1.7/ Lat $T i E^{2} \rightarrow E^{2}$ be motem: reflection x-axis then rotate throyh θ around origin,
(a) Show $T=$ reflection about a line $\frac{1}{\xi}$ describe line.
we know:

$$
\begin{aligned}
& T(x)=T_{1} \circ T_{2}(x) \\
& T_{2}(\bar{x})=A \bar{x}+\bar{b}
\end{aligned}
$$

reflection \Rightarrow

$$
\begin{aligned}
& \text { ection } \Rightarrow \\
& \bar{b}=\binom{0}{0}, A=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \quad \text { this works bile }\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\binom{x}{y}=\binom{x}{-y}
\end{aligned}
$$

$$
\begin{aligned}
& \text { So } T_{2}\binom{x_{1}}{x_{2}}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\binom{x_{1}}{x_{2}} \\
& T_{1}(x)=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)(\vec{x})
\end{aligned}
$$

thus

(b) Eigen: $A x=\lambda x \Rightarrow A x-\lambda x=(A-\lambda I) x=0$, so deft me mist

$$
\begin{aligned}
& \operatorname{det}\left(\begin{array}{cc}
\cos \theta-\lambda & \sin \theta \\
\sin \theta & -\cos \theta-\lambda
\end{array}\right)=0 \\
& -\cos ^{2} \theta+\lambda^{2}-\sin ^{2} \theta=-1+\lambda^{2}=0, \quad \lambda^{2}=1, \lambda= \pm 1
\end{aligned}
$$

Line of Reflection: angle $\frac{\theta}{2}$
Vector orthogonal to Lire: $\binom{\cos \left(\frac{\pi}{2}+\frac{\theta}{2}\right)}{\sin \left(\frac{\pi}{2}+\frac{\theta}{2}\right)}$
Note:

$$
\begin{aligned}
& \text { Note : } \\
& \left(\begin{array}{cc}
\cos \theta & \sin \theta \\
\sin \theta & -\cos \theta
\end{array}\right)\binom{\cos \left(\frac{\pi+\theta}{2}\right)}{\sin \left(\frac{\pi+\theta}{2}\right.}= \\
& \binom{\cos \theta \cos \left(\frac{\pi+\theta}{2}\right)+\sin \theta \sin \left(\frac{\pi+\theta}{2}\right)}{\sin \theta \cos \left(\frac{\pi+\theta}{2}\right)-\cos \theta \sin \left(\frac{\pi+\theta}{2}\right)}=\begin{array}{l}
\text { almost } \\
\sin \\
\text { formulas }
\end{array} \\
& \binom{\cos \left(-\theta \cos \left(\frac{\pi+\theta}{2}\right)-\sin (-\theta) \sin \left(\frac{\pi+\theta}{2}\right)\right.}{\sin \theta \cos \left(\frac{-\pi-\theta}{2}\right)+\cos \theta \sin \left(\frac{-\pi-\theta}{2}\right)}= \\
& \binom{\cos \left(-\theta+\frac{\pi+\theta}{2}\right)}{\sin \left(\theta-\left(\frac{\pi+\theta}{2}\right)\right.}=\binom{\cos \left(\theta-\frac{\pi+\theta}{2}\right)}{\sin \left(\theta-\frac{\pi+\theta}{2}\right)}=\binom{\cos \left(\frac{\theta-\pi}{2}\right)}{\sin \left(\frac{\theta-\pi}{2}\right)}
\end{aligned}
$$

$$
\lambda=1:\left(\begin{array}{cc}
\cos \theta-1 & \sin \theta \\
\sin \theta & -\cos \theta-1
\end{array}\right)\binom{x}{y}=\begin{aligned}
& 0 \\
& 0
\end{aligned}
$$

$$
\left(\begin{array}{cc}
\cos -1 & \sin \theta \\
1 & -\frac{\cos -1}{\sin \theta}
\end{array}\right)\binom{x}{y} \Rightarrow x-\left(\frac{\cos \theta+1}{8 \sin }\right) y=0 \quad \text { or } \quad x=\left(\left.\frac{\cos \theta+1}{\sin \theta} \right\rvert\, y\right.
$$

factor scalar: $2 \cos \frac{\theta}{2}$

$$
\binom{x}{y}=\binom{\frac{\cos \theta+1}{\sin \theta} y}{y}=\binom{(\cos \theta+1) y}{\sin \theta y}=\frac{y}{y}\binom{\cos \theta+1}{\sin \theta}=y\binom{\cos \theta+1}{\sin \theta}=y\binom{2 \cos ^{2}\left(\frac{\theta}{2}\right)}{2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}}=\binom{\cos \frac{\theta}{2}}{\sin \frac{\theta}{2}}
$$

Half -Angle: $\cos \frac{\theta}{2}= \pm \sqrt{\frac{\cos \theta+1}{2}} \Rightarrow 2 \cos ^{2} \frac{\theta}{2}=\cos \theta+1$
Doulle-Angle: $\sin 2 \theta=2 \cos \theta \sin \theta \Rightarrow \sin \frac{\theta}{2}=2 \sin \theta \cos \theta$
1.8 (a) Let θ be a nonzero angle and \mathbf{b} a translation vector in the plane. Give a geometric construction for a point $P \in \mathbb{E}^{2}$ such that

$$
\operatorname{Rot}(O, \theta)(P)=\operatorname{Trans}(-\mathbf{b})(P)
$$

[Hint: draw a picture, to find points P, Q with $\mathbf{b}=\overrightarrow{Q P}$ such that O is on the perpendicular bisector of $P Q$ and $\angle P O Q=\theta$.]
(b) By solving linear equations, find x, y such that

$$
A\binom{x_{1}}{x_{2}}+\binom{b_{1}}{b_{2}}=\binom{x_{1}}{x_{2}}, \quad \text { where } \quad A=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
\sin \theta & -\cos \theta
\end{array}\right)
$$

(c) Express the motion $T: \mathbb{E}^{2} \rightarrow \mathbb{E}^{2}$ defined in coordinates by $T(\mathbf{x})=A \mathbf{x}+\mathbf{b}$ in the form $T=\operatorname{Rot}(P, \theta)$.
(d) Relate (a) and (b).
(b) Solve A

$$
\left.\begin{array}{l}
A x+b=\bar{x} \\
A x-I_{x}=-b \\
(A-I) \bar{x}=-b
\end{array}\right\} \quad\left(\begin{array}{cc}
\cos \theta-1 & \sin \theta \\
\sin \theta & -\cos \theta-1
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{-b_{1}}{-b_{2}}
$$

Trick) formulas

$$
\sin \theta=2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}
$$

$$
\begin{aligned}
& 2 \cos ^{2} \frac{\theta}{2}=\cos \theta+1 \\
& 2\left(\cos ^{2} \frac{\theta}{2}-1\right)=\cos \theta-1 \\
& -2 \sin ^{2} \frac{\theta}{2}=\cos \theta-1
\end{aligned}
$$

system of eq's

$$
\left.\begin{array}{l}
\left\{\begin{array}{c}
(\cos \theta-1) x_{1}+\sin \theta x_{2}=-b_{1} \\
x_{1}-\frac{(\cos \theta+1) x_{2}}{\sin \theta}=\frac{-b_{2}}{\sin \theta}
\end{array}\right\} \Rightarrow x_{1}=\frac{(\cos \theta+1) x_{2}-b_{2}}{\sin \theta} \Rightarrow\binom{x_{1}}{x_{2}}=\binom{\frac{(\cos \theta+1) x_{2}-b_{2}}{\sin \theta}}{x_{2}} \\
=x_{2}\binom{\frac{\cos \theta+1}{\sin \theta}}{1}+\binom{-\frac{b_{2}}{\sin \theta}}{0}=\alpha\binom{\cos \theta+1}{\sin \theta}+\binom{\frac{-b_{2}}{\sin \theta}}{0}=\alpha\binom{\cos \theta / 2}{\sin \theta / 2}+\binom{\frac{-b_{2}}{\sin \theta}}{0} \\
x_{1}=\frac{-\sin \theta x_{2}-b_{1}}{\cos \theta-1} \\
x_{2}
\end{array}\right) \quad\binom{x_{1}}{x_{2}}=\binom{-\sin \theta x_{2} / \cos \theta-1}{x_{2}}+\binom{\frac{-b_{1}}{\cos \theta-1}}{0}=x_{2}\binom{\frac{-\sin \theta}{\cos \theta-1}}{1}+\binom{\frac{-b_{1}}{\cos \theta-1}}{0} .
$$

(c) Let $T(x)=A x+b$. Then $A=\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$. Part (b) suggests: Let $\bar{p}=\binom{b_{1}-b_{2} \cot (\theta / 2)}{b_{1} \cot (\theta / 2)+b_{2}}$. Now $T(x)=\operatorname{Rot}_{\bar{p}}(\bar{x})$
(d) The fixed point of (b) is fixed by the composition of the maps in (a)

$$
\begin{aligned}
& (\cos \theta-1) x_{1}+\sin \theta x_{2}+f_{1}=0= \\
& \text { Trio, formulas } \\
& \sin \theta=2 \sin \frac{\theta}{2} \cos \frac{\theta}{2} \\
& \sin \theta x_{1} \quad(-\cos \theta-1) x_{2}+b_{2}=0 \\
& 2\left(\cos ^{2} \frac{\theta}{2}-1\right)=\cos \theta-1 \\
& -2 \sin ^{2} \frac{\theta}{2}=\cos \theta-1 \\
& \left(\begin{array}{cc}
\cos \theta-1 & -\sin \theta \\
\sin \theta & \cos \theta-1
\end{array}\right)(\bar{x})=\binom{-r_{1}}{-b_{2}} \\
& \bar{x}=\underbrace{\left(\cos ^{\left.\frac{1}{2}-1\right)^{2}+\sin ^{2} \theta}\right.}_{\cos ^{2} \theta-2 \cos \theta+1+\sin ^{2} \theta}\left(-2 \sin ^{-\phi} \cos \frac{\theta}{2} \quad-2 \sin ^{2} \frac{\theta}{2}\right)=\frac{2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}}{4 \sin ^{2} \frac{\theta}{2}}\left(\begin{array}{cc}
-2 \sin \frac{\theta}{2} & \cos \frac{\theta}{2} \\
-\cos \frac{\theta}{2} & -\sin \frac{\theta}{2}
\end{array}\right) \\
& 2 \cos ^{2} \frac{\theta}{2}=\cos \theta+1 \\
& \text { " } 2 \text {-2 } 2(1-\cos \theta) \\
& \begin{array}{c}
2\left(-2 \sin ^{2} \frac{\theta}{2}\right) \\
4 \sin ^{2} \frac{\theta}{2}
\end{array} \quad=\frac{1}{2}\left(\begin{array}{cc}
-1 & \cot \left(\frac{\theta}{2}\right) \\
-\cot \left(\frac{\theta}{2}\right) & -1
\end{array}\right)\binom{b_{1}}{b_{2}} \\
& \frac{1}{2}\binom{-b_{1}+\cot i b_{2}}{-\cot \frac{\theta}{2}-t_{2}} \longleftarrow \\
& a \cot +b \\
& J=\frac{1}{2}\left[\begin{array}{l}
b_{1}-b_{2} \cot \left(\frac{\theta}{2}\right) \\
b_{1} \cot \frac{\theta}{2}+b_{2}
\end{array}\right]=C
\end{aligned}
$$

this is the center of
the rotation - This is C

So $T(x)=A x+b=\operatorname{Rot}(\theta)$

$$
T(x)=A x+b
$$

$$
\binom{p_{1}}{p_{2}}=p<b-\binom{q_{1}}{q_{2}}
$$

1.8 (a) Let θ be a nonzero angle and \mathbf{b} a translation vector in the plane. Give a geometric
construction for a point $P \in \mathbb{E}^{2}$ such that

$$
\operatorname{Rot}(O, \theta)(P)=\operatorname{Trans}(-\mathbf{b})(P)
$$

[Hint: draw a picture, to find points P, Q with $\mathbf{b}=\overrightarrow{Q P}$ such that O is on the perpendicular bisector of $P Q$ and $\angle P O Q=\theta$.]

$$
A x+b=x
$$

(b) By solving linear equations, find x, y such that

$$
A\binom{x_{1}}{x_{2}}+\binom{b_{1}}{b_{2}}=\binom{x_{1}}{x_{2}}, \quad \text { where } \quad A=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
\sin \theta & -\cos \theta
\end{array}\right)
$$

(c) Express the motion $T: \mathbb{E}^{2} \rightarrow \mathbb{E}^{2}$ defined in coordinates by $T(\mathbf{x})=A \mathbf{x}+\mathbf{b}$ in the form $T=\operatorname{Rot}(P, \theta)$.
(d) Relate (a) and (b).

$$
(A-I) x=b
$$

$\overline{\left.\left(\begin{array}{ll}\cos \theta & \sin \theta \\ \sin \theta & -\cos \theta\end{array}\right)\binom{x_{1}}{x_{2}}+\binom{b_{1}}{b_{2}}=\binom{x_{1}}{x_{2}} .\right] ~}$

$$
\begin{aligned}
& \binom{\cos \theta x_{1}+\sin \theta x_{2}}{\sin \theta x_{1}-\cos \theta x_{2}}+\binom{b_{1}}{b_{2}}=\binom{\cos \theta x_{1}+\sin \theta x_{2}+b_{1}}{\sin \theta x_{1}-\cos \theta x_{2}+b_{2}}=\binom{x_{1}}{x_{2}} \\
& (\cos \theta-1) x_{1}+\sin \theta x_{2}+f_{1}=0 \Rightarrow \sin \theta x_{2}=-b_{1}-(\cos \theta-1) x_{1} \\
& \sin \theta x_{1}+(-\cos \theta-1) x_{2}+b_{2}=0 \quad x_{2}=\frac{-b_{1}-(\cos \theta-1) x_{1}}{\sin \theta-}
\end{aligned}
$$

$$
\text { sol'n }\binom{x_{1}}{x_{2}}=\binom{x_{1}}{-\frac{b_{1}-(\cos \theta-1) x_{1}}{\sin \theta}}=x_{1}\binom{1}{\frac{-(\cos \theta-1)}{\sin \theta}}+\left(\begin{array}{c}
0 \\
-\frac{b_{1}}{\sin \theta}
\end{array} \quad \begin{array}{l}
\text { also } \\
x_{2}=\frac{b_{2}+\sin \theta \cdot x_{1}}{(\cos \theta+1)}
\end{array}\right.
$$

$$
\operatorname{set} x_{1}=1 \text {, then }
$$

$$
\binom{x_{1}}{x_{2}}=\binom{1}{f\left(\theta, b_{1}\right)}
$$

$A=\left(\begin{array}{rr}-1 & 0 \\ 0 & 1\end{array}\right.$
$A x+b=x$

$\theta=\pi$ $(A-I) x=-6$

$$
b=1
$$

$$
\left(\begin{array}{rr}
-2 & 0 \\
0 & 0
\end{array}\right)\binom{x}{y}=\binom{-b_{1}}{-b_{2}} \longrightarrow 0=-b_{2}
$$

$$
\text { y free no sol'n unless }-b_{2}=0
$$

$$
-2 x=-6
$$

$$
\begin{aligned}
&\left(\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right)\binom{x}{y}+\binom{1}{1}=\binom{x}{y} \\
&\binom{-x+1}{y+1}=x \quad \begin{array}{c}
x
\end{array} \quad 1=2 x
\end{aligned}
$$

$$
x=\frac{1}{2} b_{1}
$$

1.8 (a) Let θ be a nonzero angle and \mathbf{b} a translation vector in the plane. Give a geometric construction for a point $P \in \mathbb{E}^{2}$ such that

$$
\operatorname{Rot}(O, \theta)(P)=\operatorname{Trans}(-\mathbf{b})(P)
$$

[Hint: draw a picture, to find points P, Q with $\mathbf{b}=\overrightarrow{Q P}$ such that O is on the perpendicular bisector of $P Q$ and $\angle P O Q=\theta$.]
(b) By solving linear equations, find x, y such that

$$
A\binom{x_{1}}{x_{2}}+\binom{b_{1}}{b_{2}}=\binom{x_{1}}{x_{2}}, \quad \text { where } \quad A=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right) .
$$

(c) Express the motion $T: \mathbb{E}^{2} \rightarrow \mathbb{E}^{2}$ defined in coordinates by $T(\mathbf{x})=A \mathbf{x}+\mathbf{b}$ in the form $T=\operatorname{Rot}(P, \theta)$.
(d) Relate (a) and (b).

$$
\begin{aligned}
& A x+b=x \\
& (A-I) x=b \\
& A x=x-F \\
& A w=w-G
\end{aligned}
$$

$$
\begin{aligned}
& \left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)\binom{x_{1}}{x_{2}}+\binom{b_{1}}{b_{2}}=\binom{x_{1}}{x_{2}} \\
& \binom{\cos \theta x_{1}-\sin \theta x_{2}}{\sin \theta x_{1}+\cos \theta x_{2}}+\binom{b_{1}}{b_{2}}=\binom{\cos \theta x_{1}-\sin \theta x_{2}+b_{1}}{\sin \theta x_{1}+\cos \theta x_{2}+b_{2}}=\binom{x_{1}}{x_{2}} \\
& (\cos \theta-1) x_{1}-\sin \theta x_{2}+f_{1}=0 \Rightarrow \sin \theta x_{2}=b_{1}+(\cos \theta-1) x_{1} \\
& \sin \theta x_{1} \quad(\cos \theta-1) x_{2}+b_{2}=0 \\
& x_{2}=\frac{b_{1}+(\cos \theta-1) x_{1}}{\sin \theta} \\
& \text { sown }\binom{x_{1}}{x_{2}}=\binom{x_{1}}{-\frac{b_{1}-(\cos \theta-1) x_{1}}{\sin \theta}}=x_{1}\binom{1}{\frac{(\cos \theta-1)}{\sin \theta}}+\binom{0}{-\frac{b_{1}}{\sin \theta}} \\
& x_{2}=\frac{b_{2}+\sin \theta \cdot x_{1}}{1-\cos \theta} \\
& (\cos \theta+\sin \theta-1) x_{1}+(\cos \theta-\sin \theta-1) x_{2}+b_{1}+b_{2}=0
\end{aligned}
$$

$$
\begin{aligned}
& x_{1}= \\
& A x+b=\frac{1}{2} x \\
& \left(A-\frac{1}{2}\right) X
\end{aligned}
$$

(a) $p=p^{\prime}$

$$
Q^{Q} \int_{p=p^{\prime}}^{\theta-} \text { set } \theta=\cos \left(\frac{(Q-p) \cdot\left(Q^{\prime}-p\right)}{|Q-p|\left|Q^{\prime}-p\right|}\right) \quad \operatorname{Rot}_{p}(\theta)=\text { rotation }
$$

(b) PQ $\| P^{\prime} Q^{\prime}$

$$
\text { set } \bar{b}=p-p!
$$

$$
\frac{P}{P} \quad \text { The } \operatorname{Trans}_{\frac{b}{}}(P)=p^{\prime}
$$

Set O = intersection of QQ' and PP'. 180 degree rotation about O will do it.
$1.11 / \quad$ take $(0,0) \longmapsto(1,2) \quad$ \& $(0, \sqrt{2}) \longmapsto(2,3)$
Motion \#1. Lemma; to rotate about a point P by angle θ : conjugate rotator by translated

$$
\begin{aligned}
& R_{p}(\theta)=T_{p} \circ R_{0}(\theta) \circ T_{p}^{-1} \text { so } \varphi(x)=A(\bar{x}-\bar{v})+\bar{v} \\
& \varphi(x)=A \bar{x}-A \bar{v}+\bar{v} \\
& \text { so } \varphi(x)=A \bar{x}+\bar{b} \text { w/ }
\end{aligned}
$$

$$
\bar{b}=-A \bar{v}+\bar{v}
$$

1st translate by $\vec{v}=(1,2)$
$T_{1}(x)=x+\bar{v}$
$T_{1}(x)=x+\bar{v}$
end Compute angle b/w $(1,2+\sqrt{2}) \frac{1}{4}(2,3)$, or equivalently, $(0, \sqrt{2}) \frac{1}{9}(1,1)=T_{1}^{-1}(2,3)$

$$
\hat{\vartheta}_{\theta}=\cos ^{-1}\left(\frac{(0, \sqrt{2}) \cdot(1,1)}{\sqrt{2} \cdot \sqrt{2}}\right)=\cos ^{-1}\left(\frac{\sqrt{2}}{2}\right)=\frac{\pi}{4}
$$

3vd Follow w/ Rotate by $\theta=-\pi / 4$ about the point $(1,2)$
Rotate be $\pi / 4=\phi(x)=A(\bar{x}-\bar{v})+\bar{v}$

transformation: By (1.8) this is a rotation about $P, \quad \omega / A=\left(\begin{array}{cc}\cos \pi / 4 & -\sin \pi / 4 \\ \sin \pi / 4 & \cos \pi / 4\end{array}\right)$
Center $=\frac{1}{2}\binom{1-2 \cot (\pi / 8)}{\cot \left(\frac{\pi}{8}\right)+2}=\frac{1}{2}\binom{1-2(-\sqrt{2}-1)}{(-\sqrt{2}-1)+2}=\frac{1}{2}\binom{2+2 \sqrt{2}}{1-\sqrt{2}} \quad b=\binom{1}{2}$
$=\frac{1}{2}\binom{1-2(-\sqrt{2}-1)}{(-\sqrt{2}-1)+2}=\frac{1}{2}\binom{1+2 \sqrt{2}+2}{1-\sqrt{2}}=\frac{1}{2}\binom{3+2 \sqrt{2}}{1-\sqrt{2}} \approx\binom{2.9}{-0.2}$

$$
\begin{aligned}
& \theta=\frac{\pi}{4} \Rightarrow \text { Quad } I \Rightarrow+ \\
& \cos \left(\frac{\theta}{2}\right)= \pm \sqrt{\frac{1+\cos \theta}{2}}, \text { so } \cos \left(\frac{\theta}{8}\right)=\sqrt{\frac{1+\sqrt{2} / 2}{2}}=\sqrt{\frac{2+\sqrt{2}}{2}}=\sqrt{\frac{2+\sqrt{2}}{4}}=\frac{\sqrt{2+\sqrt{2}}}{2} \\
& \sin \left(\frac{\theta}{2}\right)=\sqrt{\frac{1-\cos \theta}{2}}, \text { so } \sin \left(\frac{\theta}{8}\right)=\sqrt{\frac{1-\sqrt{2} / 2}{2}}=\frac{\sqrt{2-\sqrt{2}}}{2} \\
& \cot \left(\frac{\theta}{8}\right)=\frac{\sqrt{2+\sqrt{2}}}{\sqrt{2-\sqrt{2}}} \cdot \frac{\sqrt{2+\sqrt{2}}}{\sqrt{2+\sqrt{2}}}=\frac{2+\sqrt{2}}{\sqrt{4-2}}=\frac{2+\sqrt{2}}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}=\frac{2 \sqrt{2}+2}{2}=\sqrt{2}+1 \\
& \operatorname{sim} \\
& a^{1 / 2} b^{\prime \prime 2}=(a b)^{\prime 2} \\
& \cot
\end{aligned}
$$

