There is no isometry of a region in S^{2} into \mathbb{R}^{2}.
Assume $f: \Omega \rightarrow \mathbb{R}^{2}$ is an isometry. Any such region contains some circle, C.
 He isonetiz image of (*) (isometrics preserve circles)

$$
f(c)=c^{\prime} \quad w / \quad c^{1} \text { a circle in } \mathbb{R}^{2} \text {. }
$$

Know
circumference of $C=2 \pi \sin (r)$.
Cirauff of $C^{\prime}=2 \pi \sin (r)$ b/c C^{\prime} is isometric image of C.
but C^{\prime} is also a Euclidean circle circun $f=2$ 开

$$
\Rightarrow \quad \begin{aligned}
\sin (r) & =r \\
\Rightarrow r & =0
\end{aligned}
$$

$$
\begin{aligned}
& \text { (upper half -plane) } \\
& H=\left\{\left(1, x_{2}, \ldots, x_{n+1}\right): x_{n+1}>0\right\} ; \\
& I=\left\{\left(x_{1}, \ldots, x_{n}, 0\right): x_{1}^{2}+\cdots+x_{n}^{2}<1\right\} ; \\
& J=\left\{\left(x_{1}, \ldots, x_{n+1}\right): x_{1}^{2}+\cdots+x_{n+1}^{2}=1 \text { and } x_{n+1}>0\right\} ; \\
& K=\left\{\left(x_{1}, \ldots, x_{n}, 1\right): x_{1}^{2}+\cdots+x_{n}^{2}<1\right\} ; \\
& L=\left\{\left(x_{1}, \ldots, x_{n}, x_{n+1}\right): x_{1}^{2}+\cdots+x_{n}^{2}-x_{n+1}^{2}=-1 \text { and } x_{n+1}>0\right\} \text {. }
\end{aligned}
$$

The map $\alpha: J \rightarrow H$ is central projection from the point $(-1,0, \ldots, 0)$: $\alpha: J \rightarrow H, \quad\left(x_{1}, \ldots, x_{n+1}\right) \mapsto\left(1,2 x_{2} /\left(x_{1}+1\right), \ldots, 2 x_{n+1} /\left(x_{1}+1\right)\right)$.

The map $\beta: J \rightarrow I$ is central projection from $(0, \ldots, 0,-1)$:

$$
\beta: J \rightarrow I, \quad\left(x_{1}, \ldots, x_{n+1}\right) \mapsto\left(x_{1} /\left(x_{n+1}+1\right), \ldots, x_{n} /\left(x_{n+1}+1\right), 0\right)
$$

The map $\gamma: K \rightarrow J$ is vertical projection:

$$
\gamma: K \rightarrow J, \quad\left(x_{1}, \ldots, x_{n}, 1\right) \mapsto\left(x_{1}, \ldots, x_{n}, \sqrt{1-x_{1}^{2}-\cdots-x_{n}^{2}}\right)
$$

The map $\delta: L \rightarrow J$ is central projection from $(0, \ldots, 0,-1)$:

$$
\delta: L \rightarrow J, \quad\left(x_{1}, \ldots, x_{n+1}\right) \mapsto\left(x_{1} / x_{n+1}, \ldots, x_{n} / x_{n+1}, 1 / x_{n+1}\right)
$$

$$
\begin{aligned}
d s_{H}^{2} & =\frac{d x_{2}^{2}+\cdots+d x_{n+1}^{2}}{x_{n+1}^{2}} \\
d s_{I}^{2} & =4 \frac{d x_{1}^{2}+\cdots+d x_{n}^{2}}{\left(1-x_{1}^{2}-\cdots-x_{n}^{2}\right)^{2}} \\
d s_{J}^{2} & =\frac{d x_{1}^{2}+\cdots+d x_{n+1}^{2}}{x_{n+1}^{2}} \\
d s_{K}^{2} & =\frac{d x_{1}^{2}+\cdots+d x_{n}^{2}}{\left(1-x_{1}^{2}-\cdots-x_{n}^{2}\right)}+\frac{\left(x_{1} d x_{1}+\cdots+x_{n} d x_{n}\right)^{2}}{\left(1-x_{1}^{2}-\cdots-x_{n}^{2}\right)^{2}} \\
d s_{L}^{2} & =d x_{1}^{2}+\cdots+d x_{n}^{2}-d x_{n+1}^{2}
\end{aligned}
$$

$e=$ Euclidean Center of C
Euclidean circle in the H model

1. Draw vertical H-line Chm, it hits alt (2 p.
2. Draw tangent lire to C that hits P, live $\cap C=q$
3. Draw circe Center $=p$, the q
4. $D \cap M=$ hyperbolic center of C. h
boundary of
prof:

Q: $|e q|=\left|e q^{\prime}\right|$
scaling is a hyperbolic isometry (Hyperblii2) $f(\bar{x})=5 \bar{x}$
 $\stackrel{P}{P q}$ is diameter of D, tangent to C. since $C \cap D=q, \quad C$ intersects D or thogond,
horizontal translation is a hyperbiliz (parabolic)
combine scaling + horiz translation to take $h \longmapsto h$

$$
q^{\prime} \mapsto a^{\prime \prime}
$$

Figure 5. The five analytic models and their connecting isometries. The points $h \in H, i \in I, j \in J, k \in K$, and $l \in L$ can be thought of as the same point in (synthetic) hyperbolic space.
H, the Half-space model.
I, the Interior of the disk model.
J, the Jemisphere model (pronounce the J as in Spanish).
K, the Klein model.
L, the 'Loid model (short for hyperboloid).

$$
\begin{aligned}
d s_{H}^{2} & =\frac{d x_{2}^{2}+\cdots+d x_{n+1}^{2}}{x_{n+1}^{2}} ; \\
d s_{I}^{2} & =4 \frac{d x_{1}^{2}+\cdots+d x_{n}^{2}}{\left(1-x_{1}^{2}-\cdots-x_{n}^{2}\right)^{2}} ; \\
d s_{J}^{2} & =\frac{d x_{1}^{2}+\cdots+d x_{n+1}^{2}}{x_{n+1}^{2}} ; \\
d s_{K}^{2} & =\frac{d x_{1}^{2}+\cdots+d x_{n}^{2}}{\left(1-x_{1}^{2}-\cdots-x_{n}^{2}\right)}+\frac{\left(x_{1} d x_{1}+\cdots+x_{n} d x_{n}\right)^{2}}{\left(1-x_{1}^{2}-\cdots-x_{n}^{2}\right)^{2}} ; \\
d s_{L}^{2} & =d x_{1}^{2}+\cdots+d x_{n}^{2}-d x_{n+1}^{2} .
\end{aligned}
$$

The map $\alpha: J \rightarrow H$ is central projection from the point $(-1,0, \ldots, 0)$:

$$
\alpha: J \rightarrow H, \quad\left(x_{1}, \ldots, x_{n+1}\right) \mapsto\left(1,2 x_{2} /\left(x_{1}+1\right), \ldots, 2 x_{n+1} /\left(x_{1}+1\right)\right) .
$$

The map $\beta: J \rightarrow I$ is central projection from $(0, \ldots, 0,-1)$:

$$
\beta: J \rightarrow I, \quad\left(x_{1}, \ldots, x_{n+1}\right) \mapsto\left(x_{1} /\left(x_{n+1}+1\right), \ldots, x_{n} /\left(x_{n+1}+1\right), 0\right) .
$$

The map $\gamma: K \rightarrow J$ is vertical projection:

$$
\gamma: K \rightarrow J, \quad\left(x_{1}, \ldots, x_{n}, 1\right) \mapsto\left(x_{1}, \ldots, x_{n}, \sqrt{1-x_{1}^{2}-\cdots-x_{n}^{2}}\right)
$$

The map $\delta: L \rightarrow J$ is central projection from $(0, \ldots, 0,-1)$:
$\delta: L \rightarrow J, \quad\left(x_{1}, \ldots, x_{n+1}\right) \mapsto\left(x_{1} / x_{n+1}, \ldots, x_{n} / x_{n+1}, 1 / x_{n+1}\right)$.

$$
\begin{aligned}
H & =\left\{\left(1, x_{2}, \ldots, x_{n+1}\right): x_{n+1}>0\right\} ; \\
I & =\left\{\left(x_{1}, \ldots, x_{n}, 0\right): x_{1}^{2}+\cdots+x_{n}^{2}<1\right\} ; \\
J & =\left\{\left(x_{1}, \ldots, x_{n+1}\right): x_{1}^{2}+\cdots+x_{n+1}^{2}=1 \text { and } x_{n+1}>0\right\} ; \\
K & =\left\{\left(x_{1}, \ldots, x_{n}, 1\right): x_{1}^{2}+\cdots+x_{n}^{2}<1\right\} ; \\
L & =\left\{\left(x_{1}, \ldots, x_{n}, x_{n+1}\right): x_{1}^{2}+\cdots+x_{n}^{2}-x_{n+1}^{2}=-1 \text { and } x_{n+1}>0\right\} .
\end{aligned}
$$

