad A=\left(\begin{array}{l}
\sin \theta \\
\sin \theta \\
A \bar{x}-\bar{x}=-\bar{b} \\
A \bar{x}-I \bar{x}=-\bar{b} \\
(A-I) \bar{x}=-\bar{b} \\
\left(\begin{array}{cc}
\cos \theta-1 & -\sin \theta \\
\sin \theta & \cos \theta-1
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{-b_{1}}{-b_{2}}
\end{array} \$. \begin{array}{l}
\end{array},\right.
\end{aligned}
$$

$$
2 x_{2}-b_{2}=\frac{-\sin \theta b_{1}}{\cos \theta-1}
$$

$$
x_{2}=\frac{1}{2} \frac{-\sin \theta b_{1}+b_{2}(\cos \theta-1)}{\cos \theta-1}=\frac{1}{2}\left(b_{2}-\left(\frac{\sin \theta}{\cos \theta-1}\right) b_{1}\right)=\frac{1}{2}\left(b_{2}-\frac{2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}}{2 \sin ^{2} \frac{\theta}{2}} \cdot b_{1}\right)
$$

$$
\begin{aligned}
& 2 \cos ^{2} \frac{\theta}{2}=-\cos \theta+1 \\
& 2(\underbrace{\left(\cos ^{2} \frac{\theta}{2}-1\right.})=\cos \theta-1 \\
& 2 \sin ^{2} \frac{\theta}{2}=\cos \theta-1
\end{aligned}
$$

$$
\begin{aligned}
& \text { system: } \\
& \xrightarrow{\lfloor }(\cos \theta-1)\left(\frac{-b_{2}-(\cos \theta-1) x_{2}}{\sin \theta}\right)-\frac{\sin ^{2} \theta \times 2}{\sin \theta} \times \\
& \frac{-b_{2}(\cos \theta-1)-(\cos \theta-1)^{2} x_{2}-\sin ^{2} \theta x_{2}}{\sin \theta}=\frac{-b_{2}(\cos \theta-1)-\cos ^{2} \theta x_{2}+2 \cos \theta x_{2}-x_{2}-\sin ^{2} \theta x_{2}}{\sin \theta} \\
& \left.=\frac{-b_{2}(\cos -1)+2(\cos \theta-1)}{\sin \theta}\right) x_{2}=\frac{(\cos \theta-1)\left(2 x_{2}-b_{2}\right)}{\sin \theta}=-b_{1}
\end{aligned}
$$

Composite of two $1 / 2$ tums $=$ translation

