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Preface

Our goal in this book is to explain as many important theorems, examples,
and techniques as possible, as quickly and directly as possible, while at the
same time giving (nearly) full details and keeping the text (nearly) self-
contained. This book contains some simplifications of known approaches
and proofs, the exposition of some results that are not readily available,
and some new material as well. We have tried to incorporate many of the
“greatest hits” of the subject, as well as its small quirks and gems.

There are a number of other references that cover various of the topics we
cover here (and more). We would especially like to mention the books by
Abikoff [1], Birman [24], Casson—Bleiler [44], Fathi—-Laudenbach—Poénaru
[61], and Hubbard [97], as well as the survey papers by Harer [84] and
Ivanov [107]. The works of Bers [14, 15] on Teichmiiller’s theorems and on
the Nielsen—Thurston classification theorem have had a particularly strong
influence on this book.

The first author learned much of what he knows about these topics from
his advisor Bill Thurston, his teacher Curt McMullen, and his collabora-
tors Lee Mosher and Howard Masur. The second author’s perspective on
this subject was greatly influenced by his advisor Benson Farb, his mentors
Mladen Bestvina and Joan Birman, and his collaborator Chris Leininger.
This book in particular owes a debt to notes the first author took from a
course given by McMullen at Berkeley in 1991.

Benson Farb and Dan Margalit
Chicago and Atlanta, January 2011
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Overview

In this book we will consider two fundamental objects attached to a surface
S a group and a space. We will study these two objects and how they relate
to each other.

The group. The group is the mapping class group of S, denoted by
Mod(S). It is defined to be the group of isotopy classes of orientation-
preserving diffeomorphisms of S (that restrict to the identity on 95 if
05 # 0):

Mod(S) = Diff* (S, dS)/ Diffo(S, 95).

Here Diff((.S,dS) is the subgroup of Diff (S, 9.5) consisting of elements
that are isotopic to the identity. We will study the algebraic structure of the
group Mod(S), the detailed structure of its individual elements, and the
beautiful interplay between them.

The space. The space is the Teichmiiller space of S. When x(S) < 0, this
is the space of hyperbolic metrics on S up to isotopy:

Teich(S) = HypMet(S)/ Diffo(S).

The space Teich(S) is a metric space homeomorphic to an open ball. The
group Diff *(.S) acts on HypMet(.S) by pullback. This action descends to an
action of Mod(S) on Teich(S). A fundamental result in the theory is that
this action is properly discontinuous. The quotient space

M(S) = Teich(S)/ Mod(S)

is the moduli space of Riemann surfaces homeomorphic to .S. The space
M(S) is one of the fundamental objects of mathematics. Since (as we will
prove) M(S) is finitely covered by a closed aspherical manifold, the group
Mod(S) encodes most of the topological features of M(.S). Conversely, in-
variants such as the cohomology of Mod(.S) are determined by the topology
of M(S).

The appearance of Mod(S), Teich(S), and M(S) in mathematics is
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ubiquitous: from hyperbolic geometry to algebraic geometry to combinato-
rial group theory to symplectic geometry to 3-manifold theory to dynamics.
In this book we will relate the algebraic structure of Mod(S), the geom-
etry of Teich(S), and the topology of M(S). Underlying the connections
between these structures is the combinatorial topology of the surface .S. In-
deed, one leitmotif of this book is the interplay of the “local” study of the
geometry and topology of a single surface S and the “global” properties
of the spaces Teich(.S) and M(S). It is a beautiful thing to see how each
informs the other.

The classification. The third player in our story is the Nielsen—Thurston
classification theorem, which gives a particularly nice representative for
each element of Mod(.S). This is a nonlinear analogue of the Jordan canon-
ical form for matrices; as such, it is a cornerstone of the theory. It is in
Bers’ proof of this theorem where the first two characters play off of each
other: the key is to understand how elements of Mod(.S) act on Teich(.S)
via isometries of the Teichmiiller metric. Much of the usefulness of the
Nielsen—Thurston classification comes from the fact that the typical element
of Mod(S) has a pseudo-Anosov representative. Pseudo-Anosov homeo-
morphisms have very specific descriptions and exhibit many remarkable
properties.

In light of the above discussion this book is divided into three parts. We
now outline them, emphasizing what we consider to be some of the more
important results and focusing for simplicity on the case of the closed sur-
face S, of genus g.

Part 1 covers what might be called the core theory of mapping class
groups. The central theme is the relationship between the algebraic struc-
ture of Mod(.S) and the combinatorial topology of S.

Chapter 1. Just as one understands a linear transformation by its action on
vectors, so one understands an element of Mod(.S,) by its action on simple
closed curves in S. Chapter 1 explains the basics of working with simple
closed curves. This is more difficult than it might sound, as the typical sim-
ple closed curve can be rather complicated (see Figure 1).

When g > 2, hyperbolic geometry enters as a useful tool since each ho-
motopy class of simple closed curves has a unique geodesic representative.
Following the linear algebra analogy, we introduce the geometric intersec-
tion number. This is the analogue of an inner product on a vector space and
is a basic tool for working with simple closed curves in S,. The chapter
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Figure 1 Thurston’s typical curve.

ends with the change of coordinates principle. This principle plays the same
role that change of basis plays for matrices, so it is not surprising that it is
applied with great frequency.

Chapter 2. After defining the mapping class group Mod(.S), we compute
the examples that can be explicitly determined “by hand.” We then introduce
what we call the Alexander method, which gives an algorithm for determin-
ing whether or not two elements of Mod(S) are equal. In particular, this
method is used for showing that an element of Mod(S) is nontrivial or for
verifying relations in Mod(.S). One of the computations we perform is the
following classical fundamental theorem of Dehn.

Theorem 2.5 Mod(T?) ~ SL(2, Z).

Chapter 3. Dehn twists are the simplest infinite-order elements of Mod(.5).
They play the role of elementary matrices in linear algebra, so it is not sur-
prising that they appear in much of what follows. We present an in-depth
study of Dehn twists and their action on simple closed curves. As one appli-
cation of this study, we prove that if two simple closed curves in S, have ge-
ometric intersection number greater than 1, then the associated Dehn twists
generate a free group of rank 2 in Mod(.S). We also apply our knowledge of
Dehn twists in order to prove the following basic theorem.

Theorem 3.10 For g > 3, the center of Mod(S,) is trivial.

Chapter 4. At this point we have developed the nuts and bolts of the the-
ory, and we start to expose some of the most basic algebraic structure of
Mod(S). The following fundamental theorem of Dehn is analogous to the
fact that SL(n, Z) is generated by elementary matrices.
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Theorem 4.1 Mod(S,) is generated by finitely many Dehn twists.

Theorem 4.1 is proved by induction on genus, and the Birman exact se-
quence is introduced as the key step for the induction. The key to the in-
ductive step is to prove that the complex of curves C(.S,) is connected when
g > 2. The simplicial complex C(Sy) is a useful combinatorial object that
encodes intersection patterns of simple closed curves in S,;. More detailed
structure of C(Sy) is then used to find various explicit generating sets for
Mod(Sy), including those due to Lickorish and to Humphries.

A natural problem now arises: given a finite product of Dehn twists, is
there an algorithm to determine whether the resulting element of Mod(Sy)
is trivial or not? The next theorem says that the answer is yes.

Theorem 4.2 Mod(S,) has a solvable word problem.

Chapter 5. After proving that a group G is finitely generated, the next in-
variant one wants to compute is the abelianization of G or, what is the same
thing, its first homology H;(G;Z). Chapter 5 begins with a simple proof,
due to Harer, of the following theorem of Mumford, Birman, and Powell.

Theorem 5.2 If g > 3, then H,(Mod(Sy); Z) = 1.

The key ingredient in the proof of Theorem 5.2 is Theorem 4.1 together
with the lantern relation, a beautiful relation between seven Dehn twists that
was discovered by Dehn. We then apply a method from geometric group
theory to prove the following theorem.

Theorem 5.7 Mod(S,) is finitely presentable.

The geometric group theory technique converts the statement of Theo-
rem 5.7 to a problem about the topology of a certain arc complex and an
associated mapping class group action on it. The key in this case is a shock-
ingly simple and beautiful proof by Hatcher that the arc complex is con-
tractible. We also give explicit presentations of Mod(.S,), including those
by Wajnryb and Gervais.

Hopf gave a formula for computing Ho(G;7Z) for any group G from a
finite presentation for G. While this computation is usually too difficult to
perform in practice, Pitsch discovered that one can use the Wajnryb presen-
tation of Mod(Sy) to give an upper bound on the rank of H>(Mod(Sy); Z).
We use this method in proving the following deep theorem originally due to
Harer.

Theorem 5.8 If g > 4, then Hyo(Mod(Sy); Z) = Z.

The lower bound in Theorem 5.8 is given by explicitly constructing non-
trivial classes. We give a detailed construction of the the Euler class, the
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most basic invariant for surface bundles, as a 2-cocycle for the mapping
class group of a punctured surface. At this point homological algebra, in
the form of (a degenerate form of) the Hochschild—Serre spectral sequence,
is used to deduce Theorem 5.8. The Meyer signature cocycle is also ex-
plained, as is the important connection of this circle of ideas with the theory
of Sy-bundles. Indeed, understanding S,-bundles and their invariants is a
major motivation for computing H2(Mod(Sy);Z). The strong connection
between Mod(S,) and Sy-bundles comes from the following bijection:

Isomorphism classes Conjugacy classes
of oriented S,-bundles p «—— of representations
over B p:mi(B) — Mod(Sy)

for each fixed g > 2 and each fixed base B.

Chapter 6. Algebraic intersection number gives a Mod (S, )-invariant sym-
plectic form on H;(Sg; Z), thus inducing a representation

U : Mod(Sy) — Sp(2¢,Z)

with target the integral symplectic group. This symplectic representation of
Mod(Sy) can be viewed as a kind of “linear approximation” to Mod(S).
We present three different proofs of the surjectivity of W, each illustrating
a different theme. The usefulness of the symplectic representation is then
illustrated by two applications to understanding the algebraic structure of
Mod(S). First, we explain how Serre used this representation to prove the
following.

Theorem 6.9 Mod(S,) has a torsion-free subgroup of finite index.

The actual statement of Theorem 6.9 given below provides explicit
torsion-free subgroups of Mod(.S,) that come from congruence subgroups
of Sp(2g,Z). We then use the symplectic representation to prove, following
Ivanov, the following theorem of Grossman.

Theorem 6.11 Mod(S,) is residually finite.

The symplectic representation has a kernel, called the Torelli group, de-
noted Z(Sy). This is an important but still poorly understood subgroup of
Mod(Sy). The Torelli group supports a rich and beautiful theory with im-
portant connections to other parts of mathematics. We continue Chapter 6
by explaining some of the pioneering work of Dennis Johnson on Z(.Sy). In
particular, we construct the Johnson homomorphism

T:I(S;) — N°H,
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where S ; is S, minus an open disk and H = H;(S gl; Z). We then explain a
few of the many applications of 7.

Chapter 7. What are the finite groups of topological symmetries of S?
That is, what are the finite subgroups of Mod(S)? A deep theorem of Ker-
ckhoff states that each finite subgroup of Mod(S) comes from a group of
orientation-preserving isometries for some hyperbolic metric on S. Such
groups are highly constrained: using the Riemann—Hurwitz formula and ba-
sic facts about 2-dimensional orbifolds, we prove Hurwitz’s 84(g — 1) the-
orem, a nineteenth century classic.

Theorem 7.4 (84(g — 1) theorem) If X is a hyperbolic surface homeo-
morphic to Sy, where g > 2, then

| Isom™ (X)| < 84(g — 1).

We also prove a corresponding 4g + 2 theorem for cyclic subgroups
of Mod(Sy). Later in the book we prove Kerckhoff’s theorem for cyclic
groups (i.e., “cyclic Nielsen realization”) by using the action of Mod(Sy)
on Teich(S).

The basic orbifold theory that we develop to prove Theorem 7.4 is then
applied to prove that Mod(.S) has only finitely many conjugacy classes of
finite subgroups. On the other hand, we prove that there is enough torsion in
Mod(SS) to generate it with finitely many torsion elements, and indeed we
can take these elements to have order 2.

Chapter 8. This chapter is an exposition of one of the most beautiful con-
nections between topology and algebra in dimension 2: the Dehn—Nielsen—
Baer theorem. Let Out (71 (.5)) denote the group of outer automorphisms of
71(S) and let Mod®(S) denote the extended mapping class group, which
is the group of isotopy classes of all homeomorphisms of S (including the
orientation-reversing ones).

Theorem 8.1 (Dehn—Nielsen—-Baer theorem) For g > 1, we have

Mod*(S,) = Out(m1(S,)).

Theorem 8.1 equates a topologically defined group, Mod(Sy), with an
algebraically defined group, Out(7(S,)). What is more, Dehn’s original
proof uses hyperbolic geometry! Both the theorem and the ideas in the proof
foreshadowed the Mostow rigidity theorem nearly 50 years in advance.
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Chapter 9. Part 1 ends with a brief introduction to braid groups B,,. The
group B,, is isomorphic to the mapping class group of a disk with n marked
points. Since disks are planar, the braid groups lend themselves to special
pictorial representations. This gives the theory of braid groups its own spe-
cial flavor within the theory of mapping class groups.

After presenting some classical facts about the algebraic structure of the
braid group, we give a new proof of the Birman—Hilden theorem, which re-
lates the braid groups to the mapping class groups of closed surfaces. Let
SMod(S;) denote the subgroup of Mod(S;) consisting of elements with
representative homeomorphisms that commute with some fixed hyperellip-
tic involution.

Theorem 9.2 (Birman—-Hilden theorem) Ler g > 1. Then

SMod(S;) ~ Bogt1.

Part 2 of the book is a concise introduction to Teichmiiller theory and the
moduli space of Riemann surfaces. We concentrate on those aspects of the
theory that are most directly applicable to understanding Mod(.S,). Part 2
has a decidedly more analytic and geometric flavor than Part 1.

Chapter 10. We introduce Teichmiiller space Teich(S,) as the space of
hyperbolic structures on .S,. After putting a natural topology on Teich(.Sy)
and giving two heuristic counts of its dimension, we prove the following
classical result due to Fricke and Klein in 1897.

Theorem 10.6 For g > 2 we have Teich(S,) = R%~5,

We prove Theorem 10.6 by giving explicit coordinates on Teich(S,)
coming from certain length and twist parameters for curves in a pants de-
composition of Sg; these are the Fenchel-Nielsen coordinates on Teich(S).
It is worth emphasizing how miraculous it is that the quotient Teich(S,) =
HypMet(S,)/ Diff¢(S,) of an infinite-dimensional space by an infinite-
dimensional group action gives a finite-dimensional manifold. The kind of
“rigidity” behind this is in some sense contained in hyperbolic trigonome-
try, as can be seen in the proof of Theorem 10.6. The chapter ends with the
following fundamental theorem about hyperbolic metrics on surfaces.

Theorem 10.7 Let g > 2. There are 99 — 9 specific homotopy classes of
simple closed curves on S, with the property that any hyperbolic metric



8 OVERVIEW

on Sy is determined up to isotopy by the lengths of the geodesics in these
homotopy classes.

The key to the proof of Theorem 10.7 is a convexity result for the function
“length of a” (where a is an isotopy class of simple closed curves) consid-
ered as a function on Teich(S).

Chapter 11. After determining the topology of Teich(S,), we turn to its
metric geometry. In order to do this, we first explain how one can think of
Teich(S,) as the space of complex structures on .S,,.

Given a pair of points X,Y € Teich(Sy), one associates a pair of Rie-
mann surfaces X,Y and a homeomorphism f : X — Y well defined up
to homotopy. While f is in general not conformal, it can always be chosen
to be quasiconformal. This means that f distorts angles by at most a fixed
bounded amount K (f).

A natural extremal mapping problem then arises:

Given a homeomorphism of Riemann surfaces f : X — Y, is
there a quasiconformal map X — Y that minimizes quasicon-
formal dilatation among all maps homotopic to f?

Teichmiiller answered this question by finding a concrete, explicit mapping
now called the Teichmiiller map. Away from a finite number of points, a
Teichmiiller mapping locally looks like the linear map (z,y) — (K=, %y)
for some K. In 1939 Teichmiiller proved' that his maps solve the above
extremal problem. What is more, he proved that his maps give the unique
solution.

Theorems 11.8 and 11.9 (Teichmiiller’s existence and uniqueness theo-
rems) Let g > 2 and let X, € Teich(S,). Let f : X — Y be the associ-
ated homeomorphism of Riemann surfaces. Then there exists a Teichmiiller
mapping h : X — Y that is homotopic to f. The map h uniquely minimizes
the quasiconformal dilatation among all homeomorphisms homotopic to f.

The proof of Theorem 11.8 illustrates how the global point of view in-
forms the local. Namely, in the course of proving the existence statement
for a single Y € Teich(S,), we actually are led to proving the exis-
tence statement for all possible targets Y € Teich(S,) at the same time.
Specifically, this is accomplished by proving the surjectivity of a certain
map QD(X) — Teich(S,), where QD(X) is the space of holomorphic
quadratic differentials on a Riemann surface X. To prove this surjectivity,

! Actually, Ahlfors is usually credited with the first complete, understandable proof of this
fact.
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we use the global topology of Teich(.S,;) via an application of the invari-
ance of domain theorem. This proof is an example of the so-called method
of continuity.

The solution to the extremal problem can be used to define a metric on
Teich (S, ) called the Teichmiiller metric. Let 4 : X — Y be the Teichmiiller
map associated to X, Y € Teich(S,) and let K (h) be its dilatation. We prove
that

1
dTeich(Sg) (:X:’ y) = 5 log(K(h))

defines a complete metric on Teich(Sy). This is called the Teichmiiller met-
ric. In order to describe the geodesics in this metric, we explain the funda-
mental connection between Teichmiiller’s theorems, holomorphic quadratic
differentials, and measured foliations. This description is a crucial ingredi-
ent in the proof of the Nielsen—Thurston classification theorem that we give
later in the book.

Chapter 12. Let g > 2. The moduli space M(S,) of genus g Riemann
surfaces is defined to be

M(S,) = Teich(S,)/ Mod(S,).

The space M (S,) parameterizes many different kinds of structures on
Sg. It can be viewed as any one of the following sets:

1. Isometry classes of constant curvature metrics on Sy

2. Conformal classes of Riemannian metrics on .S,

3. Biholomorphism classes of complex structures on S,

4. Isomorphism classes of smooth, complex algebraic structures on 5.

The natural bijective correspondences between these sets are derived from
deep theorems, namely, the uniformization theorem and the Kodaira em-
bedding theorem. As such, the bijections between the sets above are very
difficult to access explicitly. The interplay between these different incarna-
tions is one reason the study of M(S,) is rich and often difficult.

The group Mod(S,) and the space M (S,) are tied together closely be-
cause of the following theorem due to Fricke.

Theorem 12.2 Mod(Sy) acts properly discontinuously on Teich(Sy).

In order to prove Theorem 12.2, we consider the raw length spectrum
rls(X) of a hyperbolic surface X =~ S,. The set rls(X) is defined to be
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the set of lengths of all closed geodesics in X. The crucial property is that
rls(X) is a closed, discrete subset of [0, c0). The Wolpert lemma then tells
us that nearby points in Teich(S,;) have nearly equal length spectra. From
these two facts Theorem 12.2 follows easily.

Since Mod(.Sy) acts properly discontinuously on Teich (.S, ), the quotient
space M (S,) is an orbifold. By Theorem 6.9, M(S,) is finitely covered
by a manifold. Since Teich(Sy) is contractible (Theorem 10.6), we have the
following.

Theorem 12.3 For g > 1, the space M(S,) is an aspherical orbifold and
is finitely covered by an aspherical manifold.

It is not hard to see that M(.S,) is not compact. Understanding this non-
compactness is a central issue. The most basic theorem in this direction is
the Mumford compactness criterion, which we think of as a generalization
of the Mahler compactness criterion for lattices in R™. For a hyperbolic sur-
face X we denote by ¢(X) the length of the shortest essential closed curve
in X.

Theorem 12.6 (Mumford’s compactness criterion) Let g > 1. For each
€ > 0, the space

Mc(Sg) ={X € M(S,) : £(X) = €}
is compact.

Since the sets M.(Sy) exhaust M(S,), Theorem 12.6 tells us that the
only way to leave every compact set in M (Sy) is to decrease the length of
some closed geodesic. Mumford’s compactness criterion leads us to study
the topology of M(S,) at infinity. Combining a number of ingredients, in-
cluding connectedness of C(S,) for g > 2, we prove the following.

Corollaries 12.11 and 12.12 Let g > 2. Then M(S,) has one end, and ev-
ery loop in M(Sy) can be homotoped outside every compact set in M(Sy).

We end the chapter by explaining one more of the (many) reasons for the
importance of M(.S;) in mathematics: M(.Sy) is very close to being a clas-
sifying space for Sy-bundles. By “very close” we mean that an analogous
statement holds for any finite manifold cover of M(S,). In particular, we
prove that the rational cohomology of the space M (S, ) is isomorphic to the
rational cohomology of the group Mod(S,).
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Chapter 13. The main goal of Part 3 is to understand what individual el-
ements of Mod(S,) look like, in the same way that the Jordan canonical
form of a matrix gives us a geometric picture of what a linear transforma-
tion looks like. The precise statement is the following.

Theorem 13.2 (Nielsen—Thurston classification) Let ¢ > 2. Fach f €
Mod(Sy) has a representative ¢ € Homeo™ (S,) of one of the following

types.

1. Periodic: ™ = Id for some m > Q.

2. Reducible: ¢ leaves invariant a finite collection of pairwise disjoint
simple closed curves in S.

3. Pseudo-Anosov: there are transverse measured foliations (F?, jis)
and (F*, pu,) on Sy, and a real number X > 1 so that

(b : (Fuauu) = (fu7)\/$u) and ¢ ' (fsvus) = (fs'))‘il,us)-

Case 3 is exclusive from cases 1 and 2. The number A associated to a
pseudo-Anosov homeomorphism ¢ is called the stretch factor of ¢. Away
from a finite number of points, a pseudo-Anosov homeomorphism locally
looks like the linear map (x,y) — (\z, %y) just like a Teichmiiller map-
ping.

Type 1 mapping classes are relatively easy to understand. For type 2 we
can cut along the invariant collection of curves and reapply the theorem to
each component of the cut surface. By doing this we obtain a “canonical
form” for mapping classes: any mapping class can be reduced into finite
order and pseudo-Anosov pieces. Thus the more we know about pseudo-
Anosov homeomorphisms, the more we know about arbitrary homeomor-
phisms. Chapter 14 is completely devoted to studying properties of pseudo-
Anosov homeomorphisms.

We present Bers’ proof of Theorem 13.2. The proof uses many of the
ideas and results proved earlier in the book, such as the proper discontinuity
of the action of Mod(Sy) on Teich(S,), the Mumford compactness crite-
rion, and the structure of Teichmiiller geodesics. The main idea is to prove
that if a mapping class f is not of type 1 or type 2, then there is an f-invariant
Teichmiiller geodesic which one then interprets, using Teichmiiller’s theo-
rems, to show that f is pseudo-Anosov.

Chapter 14. In this chapter we begin the study of pseudo-Anosov home-
omorphisms in earnest. Although in some sense the typical mapping class
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is pseudo-Anosov, it is actually rather nontrivial to construct explicit exam-
ples. We begin by presenting five constructions of pseudo-Anosov homeo-
morphisms.

The simplest invariant of a pseudo-Anosov mapping class is its stretch
factor A\, which is analogous to the largest eigenvalue of a linear map. The
next theorem tells us that the set of pseudo-Anosov stretch factors is quite
constrained.

Theorem 14.8 Let g > 2. Let )\ be the stretch factor associated to a pseudo-
Anosov element of Mod(Sy). Then X is an algebraic integer with degree
bounded above by 6g — 6.

Each pseudo-Anosov mapping class has an invariant axis in Teich(.S)
and thus gives a geodesic loop in M(S). The length of this loop is the
logarithm of the corresponding stretch factor. Thus the set of logarithms of
stretch factors of pseudo-Anosov elements of Mod(S) can be thought of as
the length spectrum of M (S). The following theorem of Arnoux—Yoccoz
and Ivanov can thus be interpreted as implying that the length spectrum of
M(S) is discrete.

Theorem 14.9 Let g > 2. For any C' > 1, there are only finitely many con-
Jjugacy classes in Mod(Sy) of pseudo-Anosov mapping classes with stretch
factor at most C.

Pseudo-Anosov homeomorphisms have a number of remarkable dynam-
ical properties. Among them, we prove:

e Every pseudo-Anosov homeomorphism has a dense orbit.
e The periodic points of a pseudo-Anosov homeomorphism are dense.

e A pseudo-Anosov homeomorphism has the minimum number of pe-
riodic points, for each period, in its homotopy class.

In analogy with the behavior of the lengths of vectors under iteration
of a linear transformation with a dominant eigenvalue, we also prove the
following.

Theorem 14.23 Let g > 2. Let f € Mod(Sy) be pseudo-Anosov with stretch
factor \. If p is any Riemannian metric on Sy, and if a is any isotopy class
of simple closed curves in S, then

lim {/£,(f™(a)) = A.

n—oo
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Chapter 15. The final chapter begins with a description of Thurston’s orig-
inal path of discovery to the Nielsen—Thurston classification theorem. As
Thurston wrote in his famous paper [207]:

The nicest aspects of this theory I have been trying to sketch
are not formal, but intuitive. If you draw pictures of a pseudo-
Anosov diffeomorphism, you can understand geometrically
what it does, something which has puzzled me for several years.
...it is pleasant to see something of this abstract origin made
very concrete.

We begin by illustrating Thurston’s approach via a beautiful and fun-
damental example. Thurston’s first idea is that one can understand f €
Mod(S,) by iterating f on an isotopy class of essential simple closed curves
c. In general, the sequence f"(c) gets very complicated very quickly. This
is where the next idea comes in: one can encode a very complicated simple
closed curve in a surface with a small amount of data called a train track.
A train track in S, is an embedded graph with some extra data attached,
for example, each edge is labeled by a nonnegative integer. Under certain
conditions, f preserves a train track (up to a certain equivalence) and acts
linearly on its labels. When f is pseudo-Anosov, the corresponding matrix is
a Perron—Frobenius matrix, and all of the information attached to f (stretch
factor, stable foliation, etc.) can be easily determined by linear algebra.

Thus in this example the combinatorial device of train tracks converts
the nonlinear problem of understanding a homeomorphism of a surface to a
simple linear algebra problem. Thurston’s remarkable discovery is that this
linearization process works for all pseudo-Anosov homeomorphisms, and
in fact it can be used to prove the Nielsen—Thurston classification.

We give a sketch of how all of this works in general and how Thurston
proves the Nielsen—Thurston classification in this way. The idea is that the
space PMF(Sy) of all projective classes of measured foliations on S, can
be used to give a compactification of Teich(S,) that is homeomorphic to a
closed ball. Each element of Mod(.S,) induces a homeomorphism on this
ball, and so the Brouwer fixed point theorem can be applied. Analyzing
the various possibilities for fixed points leads to the various cases of the
classification theorem. As Thurston says:

And there is a great deal of natural geometric structure on
PMF, relating to the structure on S, beautiful to contemplate.
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Chapter One

Curves, Surfaces, and Hyperbolic Geometry

A linear transformation of a vector space is determined by, and is best un-
derstood by, its action on vectors. In analogy with this, we shall see that an
element of the mapping class group of a surface S is determined by, and is
best understood by, its action on homotopy classes of simple closed curves
in S. We therefore begin our study of the mapping class group by obtaining
a good understanding of simple closed curves on surfaces.

Simple closed curves can most easily be studied via their geodesic repre-
sentatives, and so we begin with the fact that every surface may be endowed
with a constant-curvature Riemannian metric, and we study the relation be-
tween curves, the fundamental group, and geodesics. We then introduce the
geometric intersection number, which we think of as an “inner product” for
simple closed curves. A second fundamental tool is the change of coordi-
nates principle, which is analogous to understanding change of basis in a
vector space. After explaining these tools, we conclude this chapter with
a discussion of some foundational technical issues in the theory of surface
topology, such as homeomorphism versus diffeomorphism, and homotopy
versus isotopy.

1.1 SURFACES AND HYPERBOLIC GEOMETRY

We begin by recalling some basic results about surfaces and hyperbolic ge-
ometry that we will use throughout the book. This is meant to be a brief
review; see [208] or [119] for a more thorough discussion.

1.1.1 SURFACES

A surface is a 2-dimensional manifold. The following fundamental result
about surfaces, often attributed to Mobius, was known in the mid-nineteenth
century in the case of surfaces that admit a triangulation. Rado later proved,
however, that every compact surface admits a triangulation. For proofs of
both theorems, see, e.g., [204].

THEOREM 1.1 (Classification of surfaces) Any closed, connected, ori-
entable surface is homeomorphic to the connect sum of a 2-dimensional
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sphere with g > 0 tori. Any compact, connected, orientable surface is ob-
tained from a closed surface by removing b > 0 open disks with disjoint
closures. The set of homeomorphism types of compact surfaces is in bijec-
tive correspondence with the set {(g,b) : g,b > 0}.

The g in Theorem 1.1 is the genus of the surface; the b is the number
of boundary components. One way to obtain a noncompact surface from a
compact surface S is to remove n points from the interior of .S; in this case,
we say that the resulting surface has n punctures.

Unless otherwise specified, when we say “surface” in this book, we will
mean a compact, connected, oriented surface that is possibly punctured (of
course, after we puncture a compact surface, it ceases to be compact). We
can therefore specify our surfaces by the triple (g, b, n). We will denote by
Sg.n asurface of genus g with n punctures and empty boundary; such a sur-
face is homeomorphic to the interior of a compact surface with n boundary
components. Also, for a closed surface of genus g, we will abbreviate .S, o
as Sy. We will denote by 0.5 the (possibly disconnected) boundary of S.

Recall that the Euler characteristic of a surface S is

X(S)=2-2g—(b+n).

It is a fact that x(S) is also equal to the alternating sum of the Betti numbers
of S. Since x(.5) is an invariant of the homeomorphism class of S, it follows
that a surface S is determined up to homeomorphism by any three of the four
numbers g, b, n, and x(S).

Occasionally, it will be convenient for us to think of punctures as marked
points. That is, instead of deleting the points, we can make them distin-
guished. Marked points and punctures carry the same topological informa-
tion, so we can go back and forth between punctures and marked points as
is convenient. On the other hand, all surfaces will be assumed to be without
marked points unless explicitly stated otherwise.

If x(S) < 0and S = (), then the universal cover S is homeomorphic to
R2 (see, e.g., [199, Section 1.4]). We will see that, when x(S) < 0, we can
take advantage of a hyperbolic structure on S.

1.1.2 THE HYPERBOLIC PLANE

Let H? denote the hyperbolic plane. One model for H? is the upper half-
plane model, namely, the subset of C with positive imaginary part (y > 0),
endowed with the Riemannian metric

2 _ dz? + dy?

ds ,
Y2
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where dz? + dy? denotes the Euclidean metric on C. In this model the
geodesics are semicircles and half-lines perpendicular to the real axis.

It is a fact from Riemannian geometry that any complete, simply con-
nected Riemannian 2-manifold with constant sectional curvature —1 is iso-
metric to H2.

For the Poincaré disk model of H?, we take the open unit disk in C with
the Riemannian metric

dz? + dy?

ds* = 4————=.
y (1—1r2)2

In this model the geodesics are circles and lines perpendicular to the unit
circle in C (intersected with the open unit disk).

Any Mobius transformation from the upper half-plane to the unit disk is
an isometry between the upper half-plane model for H? and the Poincaré
disk model of H. The group of orientation-preserving isometries of H? is
(in either model) the group of Mobius transformations taking H? to itself.
This group, denoted Isom™ (H?), is isomorphic to PSL(2,R). In the upper
half-plane model, this isomorphism is given by the following map:

n a b ; az+b
— [ .
c d cz+d

The boundary of the hyperbolic plane. One of the central objects in the
study of hyperbolic geometry is the boundary at infinity of H?, denoted by
OHZ2. A point of OH? is an equivalence class [y] of unit-speed geodesic rays
where two rays 1,72 : [0,00) — H? are equivalent if they stay a bounded
distance from each other; that is, there exists D > 0 so that

dy2(71(t),7v2(t)) < D forallt > 0.

Actually, if ; and v, are equivalent, then they can be given unit-speed pa-
rameterizations so that

Jim dgp (71(2), 72(¢)) = 0.

We denote the union H? U 0H? by H2. The set H? is topologized via the
following basis. We take the usual open sets of H? plus one open set Up for
each open half-plane P in H2. A point of H? lies in Up if it lies in P, and
a point of OH? lies in Up if every representative ray (t) eventually lies in
P, i.e., if there exists 7" > 0 so that y(¢) € P forallt > T.

In this topology OH? is homeomorphic to il , and the union H?2 is home-
omorphic to the closed unit disk. The space H2 is a compactification of H?
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and is called the compactification of HZ2. In the Poincaré disk model of H2,
the boundary OH? corresponds to the unit circle in C, and H? is identified
with the closed unit disk in C.

Any isometry f € Isom(H?) takes geodesic rays to geodesic rays, clearly
preserving equivalence classes. Also, f takes half-planes to half-planes. It
follows that f extends uniquely to a map f : H2 — HZ2. As any pair of dis-
tinct points in OH? are the endpoints of a unique geodesic in H?, it follows
that f maps distinct points to distinct points. It is easy to check that in fact
£ is a homeomorphism.

Classification of isometries of HZ2. We can use the above setup to clas-
sify nontrivial elements of Isom™ (H?). Suppose we are given an arbitrary
nontrivial element f € Isom™ (H?). Since f is a self-homeomorphism of a
closed disk, the Brouwer fixed point theorem gives that f has a fixed point
in H2. By considering the number of fixed points of f in H2, we obtain a
classification of isometries of H? as follows.

Elliptic. If f fixes a point p € H?, then f is called elliptic, and it is a rotation
about p. Elliptic isometries have no fixed points on JHZ. They correspond
to elements of PSL(2, R) whose trace has absolute value less than 2.

Parabolic. If f has exactly one fixed point in 9H?Z, then f is called parabolic.
In the upper half-plane model, f is conjugate in Isom™ (H?) to 2 +— 2 + 1.
Parabolic isometries correspond to those nonidentity elements of PSL(2, R)
with trace +2.

Hyperbolic. If f has two fixed points in OH?, then f is called hyperbolic
or loxodromic. In this case, there is an f-invariant geodesic axis -y; that is,
an f-invariant geodesic in H? on which f acts by translation. On OH? the
fixed points act like a source and a sink, respectively. Hyperbolic isometries
correspond to elements of PSL(2, R) whose trace has absolute value greater
than 2.

It follows from the above classification that if f has at least three fixed
points in H2, then f is the identity.

Also, since commuting elements of Isom™ (H?) must preserve each
other’s fixed sets in H2, we see that two nontrivial elements of Isom™ (H?)
commute if and only if they have the same fixed points in H2.

1.1.3 HYPERBOLIC SURFACES

The following theorem gives a link between the topology of surfaces and
their geometry. It will be used throughout the book to convert topological
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problems to geometric ones, which have more structure and so are often
easier to solve.

We say that a surface S admits a hyperbolic metric if there exists a com-
plete, finite-area Riemannian metric on S of constant curvature —1 where
the boundary of S (if nonempty) is totally geodesic (this means that the
geodesics in 0SS are geodesics in S). Similarly, we say that S admits a Eu-
clidean metric, or flat metric if there is a complete, finite-area Riemannian
metric on S with constant curvature 0 and totally geodesic boundary.

If S has empty boundary and has a hyperbolic metric, then its universal
cover Sisa simply connected Riemannian 2-manifold of constant curvature
—1. It follows that S is isometric to HZ2, and so S is isometric to the quotient
of H2 by a free, properly discontinuous isometric action of 71 (S). If S has
nonempty boundary and has a hyperbolic metric, then S is isometric to a
totally geodesic subspace of H?2. Similarly, if S has a Euclidean metric, then
S is isometric to a totally geodesic subspace of the Euclidean plane E2.

THEOREM 1.2 Let S be any surface (perhaps with punctures or bound-
ary). If x(S) < 0, then S admits a hyperbolic metric. If x(S) = 0, then S
admits a Euclidean metric.

A surface endowed with a fixed hyperbolic metric will be called a hyper-
bolic surface. A surface with a Euclidean metric will be called a Euclidean
surface or flat surface.

Note that Theorem 1.2 is consistent with the Gauss—Bonnet theorem
which, in the case of a compact surface S with totally geodesic boundary,
states that the integral of the curvature over S is equal to 2wy (.5).

One way to get a hyperbolic metric on a closed surface S, is to construct
a free, properly discontinuous isometric action of m(S,) on H? (as above,
this requires g > 2). By covering space theory and the classification of
surfaces, the quotient will be homeomorphic to S,. Since the action was by
isometries, this quotient comes equipped with a hyperbolic metric. Another
way to get a hyperbolic metric on S, for g > 2, is to take a geodesic 4g-gon
in H? with interior angle sum 27 and identify opposite sides (such a 4g-gon
always exists; see Section 10.4 below). The result is a surface of genus g
with a hyperbolic metric and, according to Theorem 1.2, its universal cover
is H2.

We remark that while the torus 72 admits a Euclidean metric, the once-
punctured torus S1 1 admits a hyperbolic metric.

Loops in hyperbolic surfaces. Let S be a hyperbolic surface. A neigh-
borhood of a puncture is a closed subset of S homeomorphic to a once-
punctured disk. Also, by a free homotopy of loops in S we simply mean an
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unbased homotopy. If a nontrivial element of 71 (.S) is represented by a loop
that can be freely homotoped into the neighborhood of a puncture, then it
follows that the loop can be made arbitrarily short; otherwise, we would find
an embedded annulus whose length is infinite (by completeness) and where
the length of each circular cross section is bounded from below, giving in-
finite area. The deck transformation corresponding to such an element of
71(9) is a parabolic isometry of the universal cover H?. This makes sense
because for any parabolic isometry of H?, there is no positive lower bound
to the distance between a point in H? and its image. All other nontrivial el-
ements of 71 (S) correspond to hyperbolic isometries of H? and hence have
associated axes in HZ.

We have the following fact, which will be used several times throughout
this book:

If S admits a hyperbolic metric, then the centralizer of any non-
trivial element of m1(S) is cyclic. In particular, 7 (S) has a
trivial center.

To prove this we identify 7 (.S) with the deck transformation group of S
for some covering map H? — S. Whenever two nontrivial isometries of
H? commute, it follows from the classification of isometries of H? that they
have the same fixed points in JH?. So if a € 71 (9) is centralized by 3, it
follows that o and 3 have the same fixed points in OH?Z. By the discrete-
ness of the action of 71 (.S), we would then have that the centralizer of «
in 71(.9) is infinite cyclic. If 71 (S) had nontrivial center, it would then fol-
low that 71 (S) ~ Z. But then S would necessarily have infinite volume, a
contradiction.

1.2 SIMPLE CLOSED CURVES

Our study of simple closed curves in a surface S begins with the study of all
closed curves in .S and the usefulness of geometry in understanding them.

1.2.1 CLOSED CURVES AND GEODESICS

By a closed curve in a surface S we will mean a continuous map S' — S.
We will usually identify a closed curve with its image in .S. A closed curve
is called essential if it is not homotopic to a point, a puncture, or a boundary
component.

Closed curves and fundamental groups. Given an oriented closed curve
a € S, we can identify o with an element of 71 (S) by choosing a path from
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the basepoint for 71 (.S) to some point on «.. The resulting element of 71 (S)
is well defined only up to conjugacy. By a slight abuse of notation we will
denote this element of 71 (S) by « as well.

There is a bijective correspondence:

Nontrivial Nontrivial free
conjugacy classes » «—— < homotopy classes of oriented
in 71 (5) closed curves in S

An element g of a group G is primitive if there does not exist any h € G so
that g = h*, where |k| > 1. The property of being primitive is a conjugacy
class invariant. In particular, it makes sense to say that a closed curve in a
surface is primitive.

A closed curve in S is a multiple if it is a map S' — S that factors

through the map S* X S for n > 1. In other words, a curve is a multiple
if it “runs around” another curve multiple times. If a closed curve in S is a
multiple, then no element of the corresponding conjugacy class in 71 (.5) is
primitive.

Letp: S — S be any covering space. By a [ift of a closed curve « to S
we will always mean the image of a lift R — S of the map « o w, where
7 : R — S is the usual covering map. For example, if S is a surface with
x(S) < 0, then alift of an essential simple closed curve in S to the universal
cover is a copy of R. Note that a lift is different from a path lift, which is
typically a proper subset of a lift.

Now suppose that S is the universal cover and « is a simple closed curve
in S that is not a nontrivial multiple of another closed curve. In this case, the
lifts of « to S are in natural bijection with the cosets in 71 (,S) of the infinite
cyclic subgroup (). (Any nontrivial multiple of « has the same set of lifts
as « but more cosets.) The group 71 (S) acts on the set of lifts of « by deck
transformations, and this action agrees with the usual left action of 71 (.S) on
the cosets of («). The stabilizer of the lift corresponding to the coset y({c)
is the cyclic group (yay™1).

When S admits a hyperbolic metric and « is a primitive element of 71 (.5),
we have a bijective correspondence:

Elements of the conjugacy N Lifts to S of the
class of ain 71 () closed curve «

More precisely, the lift of the curve a given by the coset () corresponds
to the element yay~! of the conjugacy class [a]. That this is a bijective
correspondence is a consequence of the fact that, for a hyperbolic surface .S,
the centralizer of any element of 7 (.5) is cyclic.
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If «v is any multiple, then we still have a bijective correspondence between
elements of the conjugacy class of « and the lifts of o. However, if « is
not primitive and not a multiple, then there are more lifts of « than there
are conjugates. Indeed, if o = ¥, where k > 1, then 3{a) # (a) while
Baf~! = a.

Note that the above correspondence does not hold for the torus 7°2. This
is so because each closed curve has infinitely many lifts, while each element
of 1 (T?) ~ Z?2 is its own conjugacy class. Of course, 71 (7?) is its own
center, and so the centralizer of each element is the whole group.

Geodesic representatives. A priori the combinatorial topology of closed
curves on surfaces has nothing to do with geometry. It was already real-
ized in the nineteenth century, however, that the mere existence of constant-
curvature Riemannian metrics on surfaces has strong implications for the
topology of the surface and of simple closed curves in it. For example, it
is easy to prove that any closed curve « on a flat torus is homotopic to a
geodesic: one simply lifts a to R? and performs a straight-line homotopy.
Note that the corresponding geodesic is not unique.

For compact hyperbolic surfaces we have a similar picture, and in fact the
free homotopy class of any closed curve contains a unique geodesic. The
existence is indeed true for any compact Riemannian manifold. Here we
give a more hands-on proof of existence and uniqueness for any hyperbolic
surface.

Proposition 1.3 Ler S be a hyperbolic surface. If « is a closed curve in S
that is not homotopic into a neighborhood of a puncture, then « is homo-
topic to a unique geodesic closed curve .

Proof.: Choose alift & of o to H2. As above, & is stabilized by some element
of the conjugacy class of 71 (S) corresponding to «; let ¢ be the correspond-
ing isometry of H?. By the assumption on «, we have that ¢ is a hyperbolic
isometry and so has an axis of translation A; see Figure 1.1.

Consider the projection of A to .S and let g be a geodesic closed curve
that travels around this projection once. Any equivariant homotopy from «
to A projects to a homotopy between « and a multiple of 7y, which is the
desired . One way to get such a homotopy is to simply take the homotopy
that moves each point of & along a geodesic segment to its closest-point
projection in A. This completes the proof of the existence of . Note that
we do not need to worry that the resulting parameterization of -y is geodesic
since any two parameterizations of the same closed curve are homotopic as
parameterized maps.

To prove uniqueness, suppose we are given a homotopy S! x I — S
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Figure 1.1 A lift & of a closed curve « and the axis A for the corresponding isometry ¢.

from « to a multiple ' of some simple closed geodesic (). By compact-
ness of S' x I, there exists a constant C' > 0 such that no point of « is
moved a distance greater than C by the homotopy. In the universal cover
H?2, the homotopy lifts to a homotopy from the lift & of « to a geodesic lift
76 of ~(, and points of & are moved a distance at most C'. It follows that
the endpoints of & in OH? are the same as those of 7). Since a geodesic
in H? is uniquely determined by its endpoints in OH?, this proves that the
geodesic closed curve ) is the same as 7 up to sign. The closed curve '
is then specified by which multiple of ~q it is. But different multiples of g
correspond to conjugacy classes in Isom™ (H?) that have different transla-
tion lengths and/or translation directions. Conjugacy classes with differing
translation lengths are distinct, and so distinct multiples of g do not lie in
the same free homotopy class. O

It follows from Proposition 1.3 that for a compact hyperbolic surface we
have a bijective correspondence:

Conjugacy classes - Oriented geodesic
in 7 (S) closed curves in S

1.2.2 SIMPLE CLOSED CURVES

A closed curve in S is simple if it is embedded, that is, if the map S' —
S is injective. Among the reasons for the particular importance of simple
closed curves is that we can easily classify them up to homeomorphism
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of S (see Section 1.3), we can cut along them (see Section 1.3), and we
can twist along them (see Section 3.1). As mentioned above, we will study
homeomorphisms of surfaces via their actions on simple closed curves.

Any closed curve « can be approximated by a smooth closed curve, and a
close enough approximation o’ of « is homotopic to o. What is more, if o is
simple, then o/ can be chosen to be simple. Smooth curves are advantageous
for many reasons. For instance, smoothness allows us to employ the notion
of transversality (general position). When convenient, we will assume that
our curves are smooth, sometimes without mention.

Simple closed curves are also natural to study because they represent
primitive elements of 71 (.5).

Proposition 1.4 Let o be a simple closed curve in a surface S. If « is not
null homotopic, then each element of the corresponding conjugacy class in
m1(S) is primitive.

Proof. We give the proof for the case when S is hyperbolic. Fix a covering
map H? — S and let ¢ € Isom™ (H?) be the hyperbolic isometry corre-
sponding to some element of the conjugacy class of a. The primitivity of
the elements of the conjugacy class of « is equivalent to the primitivity of ¢
in the deck transformation group.

Assume that ¢ = )", where v is another element of the deck transforma-
tion group and n € Z. In any group, powers of the same element commute,
and so ¢ commutes with ¢. Thus ¢ and 1) have the same set of fixed points
in OH?.

Let & be the lift of the closed curve « that has the same endpoints in OH?
as the axis for ¢. We claim that ¢)(@) = a. We know that ¢)(&) is some lift
of a. Since « is simple, all of its lifts are disjoint and no two lifts of a have
the same endpoints in OH?2. Thus (&) and & are disjoint and have distinct
endpoints. Now, we know that "1 ()(@)) = ¢(a) = a. Since the fixed
points in OH? of ¢! are the same as the endpoints of &, the only way
¢~ 1(2)(@)) can have the same endpoints at infinity as & is if ¥(&) does.
This is to say that ¢)(&) = &, and the claim is proven.

Thus the restriction of ¢ to « is a translation. As ¢ = 9", the closed
curve « travels n times around the closed curve in S given by a/(1)). Since
« is simple, we have n = +1, which is what we wanted to show. O

Simple closed curves in the torus. We can classify the set of homotopy
classes of simple closed curves in the torus 72 as follows. Let R? — T2 be
the usual covering map, where the deck transformation group is generated
by the translations by (1,0) and (0, 1). We know that 7 (T?) ~ Z2, and if
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we base 71 (T?) at the image of the origin, one way to get a representative
for (p, q) as a loop in T is to take the straight line from (0, 0) to (p,q) in
R? and project it to 72,

Let v be any oriented simple closed curve in 72. Up to homotopy, we
can assume that - passes through the image in 7 of (0, 0) in R2. Any path
lifting of ~y to R? based at the origin terminates at some integral point (p, q).
There is then a homotopy from + to the standard straight-line representative
of (p,q) € 71 (T?); indeed, the straight-line homotopy from the lift of ~y to
the straight line through (0,0) and (p, ¢) is equivariant with respect to the
group of deck transformations and thus descends to the desired homotopy.

Now, if a closed curve in 72 is simple, then its straight-line representative
is simple. Thus we have the following fact.

Proposition 1.5 The nontrivial homotopy classes of oriented simple closed
curves in T? are in bijective correspondence with the set of primitive ele-
ments of ™ (T?) ~ Z2.

An element (p, q) of Z? is primitive if and only if (p,q) = (0,%1),
(p,q) = (£1,0), or ged(p, ¢) = 1.

We can classify homotopy classes of essential simple closed curves in
other surfaces. For example, in S 2 So,1, 50,2, and Sp 3, there are no essential
simple closed curves. The homotopy classes of simple closed curves in St 1
are in bijective correspondence with those in 72, In Section 2.2 below, we
will show that there is a natural bijection between the homotopy classes of
essential simple closed curves in Sp 4 and the homotopy classes in T2,

Closed geodesics. For hyperbolic surfaces geodesics are the natural repre-
sentatives of each free homotopy class in the following sense.

Proposition 1.6 Let S be a hyperbolic surface. Let o be a closed curve in
S not homotopic into a neighborhood of a puncture. Let v be the unique
geodesic in the free homotopy class of o guaranteed by Proposition 1.3. If
« is simple, then v is simple.

Proof. We begin by applying the following fact.

A closed curve (3 in a hyperbolic surface S is simple if and only
if the following properties hold:

1. Each lift of 3 to H? is simple.
2. No two lifts of (§ intersect.
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3. (B is not a nontrivial multiple of another closed curve.

Thus if « is simple, then no two of its lifts to H? intersect. It follows that
for any two such lifts, their endpoints are not linked in OH?. But each lift
of v shares both endpoints with some lift of . Thus no two lifts of « have
endpoints that are linked in OH?. Since these lifts are geodesics, it follows
that they do not intersect. Further, by Proposition 1.4, any element of 74 (.5)
corresponding to « is primitive. The same is then true for v, and so ~y cannot
be a multiple. Since geodesics in H? are always simple, we conclude that
is simple. a

1.2.3 INTERSECTION NUMBERS

There are two natural ways to count the number of intersection points be-
tween two simple closed curves in a surface: signed and unsigned. These
correspond to the algebraic intersection number and geometric intersection
number, respectively.

Let « and ( be a pair of transverse, oriented, simple closed curves in S.
Recall that the algebraic intersection number i(cv, () is defined as the sum
of the indices of the intersection points of « and 3, where an intersection
point is of index +1 when the orientation of the intersection agrees with the
orientation of S and is —1 otherwise. Recall that 7(c, 3) depends only on the
homology classes of a and 3. In particular, it makes sense to write %(a, b) for
a and b, the free homotopy classes (or homology classes) of closed curves
«a and (.

The most naive way to count intersections between homotopy classes of
closed curves is to simply count the minimal number of unsigned intersec-
tions. This idea is encoded in the concept of geometric intersection number.
The geometric intersection number between free homotopy classes a and b
of simple closed curves in a surface .S is defined to be the minimal number
of intersection points between a representative curve in the class a and a
representative curve in the class b:

i(a,b) =min{|la N f]: a € a, B € b}.

We sometimes employ a slight abuse of notation by writing i(c«, (3) for the
intersection number between the homotopy classes of simple closed curves
« and (.

We note that geometric intersection number is symmetric, while al-
gebraic intersection number is skew-symmetric: i(a,b) = i(b,a), while
i(a,b) = —i(b,a). While algebraic intersection number is well defined on
homology classes, geometric intersection number is well defined only on
free homotopy classes. Geometric intersection number is a useful invariant
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but, as we will see, it is more difficult to compute than algebraic intersection
number.

Observe that i(a, a) = 0 for any homotopy class of simple closed curves
a. If o separates S into two components, then for any 3 we have %(a, 8)=0
and i(«, () is even. In general, i and 7 have the same parity.

Intersection numbers on the torus. As noted above, the nontrivial free
homotopy classes of oriented simple closed curves in 7' are in bijective cor-
respondence with primitive elements of Z?2. For two such homotopy classes
(p,q) and (p',q’), we have

i((p.a), (0, d)) =pd —pq

and

i((pq), (', 4") = Ipd' — Pql.

To verify these formulas, one should first check the case where (p,q) =
(1,0) (exercise). For the general case, we note that if (p, q) represents an
essential oriented simple closed curve, that is, if it is primitive, then there
is a matrix A € SL(2,Z) with A((p,q)) = (1,0). Since A is a linear,
orientation-preserving homeomorphism of R? preserving Z?2, it induces an
orientation-preserving homeomorphism of the torus 72 = R2/Z? whose
action on 7 (T?) ~ Z?2 is given by A. Since orientation-preserving homeo-
morphisms preserve both algebraic and geometric intersection numbers, the
general case of each formula follows.

Minimal position. In practice, one computes the geometric intersection
number between two homotopy classes a and b by finding representatives «
and (3 that realize the minimal intersection in their homotopy classes, so that
i(a,b) = |a:N B|. When this is the case, we say that « and 3 are in minimal
position.

Two basic questions now arise.

1. Given two simple closed curves « and 3, how can we tell if they are
in minimal position?

2. Given two simple closed curves « and 3, how do we find homotopic
simple closed curves that are in minimal position?

While the first question is a priori a minimization problem over an infinite-
dimensional space, we will see that the question can be reduced to a finite
check—the bigon criterion given below. For the second question, we will see
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that geodesic representatives of simple closed curves are always in minimal
position.

1.2.4 THE BIGON CRITERION

We say that two transverse simple closed curves « and 3 in a surface S form
a bigon if there is an embedded disk in S (the bigon) whose boundary is the
union of an arc of « and an arc of 3 intersecting in exactly two points; see
Figure 1.2.

Figure 1.2 A bigon.

The following proposition gives a simple, combinatorial condition for de-
ciding whether or not two simple closed curves are in minimal position. It
therefore gives a method for determining the geometric intersection number
of two simple closed curves.

Proposition 1.7 (The bigon criterion) Two transverse simple closed
curves in a surface S are in minimal position if and only if they do not form
a bigon.

One immediate and useful consequence of the bigon criterion is the fol-
lowing:

Any two transverse simple closed curves that intersect exactly
once are in minimal position.

Before proving Proposition 1.7, we need a lemma.

Lemma 1.8 If transverse simple closed curves « and (3 in a surface S do
not form any bigons, then in the universal cover of S, any pair of lifts & and
0 of o and (3 intersect in at most one point.

Proof. Assume x(.S) < 0, so the universal cover Sis homeomorphic to R?
(the case of x(S) > 0 is an exercise). Let p: S — S be the covering map.

Suppose the lifts & and E of o and f intersect in at least two points. It
follows that there is an embedded disk Dy in S bounded by one subarc of &
and one subarc of B
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By compactness and transversality, the intersection (p~(a) Up~1(3)) N
Dy is a finite graph if we think of the intersection points as vertices. Thus
there is an innermost disk, that is, an embedded disk D in S bounded by
one arc of p~!(a) and one arc of p~!(3) and with no arcs of p~!(c) or
p~ () passing through the interior of the D (see Figure 1.3). Denote the

two vertices of D by vy and v9, and the two edges of D by a; and 51.

~N

RN

Figure 1.3 An innermost disk between two lifts.

We first claim that the restriction of p to 9D is an embedding. The points
vy and v9 certainly map to distinct points in S since & and 3 intersect with
opposite orientations at these points. If a point of &1 and a point of 61 have
the same image in S, then both points would be an intersection of p~!(a)
with p~1(3), violating the assumption that D is innermost. If two points of
a1 (or two points of Bl) map to the same point in .S, then there is a lift of
p(v1) between these two points, also contradicting the assumption that D is
innermost.

We can now argue that D projects to an embedded disk in S. Indeed, if
x and y in D project to the same point in .S, then =z = ¢(y) for some deck
transformation ¢. Since 0D embeds under the covering map, ¢(0D) N 0D
is either empty or all of D (in the case that ¢ is the identity). By the Jordan
curve theorem, we then see that either ¢(D) or ¢~ (D) must be contained
in D. Now, by the Brouwer fixed point theorem, ¢ has a fixed point, which
is a contradiction unless ¢ is the identity. O

We give two proofs of the bigon criterion. One proof uses hyperbolic
geometry, and one proof uses only topology. We give both proofs since each
of the techniques will be important later in this book.

First proof of Proposition 1.7. First suppose that two curves « and § form
a bigon. It should be intuitive that there is a homotopy of « that reduces
its intersection with 3 by 2, but here we provide a formal proof. We can
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choose a small closed neighborhood of this bigon that is homeomorphic to
a disk, and so the intersection of av U 3 with this disk looks like Figure 1.2.
More precisely, the intersection of «U 3 with this closed disk consists of one
subarc o/ of « and one subarc 3’ of (3 intersecting in precisely two points.
Since the disk is simply connected and since the endpoints of o lie on the
same side of (3, we may modify a by a homotopy in the closed disk so that,
inside this disk, « and 3 are disjoint. This implies that the original curves
were not in minimal position.

For the other direction, we treat only the case x(.S) < 0. The case x(S) =
0 is similar, and the case x(S) > 0 is easy. Assume that simple closed
curves « and 8 form no bigons. Let & and E be nondisjoint lifts of « and 3.
By Lemma 1.8, « intersects E in exactly one point x.

It cannot be that the axes of the hyperbolic isometries corresponding to o
and B share exactly one endpoint at OH? because this would violate the dis-
creteness of the action of 71 (.S) on HZ; indeed, in this case the commutator
of these isometries is parabolic and the conjugates of this parabolic isometry
by either of the original hyperbolic isometries have arbitrarily small transla-
tion length. Further, these axes cannot share two endpoints on OH?, for then
the corresponding hyperbolic isometries would have the same axis, and so
they would have to have a common power ¢ (otherwise the action of 7 (.5)
on this axis would be nondiscrete). But then ¢™ () would be an intersection
point between « and B for each n.

We conclude that any lift of « intersects any lift of G at most once and
that any such lifts have distinct endpoints on OHZ. But we can now see that
there is no homotopy that reduces intersection. Indeed, if & is a particular
lift of «v, then each fundamental domain of « intersects the set of lifts of 5 in
|aoN 3| points. Now, any homotopy of 3 changes this 71 -equivariant picture
in an equivariant way, so since the lifts of « and [ are already intersecting
minimally in H?, there is no homotopy that reduces intersection. a

Second proof of Proposition 1.7. We give a different proof that two curves
not in minimal position must form a bigon. Let « and (3 be two simple closed
curves in S that are not in minimal position and let H : S* x [0,1] — S
be a homotopy of « that reduces intersection with g (this is possible by the
definition of minimal position). We may assume without loss of generality
that o and (3 are transverse and that H is transverse to (3 (in particular, all
maps are assumed to be smooth). Thus the preimage H ~!(3) in the annulus
St x [0,1] is a 1-submanifold.

There are various possibilities for a connected component of H~!(3): it
could be a closed curve, an arc connecting distinct boundary components,
or an arc connecting one boundary component to itself. Since H reduces the



CURVES, SURFACES, AND HYPERBOLIC GEOMETRY 33

intersection of o with (3, there must be at least one component ¢ connecting
St x {0} to itself. Together with an arc &’ in S* x {0}, the arc § bounds a
disk Ain S x [0, 1]. Now, H(§UJ') is a closed curve in S that lies in aU 3.
This closed curve is null homotopic—indeed, H(A) is the null homotopy.
It follows that H (§Ud") lifts to a closed curve in the universal cover S; what
is more, this lift has one arc in a lift of « and one arc in a lift of 3. Thus
these lifts intersect twice, and so Lemma 1.8 implies that « and § form a
bigon. a

Geodesics are in minimal position. Note that if two geodesic segments on
a hyperbolic surface S together bounded a bigon, then, since the bigon is
simply connected, one could lift this bigon to the universal cover H? of S.
But this would contradict the fact that the geodesic between any two points
of H? is unique. Hence by Proposition 1.7 we have the following.

Corollary 1.9 Distinct simple closed geodesics in a hyperbolic surface are
in minimal position.

The bigon criterion gives an algorithmic answer to the question of how to
find representatives in minimal position: given any pair of transverse simple
closed curves, we can remove bigons one by one until none remain and
the resulting curves are in minimal position. Corollary 1.9, together with
Proposition 1.3, gives a qualitative answer to the question.

Multicurves. A multicurve in S is the union of a finite collection of dis-
joint simple closed curves in S. The notion of intersection number extends
directly to multicurves. A slight variation of the proof of the bigon criterion
(Proposition 1.7) gives a version of the bigon criterion for multicurves: two
multicurves are in minimal position if and only if no two component curves
form a bigon.

Proposition 1.3 and Corollary 1.9 together have the consequence that,
given any number of distinct homotopy classes of essential simple closed
curves in .S, we can choose a single representative from each class (e.g. the
geodesic) so that each pair of curves is in minimal position.

1.2.5 HOMOTOPY VERSUS ISOTOPY FOR SIMPLE CLOSED CURVES
Two simple closed curves o and [ are isotopic if there is a homotopy
H:S'x[0,1 — S

from « to 3 with the property that the closed curve H(S! x {t}) is simple
for each ¢ € [0, 1].
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In our study of mapping class groups, it will often be convenient to think
about isotopy classes of simple closed curves instead of homotopy classes.
One way to explain this is as follows. If H : S' x I — S is an isotopy of
simple closed curves, then the pair (S, H(S' x {t})) “looks the same” for
all ¢ (cf. Section 1.3).

When we appeal to algebraic topology for the existence of a homotopy,
the result is in general not an isotopy. We therefore want a method for con-
verting homotopies to isotopies whenever possible.

We already know i(a, b) is realized by geodesic representatives of a and b.
Thus, in order to apply the above results on geometric intersection numbers
to isotopy classes of curves, it suffices to prove the following fact originally
due to Baer.

Proposition 1.10 Let o and 3 be two essential simple closed curves in a
surface S. Then « is isotopic to (3 if and only if a is homotopic to (.

Proof. One direction is vacuous since an isotopy is a homotopy. So suppose
that « is homotopic to 5. We immediately have that i(«, 3) = 0. By per-
forming an isotopy of o, we may assume that « is transverse to 3. If « and
[ are not disjoint, then by the bigon criterion they form a bigon. A bigon
prescribes an isotopy that reduces intersection. Thus we may remove bigons
one by one by isotopy until o and 3 are disjoint.

In the remainder of the proof, we assume x(S) < 0; the case x(S) = 0
is similar, and the case x(S) > 0 is easy. Choose lifts & and 6 of o and 3
that have the same endpoints in OH?. There is a hyperbolic isometry ¢ that
leaves & and ﬂ invariant and acts by translation on these lifts. As & and B are
disjoint, we may consider the region R between them. The quotient R’ =
R/(¢) is an annulus; indeed, it is a surface with two boundary components
with an infinite cyclic fundamental group. A priori, the image R” of R in
S is a further quotient of R’. However, since the covering map R’ — R’ is
single-sheeted on the boundary, it follows that R’ ~ R”. The annulus R”
between « and 3 gives the desired isotopy. O

1.2.6 EXTENSION OF ISOTOPIES

An isotopy of a surface S is a homotopy H : .S x I — S so that, for each
€ [0,1], the map H(S,t) : S x {t} — S is a homeomorphism. Given

an isotopy between two simple closed curves in S, it will often be useful to

promote this to an isotopy of .S, which we call an ambient isotopy of S.

Proposition 1.11 Let S be any surface. If F : S' x I — S is a smooth
isotopy of simple closed curves, then there is an isotopy H : S x I — S so
that H|sxq is the identity and H|p(s1xoyx1 = F.
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Proposition 1.11 is a standard fact from differential topology. Suppose
that the two curves are disjoint. To construct the isotopy, one starts by find-
ing a smooth vector field that is supported on a neighborhood of the closed
annulus between the two curves and that carries one curve to the other. One
then obtains the isotopy of the surface .S by extending this vector field to .S
and then integrating it. For details of this argument see, e.g., [95, Chapter 8,
Theorem 1.3].

1.2.7 ARCS

In studying surfaces via their simple closed curves, we will often be forced
to think about arcs. For instance, many of our inductive arguments involve
cutting a surface along some simple closed curve in order to obtain a “sim-
pler” surface. Simple closed curves in the original surface either become
simple closed curves or collections of arcs in the cut surface. Much of the
discussion about curves carries over to arcs, so here we take a moment to
highlight the necessary modifications.

We first pin down the definition of an arc. This is one place where marked
points are more convenient than punctures. So assume S is a compact sur-
face, possibly with boundary and possibly with finitely many marked points
in the interior. Denote the set of marked points by P.

A proper arc in S'is amap a : [0,1] — S such that a=}(P U 3S) =
{0,1}. As with curves, we usually identify an arc with its image; in partic-
ular, this makes an arc an unoriented object. The arc « is simple if it is an
embedding on its interior. The homotopy class of a proper arc is taken to be
the homotopy class within the class of proper arcs. Thus points on 9,5 cannot
move off the boundary during the homotopy; all arcs would be homotopic
to a point otherwise. But there is still a choice to be made: a homotopy (or
isotopy) of an arc is said to be relative to the boundary if its endpoints stay
fixed throughout the homotopy. An arc in a surface S is essential if it is
neither homotopic into a boundary component of .S nor a marked point of
S.

The bigon criterion (Proposition 1.7) holds for arcs, except with one extra
subtlety illustrated in Figure 1.4. If we are considering isotopies relative to
the boundary, then the arcs in the figure are in minimal position, but if we
are considering general isotopies, then the half-bigon shows that they are
not in minimal position.

Corollary 1.9 (geodesics are in minimal position) and Proposition 1.3 (ex-
istence and uniqueness of geodesic representatives) work for arcs in surfaces
with punctures and/or boundary. Here we switch back from marked points
to punctures to take advantage of hyperbolic geometry. Proposition 1.10
(homotopy versus isotopy for curves) and Theorem 1.13 (extension of iso-
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Figure 1.4 The shaded region is a half-bigon.

topies) also work for arcs.

1.3 THE CHANGE OF COORDINATES PRINCIPLE

We now describe a basic technique that is used quite frequently in the theory
of mapping class groups, often without mention. We call this technique the
change of coordinates principle. One example of this principle is that, in or-
der to prove a topological statement about an arbitrary nonseparating simple
closed curve, we can prove it for any specific simple closed curve. We will
see below that this idea applies to any configuration of simple closed curves
that is given by topological data.

1.3.1 CLASSIFICATION OF SIMPLE CLOSED CURVES

As a prelude to our explanation of the change of coordinates principle, we
present a classification of simple closed curves in a surface.

We first need to introduce an essential concept. Given a simple closed
curve « in a surface S, the surface obtained by cutting S along « is a
compact surface S, equipped with a homeomorphism % between two of
its boundary components so that

1. the quotient S, /(z ~ h(z)) is homeomorphic to S, and

2. the image of these distinguished boundary components under this
quotient map is a.

It also makes sense to cut a surface with boundary or marked points along a
simple proper arc; the definition is analogous. Similarly, one can cut along a
finite collection of curves and arcs. There are several distinct situations for
cutting along a single arc, depending on whether the endpoints of the arc lie
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on a boundary component or a puncture, for instance, and the cut surface is
allowed to have marked points on its boundary.

We remark that the cutting procedure is one place where it is convenient
to assume that all curves under consideration are smooth. Indeed, if v is a
smooth simple closed curve in a surface S, then the pair (S,) is locally
diffeomorphic to (R?,R), and one can immediately conclude that the sur-
face obtained from S by cutting along - is again a surface, now with two
additional boundary components. Hence the classification of surfaces can
be applied to the cut surface.

We say that a simple closed curve « in the surface S is nonseparating if
the cut surface S, is connected. We claim the following.

If a and (B are any two nonseparating simple closed curves in
a surface S, then there is a homeomorphism ¢ : S — S with

¢la) = 3.

In other words, up to homeomorphism, there is only one nonseparating sim-
ple closed curve in S. This statement follows from the classification of
surfaces, as follows. The cut surfaces S, and Sj each have two bound-
ary components corresponding to « and (3, respectively. Since S, and Sg
have the same Euler characteristic, number of boundary components, and
number of punctures, it follows that S, is homeomorphic to Sg. We can
choose a homeomorphism S, — Spg that respects the equivalence relations
on the distinguished boundary components. Such a homeomorphism gives
the desired homeomorphism of S taking « to (3. If we want an orientation-
preserving homeomorphism, we can ensure this by postcomposing by an
orientation-reversing homeomorphism fixing 3 if necessary.

A simple closed curve (3 is separating in S if the cut surface Sg is not
connected. Note that when S is closed, 3 is separating if and only if it is
the boundary of some subsurface of S. This is equivalent to the vanishing of
the homology class of 3 in H; (S, Z). By the “classification of disconnected
surfaces,” we see that there are finitely many separating simple closed curves
in S up to homeomorphism.

The above arguments give the following general classification of simple
closed curves on a surface:

There is an orientation-preserving homeomorphism of a sur-
face taking one simple closed curve to another if and only if the
corresponding cut surfaces (which may be disconnected) are
homeomorphic.

The existence of such a homeomorphism is clearly an equivalence relation.
The equivalence class of a simple closed curve or a collection of simple
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closed curves is called its topological type. For example, a separating sim-
ple closed curve in the closed surface S, divides S, into two disjoint sub-
surfaces of, say, genus k and g — k. The minimum of {k, g — k} is called the
genus of the separating simple closed curve. By the above, the genus of a
curve determines and is determined by its topological type. Note that there
are | 4] topological types of essential separating simple closed curves in a
closed surface.

The uninitiated may have trouble visualizing separating simple closed
curves that are not the obvious ones. We present a few in Figure 1.5, and
we encourage the reader to draw even more complicated separating simple
closed curves.

Figure 1.5 Some nonobvious separating simple closed curves.

1.3.2 THE CHANGE OF COORDINATES PRINCIPLE

The change of coordinates principle is a kind of change of basis for curves
in a surface S. It roughly states that any two collections of simple closed
curves in S with the same intersection pattern can be taken to each other
via an orientation-preserving homeomorphism of .S. In this way an arbitrary
configuration can be transformed into a standard configuration. The clas-
sification of simple closed curves in surfaces given above is the simplest
example.

We illustrate the principle with two sample questions. Suppose « is any
nonseparating simple closed curve « on a surface S.

1. Is there a simple closed curve - in S so that « and ~ fill .S, that is, «
and + are in minimal position and the complement of o Uy is a union
of topological disks?

2. Is there a simple closed curve § in S with i(c,0) = 0? i(«,d) = 1?
i(a,0) = k?

Even for the genus 2 surface So, it is not immediately obvious how to
answer either question for the nonseparating simple closed curve o shown
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Figure 1.6 A simple closed curve on a genus 2 surface.

in Figure 1.6. However, we claim that Figure 1.7 gives proof that the answer
to the first question is yes in this case, as we now show. The curves (3 and
~ in Figure 1.7 fill the surface (check this!). By the classification of simple
closed curves in a surface, there is a homeomorphism ¢ : So — S with
®(B) = a. Since filling is a topological property, it follows that ¢ () is the
curve we are looking for since it together with v = ¢(3) fills So.

V-

Figure 1.7 Two simple closed curves that fill a genus 2 surface.

We think of ¢ as changing coordinates so that the complicated curve o
becomes the easy-to-see curve §. The second question can be answered sim-
ilarly.

1.3.3 EXAMPLES OF THE CHANGE OF COORDINATES PRINCIPLE

The change of coordinates principle applies to more general situations. We
give several examples here. Most of the proofs are minor variations of the
above arguments and so are left to the reader.

1. Pairs of simple closed curves that intersect once. Suppose that a;; and 3
form such a pair in a surface S. Let S,, be the surface obtained by cutting
S along . There are two boundary components of S,, corresponding to
the two sides of «;. The image of 31 in S, is a simple arc connecting these
boundary components to each other. We can cut S, along this arc to obtain
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a surface (S,,)s,. The latter is a surface with one boundary component
that is naturally subdivided into four arcs—two coming from «; and two
coming from 3. The equivalence relation coming from the definition of a
cut surface identifies these arcs in order to recover the surface S with its
curves o1 and (3;.

If g and [ are another such pair, there is an analogous cut surface
(Sas)p,- By the classification of surfaces, (Sq,)s, is homeomorphic to
(Sa1)p,» and moreover there is a homeomorphism that preserves equiva-
lence classes on the boundary. Any such homeomorphism descends to a
homeomorphism of S taking the pair {cv, 51} to the pair {ag, (2}

2. Bounding pairs of a given genus. A bounding pair is a pair of disjoint,
homologous, nonseparating simple closed curves in a closed surface. Fig-
ure 1.8 shows one example, but we again encourage the reader to find more
complicated examples. The genus of a bounding pair in a closed surface is
defined similarly to the genus of a separating simple closed curve.

Figure 1.8 A genus 1 bounding pair.

3. Pairs (or k-tuples) of disjoint simple closed curves whose union does not
separate.

4. Pairs of simple closed curves {a, B} with i(a, 5) = |aN G| = 2 and
i(cr, B) = 0 and whose union does not separate.

5. Nonseparating simple proper arcs in a surface S that meet the same num-
ber of components of 9S.

6. Chains of simple closed curves. A chain of simple closed curves in a
surface S is a sequence «q, . . ., a with the properties that i(c;, a11) = 1
for each i and i(c;, oj) = 0 whenever |i — j| > 1. A chain is nonseparating
if the union of the curves does not separate the surface.

Any two nonseparating chains of simple closed curves with the same
number of curves are topologically equivalent. This can be proved by in-
duction. The starting point is the case of nonseparating simple closed curves,
and the inductive step is example 5: cutting along the first few arcs, the next
arc becomes a nonseparating arc on the cut surface. Note that example 1



CURVES, SURFACES, AND HYPERBOLIC GEOMETRY 41

is the case &k = 2. One can also prove by induction that every chain in .S,
of even length is nonseparating, and so such chains must be topologically
equivalent.

We remark that the homeomorphism representing the change of coor-
dinates in each of the six examples above can be taken to be orientation-
preserving.

1.4 THREE FACTS ABOUT HOMEOMORPHISMS

In this subsection we collect three useful facts from surface topology. Each
allows us to replace one kind of map with a better one: a homotopy of home-
omorphisms can be improved to an isotopy; a homeomorphism of a surface
can be promoted to a diffeomorphism; and Homeog(S) is contractible, so
in particular any isotopy from the identity homeomorphism to itself is ho-
motopic to the constant isotopy.

1.4.1 HOMOTOPY VERSUS ISOTOPY FOR HOMEOMORPHISMS

When are two homotopic homeomorphisms isotopic? Let us look at two of
the simplest examples: the closed disk D? and the closed annulus A. On
D, any orientation-reversing homeomorphism f induces a degree —1 map
on S = 9D?, and from this follows that f is not isotopic to the identity.
However, the straight-line homotopy gives a homotopy between f and the
identity. On A = S' x I, the orientation-reversing map that fixes the S'
factor and reflects the I factor is homotopic but not isotopic to the identity.

It turns out that these two examples are the only examples of homotopic
homeomorphisms that are not isotopic. This was proved in the 1920s by
Baer using Proposition 1.10 (see [8, 9] and also [56]).

THEOREM 1.12 Let S be any compact surface and let f and g be homo-
topic homeomorphisms of S. Then f and g are isotopic unless they are one
of the two examples described above (on S = D? and S = A). In particular,
if f and g are orientation-preserving, then they are isotopic.

In fact, a stronger, relative result holds: if two homeomorphisms are ho-
motopic relative to 0.5, then they are isotopic relative to 9.S. Theorem 1.12
can be proven using ideas from the proof of Proposition 2.8.

Theorem 1.12 also holds when S has finitely many marked points. In that
case, we need to expand our list of counterexamples to include a sphere with
one or two marked points.
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1.4.2 HOMEOMORPHISMS VERSUS DIFFEOMORPHISMS

It is sometimes convenient to work with homeomorphisms and sometimes
convenient to work with diffeomorphisms. For example, it is easier to con-
struct the former, but we can apply differential topology to the latter. The
following theorem will allow us to pass back and forth between homeomor-
phisms and diffeomorphisms of surfaces.

THEOREM 1.13 Let S be a compact surface. Then every homeomorphism
of S is isotopic to a diffeomorphism of S.

It is a general fact that any homeomorphism of a smooth manifold can be
approximated arbitrarily well by a smooth map. By taking a close enough
approximation, the resulting smooth map is homotopic to the original home-
omorphism. However, this general fact, which is easy to prove, is much
weaker than Theorem 1.13 because the resulting smooth map might not be
smoothly invertible; indeed, it might not be invertible at all.

Theorem 1.13 was proven in the 1950s by Munkres [167, Theorem
6.3], Smale, and Whitehead [213, Corollary 1.18]. In part, this work was
prompted by Milnor’s discovery of the “exotic” (nondiffeomorphic) smooth
structures on S7.

Theorem 1.13 gives us a way to replace homeomorphisms with diffeo-
morphisms. We can also replace isotopies with smooth isotopies. In other
words, if two diffeomorphisms are isotopic, then they are smoothly isotopic;
see, for example, [30].

In this book, we will switch between the topological setting and the
smooth setting as is convenient. For example, when defining a map of a
surface to itself (either by equations or by pictures), it is often easier to
write down a homeomorphism than a smooth map. On the other hand, when
we need to appeal to transversality, extension of isotopy, and so on, we will
need to assume we have a diffeomorphism.

One point to make is that we will actually be forced to consider self-maps
of a surface that are not smooth; pseudo-Anosov homeomorphisms, which
are central to the theory, are special maps of a surface that are never smooth
(cf. Chapter 13).

1.4.3 CONTRACTIBILITY OF COMPONENTS OF Homeo(S)

The following theorem was proven by Hamstrom in a series of papers
[77, 78, 79] in the 1960s. In the statement, Homeog(S) is the connected
component of the identity in the space of homeomorphisms of a surface S.
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THEOREM 1.14 Let S be a compact surface, possibly minus a finite num-
ber of points from the interior. Assume that S is not homeomorphic to
S2 R2 D2 T2 the closed annulus, the once-punctured disk, or the once-
punctured plane. Then the space Homeog(S) is contractible.

The fact that Homeog(S) is simply connected is of course an immediate
consequence of Theorem 1.14. This fact will be used, among other places,
in Section 4.2 in the proof of the Birman exact sequence. There is a smooth
version of Theorem 1.14; see [53] or [73].



Chapter Two

Mapping Class Group Basics

In this chapter we begin our study of the mapping class group of a surface.
After giving the definition, we compute the mapping class group in essen-
tially all of the cases where it can be computed directly. This includes the
case of the disk, the annulus, the torus, and the pair of pants. An important
method, which we call the Alexander method, emerges as a tool for such
computations. It answers the fundamental question: how can one prove that
a homeomorphism is or is not homotopically trivial? Equivalently, how can
one decide when two homeomorphisms are homotopic or not?

2.1 DEFINITION AND FIRST EXAMPLES

Let S be a surface. As in Chapter 1, we assume that S is the connect
sum of g > 0 tori with b > 0 disjoint open disks removed and n > 0
points removed from the interior. Let Homeo™ (S, 9S) denote the group of
orientation-preserving homeomorphisms of .S that restrict to the identity on
0S. We endow this group with the compact-open topology.

The mapping class group of S, denoted Mod(S), is the group

Mod(S) = mp(Homeo™ (S, 95)).

In other words, Mod(S) is the group of isotopy classes of elements of
Homeo™ (S, 35S, where isotopies are required to fix the boundary point-
wise. If Homeog (S, 0S) denotes the connected component of the identity
in Homeo™ (S, 5), then we can equivalently write

Mod(S) = Homeo™ (S, 9S)/ Homeog (S, 9S).

The mapping class group was first studied by Dehn. He gave a lecture on
this topic to the Breslau Mathematics Colloquium on February 22, 1922; see
[49]. The notes from this lecture have been translated to English by Stillwell
[51, Chapter 7].

There are several possible variations in the definition of Mod(S). For ex-
ample, we could consider diffeomorphisms instead of homeomorphisms, or
homotopy classes instead of isotopy classes. By the theorems in Section 1.4,
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these definitions would result in isomorphic groups. To summarize, we have

Mod(S) = mo(Homeo™(S,d5))
~ Homeo™ (5, 0S) / homotopy
~ mo(Diff 7 (S, 85))
~ Diff*(5,0S) / ~,

where Diff 7 (.S, 09) is the group of orientation-preserving diffeomorphisms
of S that are the identity on the boundary and ~ can be taken to be either
smooth homotopy relative to the boundary or smooth isotopy relative to the
boundary.

The terminology Mod(.S) is meant to stand for “modular group.” Fricke
called the mapping class group the “automorphic modular group” since, as
we will later see, it can be viewed as a generalization of the classical modu-
lar group SL(2,7Z) of 2 x 2 integral matrices with determinant 1.

Elements of Mod(.S) are called mapping classes. We use the convention
of functional notation, namely,

Elements of the mapping class group are applied right to lefft.

Other definitions and notations. In the literature, there are various other
notations for the mapping class group, for instance: MCG(S), Map(.5),
M(S),and T’y ,,. As a general rule, the term “mapping class group” refers to
the group of homotopy classes of homeomorphisms of a surface, but there
are plenty of variations: one can consider homeomorphisms that do not nec-
essarily preserve the orientation of the surface or that do not act as the iden-
tity on the boundary or that fix each puncture individually, and so on.

Punctures versus marked points. If S is a surface with punctures, then it
is sometimes more convenient to think of (some of) the punctures as marked
points on S. Then, Mod(S) is the group of homeomorphisms of S that leave
the set of marked points invariant, modulo isotopies that leave the set of
marked points invariant. Here, one has to be careful when using homotopies
instead of isotopies: a homotopy of surfaces with marked points must not
only send marked points to marked points at all times but must also send
unmarked points to unmarked points at all times.

Punctures versus boundary. One difference between a surface with punc-
tures and a surface with boundary is that, as an artifact of our definitions, a
mapping class is allowed to permute punctures on a surface, but it must pre-
serve the individual boundary components pointwise. Also, isotopies must
fix each boundary component pointwise, while on the other hand, isotopies
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Figure 2.1 An order 5 element of Mod(Ss).

can rotate a neighborhood of a puncture.

Exceptional surfaces. Recall from Section 1.4 that there are four surfaces
for which homotopy is not the same as isotopy: the disk D?, the annulus A,
the once-punctured sphere Sy 1, and the twice-punctured sphere Sg 2. Also
recall that in these cases, homotopy is the same as isotopy for orientation-
preserving homeomorphisms. Thus, even in these cases, the various defini-
tions of Mod(S) are still equivalent.

2.1.1 FIRST EXAMPLES OF MAPPING CLASSES

As a first example of a nontrivial element of Mod(S,), one can take the
order g homeomorphism ¢ of S, indicated in Figure 2.1 for g = 5. The
mapping class represented by ¢ also has order g. To see this, look for a sim-
ple closed curve «v in S so that o, ¢(a), ¢*(c), . .., ¢~ («) are pairwise
nonisotopic.

If we represent .S, as a (4g + 2)-gon with opposite sides identified (Fig-
ure 2.2 shows the case g = 2), we can get elements of Mod(S,) by rotating
the (49 + 2)-gon by any number of “clicks.” For example, if we rotate by
an angle 7 (i.e., 2g + 1 clicks) we get an important example of a mapping
class called a hyperelliptic involution (see Sections 7.4 and 9.4 for further
discussion of hyperelliptic involutions).

It is possible to realize a hyperelliptic involution as a rigid rotation of .S,
in R3, namely, the rotation by 7 about the axis indicated in Figure 2.3 (it is
not obvious that this is indeed a hyperelliptic involution). Other elements of
Mod(Sy) obtained by rotating a (4g + 2)-gon are less easy to visualize; for
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Figure 2.2 Rotation by 27 /10 gives an order 10 element of Mod(S2).

Figure 2.3 The rotation by 7 about the indicated axis is a hyperelliptic involution.

example, what does an order 5 symmetry of S look like with respect to the
standard picture of Sy embedded in R3?2

Unlike the preceding examples, most elements of the mapping class group
have infinite order. The simplest such elements are Dehn twists, which are
defined and studied in detail in Chapter 3.

2.2 COMPUTATIONS OF THE SIMPLEST MAPPING CLASS GROUPS

In this section we give complete descriptions of the mapping class groups
of the simplest surfaces, working directly from the definitions.
2.2.1 THE ALEXANDER LEMMA

Our first computation is the mapping class group Mod(D?) of the closed
disk D?. This simple result underlies most computations of mapping class
groups.

Lemma 2.1 (Alexander lemma) The group Mod(D?) is trivial.

In other words, Lemma 2.1 states that given any homeomorphism ¢ of
D? that is the identity on the boundary 9.D?, there is an isotopy of ¢ to the
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identity through homeomorphisms that are the identity on 9.D?.

Proof. Identify D? with the closed unit disk in R?. Let ¢ : D?> — D? be a
homeomorphism with ¢|5p2 equal to the identity. We define

Fla,t) = (1-0)6(1%) 0<lel <1t
| o 1-t<|z[<1

for 0 < t < 1, and we define F(x,1) to be the identity map of D?. The
result is an isotopy F' from ¢ to the identity. a

We can think of combining the {F(x,t)} from the proof into a level-
preserving homeomorphism of a cylinder whose support is a cone; see Fig-
ure 2.4. The individual F'(*,¢) homeomorphisms appear at horizontal slices.

Figure 2.4 The Alexander trick.

The isotopy given by the proof can be thought of as follows: at time ¢, do
the original map ¢ on the disk of radius 1 — ¢ and apply the identity map
outside this disk. This clever proof is called the Alexander trick.

The reader will notice that the Alexander trick works in all dimensions.
However, this is one place where it is convenient to think about homeomor-
phisms instead of diffeomorphisms. The smooth version of the Alexander
lemma in dimension 2 is not nearly as simple, although in this case Smale
proved the stronger statement that Diff (D2, dD?) is contractible [197]. In
higher dimensions, the situation is worse: it is not known if Diff (D*, 0D%)
is connected, and for infinitely many n we have that Diff (D", 9D") is not
connected.

The proof of Lemma 2.1 also holds with D? replaced by a once-punctured
disk (take the puncture/marked point to lie at the origin), and hence we also
have the following:

The mapping class group of a once-punctured disk is trivial.
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The sphere and the once-punctured sphere. There are two other mapping
class groups Mod(S, ) that are trivial, namely, Mod(Sp 1) and Mod(S?).
For the former, we can identify Sy ; with R? and use that fact that every
orientation-preserving homeomorphism of R? is homotopic to the identity
via the straight-line homotopy. For S2, any homeomorphism can be mod-
ified by isotopy so that it fixes a point, and so we can apply the previous
example.

2.2.2 THE MAPPING CLASS GROUP OF THE THRICE-PUNCTURED SPHERE

Our next example, the mapping class group of Sy 3, illustrates an impor-
tant idea in the theory of mapping class groups. The way we will compute
Mod(Sp 3) is to understand its action on some fixed arc in Sp 3. The surface
obtained by cutting Sy 3 along this arc is a punctured disk, and so we will
be able to apply the Alexander lemma. This is in general how we use the
cutting procedure for surfaces in order to perform inductive arguments.

In this section it will be convenient to think of S 3 as a sphere with three
marked points (instead of three punctures). In order to determine Mod(.Sp 3)
we first need to understand simple proper arcs in .Sy 3.

Proposition 2.2 Any two essential simple proper arcs in Sy 3 with the same
endpoints are isotopic. Any two essential arcs that both start and end at the
same marked point of Sp 3 are isotopic.

Proof. Let o and 3 be two simple proper arcs in Sp 3 connecting the same
two distinct marked points. We can modify « by isotopy so that it has gen-
eral position intersections with 3. By thinking of the third marked point as
being the point at infinity, we can think of « and (3 as arcs in the plane. As
in the proof of Lemma 1.8, if o and 3 are not disjoint, then we can find
an innermost disk bounded by an arc of « and an arc of 3. Pushing « by
isotopy across such disks, we may reduce intersection until o and 3 have
disjoint interiors. At this point, we can cut Sp 3 along oo U 3. By the classifi-
cation of surfaces, the resulting surface is the disjoint union of a disk (with
two marked points on the boundary) and a once-marked disk (with two ad-
ditional marked points on the boundary). Thus « and 3 bound an embedded
disk in Sy 3, and so they are isotopic.

The case where o and (3 are essential simple proper arcs where all four
endpoints lie on the same marked point of Sy 3 is similar. O

We are now ready to compute Mod(Sp 3). Let ¥3 denote the group of
permutations of three elements.
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Proposition 2.3 The natural map
Mod(Sp,3) — X3

given by the action of Mod(Sy 3) on the set of marked points of Sy 3 is an
isomorphism.

Proof. The map in the statement is obviously a surjective homomorphism.
Thus it suffices to show that if a homeomorphism ¢ of Sy 3 fixes the three
marked points—call them p, ¢, and r—then ¢ is homotopic to the iden-
tity. Choose an arc « in Sp 3 with distinct endpoints, say p and g. Since ¢
fixes the marked points p, ¢, and r, the endpoints of ¢(«) are again p and
q. By Proposition 2.2, we have that ¢(«) is isotopic to «. It follows that ¢
is isotopic to a map (which we also call ¢) that fixes a pointwise (Proposi-
tion 1.11).

We can cut Sy 3 along « so as to obtain a disk with one marked point
(the boundary comes from «, and the marked point comes from r). Since ¢
preserves the orientations of Sy 3 and of a, it follows that ¢ induces a home-
omorphism ¢ of this disk which is the identity on the boundary (the map ¢ is
the unique set map on the cut-open surface inducing ¢). By Lemma 2.1, the
mapping class group of a once-marked disk is trivial, and so ¢ is homotopic
to the identity. The homotopy induces a homotopy from ¢ to the identity. O

Pairs of pants. The surface Sy 3 is homeomorphic to the interior of a pair of
pants' P, which is the compact surface obtained from S2 by removing three
open disks with embedded, disjoint closures. Pairs of pants are important
because all compact hyperbolic surfaces can be built from pairs of pants (cf.
Section 10.5). In Section 3.6, we will apply Proposition 2.3 to show that
Mod(P) ~ Z3.

The twice-punctured sphere. There is a homomorphism Mod(Sp2) —
7/27 given by the action on the two marked points. An analogous proof to
that of Proposition 2.3 gives that Mod(Sy2) ~ Z/2Z.

2.2.3 THE MAPPING CLASS GROUP OF THE ANNULUS

We now come to the simplest infinite-order mapping class group, that of the
annulus A. The basic procedure we use to compute Mod(A) is similar to
the one we used for Sp 3. That is, we find an arc in A so that when we cut

"Mabius used the term “trinion” for a pair of pants (he called an annulus a “binion” and
a disk a “union”).
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A along that arc, we obtain a closed disk. If we can understand the action
of a homeomorphism on the arc, then we can completely understand the
homeomorphism up to homotopy.

Proposition 2.4 Mod(A) ~ Z.

Proof. First we construct a map p : Mod(A) — Z. Let f € Mod(A)
and let ¢ : A — A be any horneornorphism representing f. The universal
cover of A is the infinite strip A ~ R x [0,1], and ¢ has a preferred lift
gb A A fixing the origin. Let gbl ]R — R denote the restriction of 5 to
R x {1}, which is canonically identified with R. Since ¢; is a lift to R of
the identity map on one of the boundary components of A, it is an integer
translation. We define p(f) to be 51(0). If we identify Z with the group of
integer translations of R, then the map 51 itself is an element of Z, and we
can write p(f) = 51 € Z. From this point of view, it is clear that p is a
homomorphism since compositions of maps of A are sent to compositions
of translations of R.

We can give an equivalent definition of p as follows. Let § be an oriented
simple proper arc that connects the two boundary components of A. Given
f and ¢ as above, the concatenation ¢(8) * §~! is a loop based at 6(0), and
p(f) equals [¢(0) * 671] € m1(A,5(0)) =~ Z. Yet another equivalent way to
define p is to let 5 be the unique lift of § to A based at the origin and to set
p(f) to be the endpoint of &(S) inRx {1} =R

We now show that p is surjective. The linear transformation of R? given

by the matrix
1 n
v=(oh)

preserves R x [0, 1] and is equivariant with respect to the group of deck
transformations. Thus the restriction of the linear map M to R x [0, 1] de-
scends to a homeomorphism ¢ of A. The action of this homeomorphism on
¢ is depicted in Figure 2.5 for the case n = —1. It follows from the definition
of p that p([¢]) = n.

It remains to show that p is injective. Let f € Mod(A) be an element of
the kernel of p and say that f is represented by a homeomorphism ¢. Let &
be the preferred lift of ¢. Since p(f) = 0, we have that ¢ acts as the identity
on OA. We claim that the straight-line homotopy from gb to the identity map
of Ais equivariant. For this, it suffices to show that

$(r-x) =7 d(x)
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OO

Figure 2.5 A generator for Mod(A).

for any deck transformation 7 and for any = € A. It follows from general
covering space theory that

O(r - x) = $u(7) - 6(2).

But because ¢ fixes A pointwise, it follows that ¢, is the identity automor-
phism of 71 (A) &~ Z, and so ¢.(7) = 7, and the claim is proven.

We have that the straight-line homotopy from 5 to the identity is equiv-
ariant and it fixes the boundary of A, so it descends to a homotopy between
¢ and the identity map of A that fixes the boundary of A pointwise. Thus f
is the identity, and so p is injective. a

We remark that in the proof of Proposition 2.4 we took advantage of the
fact that we can conflate homotopy with isotopy.
The homeomorphism of A induced by the matrix

(o 1)

is called a Dehn twist. Since any surface contains an annulus, we can per-
form a Dehn twist in any surface. Dehn twists are important elements of the
mapping class group. In fact, the next chapter is entirely devoted to their
study.

2.2.4 THE MAPPING CLASS GROUP OF THE TORUS

The torus 72 acts as a guidepost in the study of mapping class groups. While
it has an explicit description as a group of integral matrices, and while it
is much easier to understand than mapping class groups of higher-genus
surfaces, it still exhibits enough richness to give us a hint of what to expect
in the higher-genus case. This is a recurring theme in this book.
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THEOREM 2.5 The homomorphism
o: Mod(T?) — SL(2,7)

given by the action on Hy(T;Z) ~ 7 is an isomorphism.

Proof. Any homeomorphism ¢ of 72 induces a map ¢, : Hi(T%Z) —
H1(T?;7Z). Since ¢ is invertible, ¢, is an automorphism of Hy(T?7Z) ~
Z?. Homotopic maps induce the same map on homology, and so the map
¢ + ¢, induces a map o : Mod(T?) — Aut(Z?) ~ GL(2,Z) (the
exact identification of o(f) with a 2 x 2 matrix depends on the particu-
lar identification of Hy(T2;Z) with Z?). The fact that o(f) is an element
of SL(2,Z) can be seen directly from the fact that the algebraic intersec-
tion numbers in 72 correspond to determinants (see Section 1.2) and the
fact that orientation-preserving homeomorphisms preserve algebraic inter-
section number.

We next prove that o is surjective. Any element M of SL(2, Z) induces an
orientation-preserving linear homeomorphism of R? that is equivariant with
respect to the deck transformation group Z? and thus descends to a linear
homeomorphism ¢, of the torus 72 = R?/Z2. Because of our identifi-
cation of primitive vectors in Z? with homotopy classes of oriented simple
closed curves in T2, it follows that o([¢]) = M, and so o is surjective.

Finally, we prove that o is injective. Since T2 is a K (G, 1)-space, there
is a correspondence:

Homotopy classes of Homomorphisms
based maps 72 — T2 72 — 77

(see [91, Proposition 1B.9]). What is more, any element f of Mod(Tz) has
a representative ¢ that fixes a basepoint for 72. Thus, if f € ker(o), then
¢ is homotopic (as a based map) to the identity, so o is injective. Actually,
we can construct the homotopy of ¢ to the identity explicitly. As in the case
of the annulus, the straight-line homotopy between the identity map of R?
and any lift of ¢ is equivariant and hence descends to a homotopy between
¢ and the identity. a

The annulus versus the torus. The reader will notice that our proof of the
injectivity of o : Mod(T?) — SL(2,Z) was actually easier than our proof
of the injectivity of p : Mod(A) — Z. The reason for this is that if we apply
K (G, 1)-theory to two homeomorphisms of A that induce the same map on
71(A), then the theory gives that the two homeomorphisms are homotopic
but not necessarily via a homotopy that fixes the boundary. That is why we
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needed to construct the homotopy by hand in the case of the annulus.

Hands-on proof of Theorem 2.5. We can give another, more hands-on
proof of the injectivity of o : Mod(7?) — SL(2,Z). Suppose that o(f) is
the identity matrix in SL(2,Z) and let ¢ be a representative of f. If o and (3
are simple closed curves corresponding to the elements (1,0) and (0,1) of
71 (T?), then it follows that ¢(«x) is homotopic to o and ¢(3) is homotopic
to 3. We proceed in two steps to show that ¢ is isotopic to the identity.

1. By Proposition 1.10, we know that ¢(«) is isotopic to « (as a map),
and by Proposition 1.11 any such isotopy can be extended to an iso-
topy of T2. Thus, up to isotopy, we may assume that ¢ fixes o point-
wise. As ¢ is orientation-preserving, we also know that ¢ preserves
the two sides of a.

2. Let A be the annulus obtained from 7' by cutting along «.. Given that
¢ fixes « pointwise and that ¢ preserves the two sides of a, we have
that ¢ induces a homeomorphism ¢ of A which represents an element
f of Mod(A). We can think of 3 and ¢(3) as arcs in A. Since ¢(3)
is isotopic to 3 in T2, we see that p(f) = 0, where p : Mod(A) — Z
is the map from Proposition 2.4.

3. At this point, we can simply quote Proposition 2.4, which gives that
f = 1. This means that ¢ is isotopic to the identity map of A via an
isotopy fixing 0 A pointwise. But then ¢ is also isotopic to the identity.

In the last step, instead of quoting Proposition 2.4 one can continue the line
of thought to give a hands-on proof of that proposition. As we shall see
in Section 2.3, these hands-on proofs lead to a method for understanding
mapping classes of arbitrary surfaces.

The once-punctured torus. For the once-punctured torus St 1, we have
H1(S11;Z) ~ Hy(T?;Z) ~ Z*. Therefore, as in the case of T2, there is a
homomorphism o : Mod(S1,1) — SL(2,Z). The map o is surjective since
any element of SL(2,7Z) can be realized as a map of R? that is equivari-
ant with respect to Z? and that fixes the origin; such a map descends to a
homeomorphism of Sy ; with the desired action on homology.

To prove that o is injective, we can apply a version of the hands-on proof
we used in the case of the torus, as follows. Let o and § be simple closed
curves in S ; that intersect in one point. If f € ker(o) is represented by
¢, then ¢(a) and ¢(3) are isotopic to « and 3. We can then modify ¢ by
isotopy so that it fixes o and 3 pointwise. If we cut S7 1 along o U 3, we
obtain a once-punctured disk, and ¢ induces a homeomorphism of this disk
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fixing the boundary. By the Alexander trick, this homeomorphism of the
punctured disk is homotopic to the identity by a homotopy that fixes the
boundary. It follows that ¢ is homotopic to the identity, as desired.

2.2.5 THE MAPPING CLASS GROUP OF THE FOUR-TIMES-PUNCTURED
SPHERE

In the theory of mapping class groups, there is a strong relationship between
the torus and the sphere with four punctures. Recall that if we think of the
torus as a square (or hexagon) with opposite sides identified, then the hy-
perelliptic involution ¢ is the map that rotates about the center of the square
(or hexagon) by an angle of 7. The map ¢ has four fixed points, and so the
quotient, which is topologically a sphere, has four distinguished points. We
identify this quotient with Sy 4. Since every linear map of 7' 2 (fixing the im-
age of the origin in R?) commutes with ¢, each element of Mod(72) induces
an element of Mod(Sp 4). We will now exploit this relationship in order to
compute Mod(Sp 4).
We begin by classifying simple closed curves in Sg 4 up to homotopy.

Proposition 2.6 The hyperelliptic involution induces a bijection between
the set of homotopy classes of essential simple closed curves in T? and the
set of homotopy classes of essential simple closed curves in Sy 4.

Proof. Proposition 1.5 gives a bijection between the set of homotopy classes
of essential simple closed curves in 72 and the set of primitive elements of
72. Given a primitive element of Z2, we obtained a (p, q)-curve by project-
ing a line of slope q/p to T2,

We will give a different construction of (p, ¢)-curves in 72, and we will
give a construction of (p, ¢)-curves in Sy 4, and then we will observe that
the lift of a (p, q)-curve in Sp 4 to T2 is a (p, ¢)-curve in T?.

Let o and 3 be two simple closed curves in 772 that intersect each other in
one point. We identify o with (1,0) € Z? and 3 with (0,1) € Z2. Let (p, q)
be a primitive element of Z2. A simple closed curve v in T2 is a (p, q)-
curve if we have (i(7, 8), (v, @) = %(p, ¢). To construct the (p, ¢)-curve,
we start by taking p parallel copies of a, and we modify this collection by a
27 /q twist along 3.

Up to homotopy in T2, we may assume that o and 3 project via ¢ to simple
closed curves @ and 3 in So,4 that intersect in two points, as in Figure 2.6.
We can then perform an analogous construction of a (p, ¢)-curve in Sp 4. We
take p parallel copies of & and twist along 3 by 7/q.

We need to check that every homotopy class of essential simple closed
curves in Sp 4 comes from our construction. Let v be an arbitrary essential
simple closed curve in Sp 4. Up to homotopy, we may assume that v is in
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minimal position with respect to a. If we cut Sp 4 along 3, we obtain two
twice-punctured disks, and v and « both give collections of disjoint arcs on
each. By the assumptions on minimal position, these arcs are all essential.
By Proposition 2.2, the arcs coming from « and the arcs coming from ~ are
freely homotopic. It follows that the homotopy class of v comes from our
construction.

The preimage of a (p, g)-curve in Sp 4 in 77 is a (2p, 2¢)—curve, that is,
two parallel copies of a (p, ¢)-curve in T2. That is to say, the identification
of (p, q)-curves in the two surfaces is induced by «¢. O

Proposition 2.7 Mod (S 4) ~ PSL(2,Z) x (Z/2Z x Z/2Z).

Proof. We first construct a homomorphism @ : Mod(Sp4) — PSL(2,Z)
together with a right inverse. Then we will show that the kernel is isomor-
phic to Z /27 x Z /2.

Let ¢ be a homeomorphism representing a given f € Mod(Sp).
There are two lifts of ¢ to Homeo™ (T2), say ¢ and t¢. We define &(f)
to be the element of PSL(2,Z) represented by the matrix o([¢]), where
o : Mod(T?) — SL(2,Z) is the homomorphism from Theorem 2.5. This is
well defined since the two lifts of ¢ differ by ¢, and o (1) = —1.

Next we construct the right inverse of @. An element of PSL(2,Z) in-
duces an orientation-preserving, linear homeomorphism of 72 that is well
defined up to multiplication by ¢. Any such map of 72 commutes with ¢ and
hence induces an orientation-preserving homeomorphism of Sp 4. In this
way we have defined a map PSL(2,Z) — Mod(Sp,4); it is a right inverse
of & by construction.

The order 2 homeomorphisms of Sy 4 indicated in Figure 2.6 are called
hyperelliptic involutions of Sg 4. The corresponding mapping classes ¢; and
1o generate a subgroup of Mod(Sp 4) isomorphic to Zy x Zs. The hyper-
elliptic involutions each lift to a homeomorphism of 7% ~ S' x S! that
rotates one of the factors by 7. Hence (¢1, t2) is contained in the kernel of
0.

We will show that (11, ¢2) is the entire kernel of 7. Let f € ker(7). By
definition of 7, any lift of a representative of f to Homeo™ (T?) acts by £1
on Hy(T?;7Z) and hence acts trivially on the set of homotopy classes of sim-
ple closed curves in 72, By the natural bijection given by Proposition 2.6, it
follows that f acts trivially on the set of homotopy classes of simple closed
curves in Sp 4. In particular, f fixes the homotopy classes of @ and 3.1t fol-
lows that we can precompose f with an element of k£ € (11, t2) so that fk
fixes the four marked points of S 4.

Our goal now is to show that fk is the identity. Say that fk is represented
by a homeomorphism ¢. As in the proof of Theorem 2.5, we can modify ¢
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Figure 2.6 The hyperelliptic involutions of So 4.

so that it fixes @ and 3. Since ¢ fixes the four marked points, we have that ¢
induces relative homeomorphisms of the four once-marked disks obtained
when we cut Sy 4 along @ and 3. At this point, we can once again apply the
Alexander lemma to show that fk is the identity. a

Two splittings of Modi(SOA). Let Mod*(Sp 4) denote a group of ho-
motopy classes of all homeomorphisms of Sp 4, including the orientation-
reversing ones (see Chapter 8 for more about this group). It follows from
Theorem 2.5 and the argument of Proposition 2.7 that

Mod*(Sp.4) ~ PGL(2,Z) x (Z/27 x 7./27.).

We can give another description of Modi(SOA) as a semidirect product.
There is a short exact sequence

1 — PMod®(Sp4) — Mod*(Sp4) — X4 — 1,

where 3, is the symmetric group on the four punctures, the map
Modi(SOA) — 4 is given by the action on the punctures, and
PMod*(Sp,4) is the subgroup of Mod®(Sp4) consisting of those ele-
ments fixing each of the punctures (one is tempted to write a sequence
with Mod(Sp 4) surjecting onto the alternating group Ay, but the image of
Mod(Sp.4) is all of ¥4). Thinking of Sy 4 as the 2-skeleton of a tetrahe-
dron minus its vertices, we see that there is a section >4 — Modi(SOA),
and so the group Modi(SOA) is isomorphic to the semidirect product
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PModi(SOA) x X4. It follows from the results in Section 4.2 below that
PMod*(Sp4) ~ F» x Z/2Z, and so

Modi(S()A) ~ (F2 X Z/2Z) b 24.

2.3 THE ALEXANDER METHOD

Our computations of the mapping class groups of Sg 3, So.2, A, T?, S11,
and Sp 4 all follow the same general scheme: find a collection of curves
and/or arcs that cut the surface into disks and apply the Alexander lemma
in order to say that the action of the mapping class group on the surface is
completely determined by the action on the isotopy classes of these curves
and arcs.

It turns out that this basic setup works for a general surface. The Alexan-
der method (given below) states that, for any .S, an element of Mod(S) is
often determined by its action on a well-chosen collection of curves and arcs
in S. Thus, there is a concrete way to determine when two homeomorphisms
f,g € Homeo™ (S) represent the same element of Mod(.S).

Before we give the precise statement, we point out that the situation is
more subtle than one might think at first. It is simply not true in general
that if a homeomorphism of a surface S fixes a collection of curves and
arcs that cut S into disks, then it represents the trivial mapping class. For
instance, the hyperelliptic involution of S, fixes the 2¢g + 1 simple closed
curves shown in Figure 2.7; on the other hand, we know that the hyperellip-
tic involution represents a nontrivial mapping class since it acts nontrivially
on H1(Sy;Z). Even worse, the hyperelliptic involutions in Mod(7?) and
Mod(S5) fix every isotopy class of simple closed curves (cf. Section 3.4).
What is happening in the case of the hyperelliptic involution, and what can
happen in general, is that a homeomorphism of a surface can fix a collection
of curves while still permuting or rotating the complementary disks.

Figure 2.7 A collection of simple closed curves that is fixed by the hyperelliptic involution.

In view of the example of the hyperelliptic involution, one is tempted to
simply add the hypothesis that the curves and arcs are fixed with their orien-
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tations. But this is still not right: the hyperelliptic involution in Mod(S2)
fixes the orientation of every isotopy class of separating simple closed
curves in So, and certainly there are enough of these curves to cut S into
disks; see Figure 2.8 for such a configuration.

Q

Figure 2.8 The hyperelliptic involution fixes the isotopy class of every simple closed curve
in S2 and even fixes the orientation of each separating isotopy class. However, it
is a nontrivial mapping class.

We finally arrive at the following statement, which we call the Alexander
method. To simplify the discussion we consider only compact surfaces, pos-
sibly with finitely many marked points in the interior. Again, for all intents
and purposes, marked points play the same role as punctures in the theory
of mapping class groups. For a surface .S with marked points, we say that a
collection {;} of curves and arcs fills S if the surface obtained from .S by
cutting along all ~; is a disjoint union of disks and once-marked disks.

Proposition 2.8 (Alexander method) Let S be a compact surface, possi-
bly with marked points, and let ¢ € Homeo™ (S,0S). Let v1,...,v, be a
collection of essential simple closed curves and simple proper arcs in S with
the following properties.

1. The ~y; are pairwise in minimal position.
2. The vy; are pairwise nonisotopic.

3. Fordistinct i, j, k, at least one of ~y; N 7y;, i OV, or vvj Ny is empty.

(1) If there is a permutation o of {1,...,n} so that ¢(;) is isotopic to
Yo (i) relative to QS for each i, then ¢(Ury;) is isotopic to Ury; relative to 0S.

If we regard Uy; as a (possibly disconnected) graph T in S, with vertices
at the intersection points and at the endpoints of arcs, then the composition
of ¢ with this isotopy gives an automorphism ¢, of I.

(2) Suppose now that {~;} fills S. If ¢, fixes each vertex and each edge
of T with orientations, then ¢ is isotopic to the identity. Otherwise, ¢ has a
nontrivial power that is isotopic to the identity.
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The power of the Alexander method is that it converts the computation
of a mapping class into a finite combinatorial problem. We will use this
frequently, for example:

1. to compute the center of the mapping class group (see Section 3.3)
2. to prove the Dehn—Nielsen—Baer theorem (see Chapter 8)
3. to show that Mod(S) has a solvable word problem (see Chapter 4)

4. to verify that certain relations hold in Mod(S) (see, e.g., Proposi-
tion 5.1).

We leave it as an exercise to check that every compact surface S has a col-
lection {~;} as in the statement of Proposition 2.8.

A priori the Alexander method allows us to determine a mapping class
only up to a finite power. However, on almost every surface, it is possible
to choose the {~;} so that mapping classes are determined uniquely by their
action on the {~;}; that is, on almost every surface one can choose the ; so
that whenever a homeomorphism ¢ fixes each ~y; up to homotopy, then the
induced map ¢, of the graph I is necessarily the identity. One example of
such a collection is used in the proof of Theorem 3.10.

One would like to strengthen statement 2 of the Alexander method to
say that ¢ is isotopic to a nontrivial finite-order homeomorphism. Indeed,
it is a general fact that if a homeomorphism of a surface has a power that
is isotopic to the identity, then the homeomorphism itself is isotopic to a
finite-order homeomorphism. This fact is stated precisely in Chapter 7 and
is proven in Section 13.2.

The condition on triples in the statement of the Alexander method is cru-
cial. This is because there is not, in general, a canonical minimal position
configuration for a triple of curves that intersect pairwise. Therefore, there
is no canonical way to construct the graph I'. Consider, for instance, the
configuration shown in Figure 2.9; the three arcs are individually isotopic,
but there is no isotopy from the first union of arcs to the second.

We point out the following slight (but useful) improvement of the Alexan-
der method. Consider the graph?

I = (Uy;) U S U {marked points}.

Since I is in general larger than T, it gives more information. For instance,
say I is a chain of three simple closed curves 71, 72, and 73 in S 2. By the
Alexander method, if f € Mod(.S) fixes the isotopy classes of each ~;, then

2Technically, if some component of 8.5 does not meet U~;, then we need to add a marked
point on that component in order to obtain a graph.
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one can deduce that f is either the identity or the hyperelliptic involution
(see Figure 3.8 below). If we know that f also fixes the two marked points
of S 2, then it is immediate from the action of f on I that f = 1.

Figure 2.9 There is no canonical way to arrange these three arcs without creating a triple
point.

Statement 1 of the Alexander method is an immediate consequence of the
following lemma which, in addition to being slightly more general, is also
notationally simpler.

Lemma 2.9 Let S be a compact surface, possibly with marked points, and

let y1,...,7vn be a collection of essential simple closed curves and simple
proper arcs in S that satisfy the three properties from Proposition 2.8. If
Y-+, is another such collection so that =y, is isotopic to ; relative to

08 for each i, then there is an isotopy of S relative to S that takes , to ~y;
for all i simultaneously and hence takes U~y; to U~,.

Our proof of this lemma was greatly simplified by Allen Hatcher.

Proof. We will work by induction on n; that is, we assume that we can
construct an isotopy of S that takes 7/ to y; fori = 1,...,k—1, and we will
construct a relative homotopy of .S that fixes the set Ap_1 =~y U---Uyp_1
throughout the isotopy and takes 7}, to y,. We can take the base case to be
k = 0, which is vacuous.

First we perform a relative isotopy of S that fixes A;_; and perturbs ;.
to have general position intersections with v as follows. By the hypothesis
on triples {7;,7;,7;,} and the fact that Aj_; is equal to 7| U -+~ Uy,
we have that 7, is disjoint from the vertices of the graph Aj_;. Thus there
is a relative isotopy of S that fixes A,_; and makes -, disjoint from -
along the edges of Aj_1. Finally, we perform a relative isotopy of .S that
is the identity in a neighborhood of A;_; and perturbs v, to intersect
transversely in the complement of Ay_ 1.

Next we perform a relative isotopy of S that fixes Aj_; and takes 7}, to
be disjoint from 7. If y;, and ~;, are not already disjoint, then by the bigon
criterion they form a bigon (since -y, and ;. are isotopic relative to 0.5, they
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Figure 2.10 The intersection of Aj_; with a bigon formed by ~x and ;..

have the same endpoints and hence cannot form any half-bigons). By the hy-
pothesis on triples, the intersection of Aj_; with this bigon is a collection
of disjoint arcs. By the assumption on minimal position, each such arc con-
nects one boundary arc of the bigon to the other; see Figure 2.10. It follows
that there is an isotopy of .S that fixes A;_; as a set and pushes 7}, across
this bigon, thus reducing its intersection with ;. Repeating this process a
finite number of times, we obtain the desired isotopy.

Finally, we are in the situation that -y, is disjoint from 7. As in the proof
of Proposition 1.10, the region between 7, and ;. is either an annulus or a
disk, depending on whether 7, and ~y, are simple closed curves or simple
proper arcs. The intersection of Aj_; with this region, if nonempty, is again
a collection of disjoint arcs, each connecting 7, to ;.. Thus, as above, there
is a relative isotopy of S that fixes A;_; and takes ;. to . O

We can now complete the proof of the Alexander method.

Proof of Proposition 2.8. Let {v1,...,7v,} be as in statement 1, and for
each i let 7; be the simple closed curve ¢(y,-1(;)). Applying Lemma 2.9
to the collections {+;} and {+/}, we can construct an isotopy of S that takes
74 to ~y; for each ¢ and hence takes U, to U~;. This proves statement 1.

It now follows, as in the statement of the proposition, that ¢ induces an au-
tomorphism ¢, of I' = U~;. Since the automorphism group of a finite graph
is necessarily finite, we may choose a power r so that ¢, is the identity auto-
morphism, that is, it fixes each vertex, and fixes each edge with orientation.
Since ¢ is orientation-preserving, it follows that ¢ also preserves the sides
in S of each edge of I'. It follows that ¢", after possibly modifying it by an
isotopy, fixes I' pointwise and sends each complementary region into itself;



MAPPING CLASS GROUP BASICS 63

indeed, a complementary region is completely determined by the oriented
edges of I' that make up its boundary.

Now assume that the ~; fill S, as in statement 2. In other words, the sur-
face obtained by cutting .S along I' is a collection of closed disks, each possi-
bly with one marked point. By applying the Alexander lemma (Lemma 2.1)
to each of these disks, we see that ¢" is isotopic to the identity homeomor-
phism of .S. Obviously, in the case » = 1 we have that ¢ is isotopic to the
identity. In the case » > 1, we have only obtained that ¢" is isotopic to the
identity. This proves statement 2. g



Chapter Three

Dehn Twists

In this chapter we study a particular type of mapping class called a Dehn
twist. Dehn twists are the simplest infinite-order mapping classes in the
sense that they have representatives with the smallest possible supports.
Dehn twists play the role for mapping class groups that elementary matrices
play for linear groups. We begin by defining Dehn twists in .S and proving
that they have infinite order in Mod(.S). We determine many of the basic
properties of Dehn twists by studying their action on simple closed curves.
As one consequence, we compute the center of Mod(S). At the end of the
chapter, we determine all relations that can occur between two Dehn twists.

3.1 DEFINITION AND NONTRIVIALITY

In this section we define Dehn twists and prove they are nontrivial elements
of the mapping class group.

3.1.1 DEHN TWISTS AND THEIR ACTION ON CURVES

Consider the annulus A = S* x [0, 1]. To orient A we embed it in the (6, 7)-
plane via the map (6,t) — (0,¢+ 1) and take the orientation induced by the
standard orientation of the plane.

Figure 3.1 Two views of a Dehn twist.

Let T : A — A be the twist map of A given by the formula
T(0,t) = (0 + 2mt,t).
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The map T is an orientation-preserving homeomorphism that fixes A
pointwise. Note that instead of using 6 + 27t we could have used 6 — 27t.
Our choice is a left twist, while the other is a right twist.

Figure 3.1 gives two descriptions of the twist map 7". We have seen the
picture on the left-hand side before in our proof of Proposition 2.4. Indeed,
the twist map T here is the same as the map used to show that Mod(A)
surjects onto Z.

Now let S be an arbitrary (oriented) surface and let a be a simple closed
curve in S. Let NV be a regular neighborhood of « and choose an orientation-
preserving homeomorphism ¢ : A — N. We obtain a homeomorphism
T, : S — S, called a Dehn twist about «, as follows:

[ ¢oTo¢ l(z) ifzeN
Ta(m)_{ @ ifx €S\ N.

In other words, the instructions for 7Ty, are “perform the twist map 7" on the
annulus N and fix every point outside of N.”

The Dehn twist T, depends on the choice of N and the homeomorphism
¢. However, by the uniqueness of regular neighborhoods, the isotopy class
of T,, does not depend on either of these choices. What is more, T, does
not depend on the choice of the simple closed curve o within its isotopy
class. Thus, if a denotes the isotopy class of «, then 7}, is well defined as
an element of Mod(S), called the Dehn twist about a. We will sometimes
abuse notation slightly and write 7}, for the mapping class 7.

The Dehn twist was introduced by Max Dehn. He originally used the term
Schraubungen, which can be translated as “screw map” [50, Section 2b].

Dehn twists on the torus. Via the isomorphism of Theorem 2.5, the Dehn
twists about the (1,0)-curve and the (0, 1)-curve in 72 map to the matrices

(171) wm (1)

Thus these two Dehn twists generate Mod(7T?) ~ SL(2,Z). We will see in
Chapter 4 that in fact for every g > 0 the group Mod(.S,) is generated by a
finite number of Dehn twists.

Dehn twists via cutting and gluing. Here is another way to think about the
Dehn twist T;,. We can cut S along «, twist a neighborhood of one boundary
component through an angle of 27, and then reglue; see Figure 3.2. This
procedure gives a well-defined homeomorphism of S which is equivalent to
T,. If o is a separating simple closed curve, these instructions do not say
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Figure 3.2 A Dehn twist via cutting and gluing.

to cut along «, twist one of the two pieces of the cut surface by 2w, and
then reglue; this would give the identity homeomorphism of S. The key is
to twist just the neighborhood of one boundary component.

Dehn twists via the inclusion homomorphism. In general, if S is a closed
subsurface of a surface S’, there is an induced homomorphism Mod(S) —
Mod(S"); see Theorem 3.18 below. Given any inclusion of the annulus A
into a surface S, we obtain a homomorphism Mod(A) — Mod(S). The
image of a generator of Mod(A) is a Dehn twist in Mod(S).

Action on simple closed curves. We can understand 7, by examining its
action on the isotopy classes of simple closed curves on S. If b is an isotopy
class with i(a,b) = 0, then T,(b) = b. In the case that i(a,b) # O the
isotopy class T, (b) is determined by the following rule: given particular
representatives 3 and « of b and a, respectively, each segment of 3 crossing
« is replaced with a segment that turns left, follows « all the way around,
and then turns right. This is true no matter which way we orient J3; the reason
that we can distinguish left from right is that the map ¢ used in the definition
of Ty is taken to be orientation-preserving.

Left versus right. We emphasize that, once an orientation of S is fixed, the
direction of a twist 7, does not depend on any sort of orientation on a. This
is because turning left is well defined on an oriented surface. (Similarly, a
left-handed screw is still a left-handed screw when it is turned upside-down.)
The inverse map 7}, ! is simply the twist about a in the other direction; it is
defined similarly to 7},, with the twist map 7T replaced by its inverse 7°~!.
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The action on curves via surgery. If i(a,b) is large (say, more than 2),
it can be difficult to draw a picture of T} (b) using the turn left—turn right
procedure given above. It is hard to plan ahead and leave enough room for
all of the strands of T}, (b) that run around a. A convenient way to draw T (b)
in practice is as follows. Start with one curve 3 in the class b and i(a,b)
parallel curves «, each in the class a, each in minimal position with 3 (one
can also take the ¢; to not have minimal position with 3, but then one must
take |a; N 3] parallel curves «;). Of course, the result is not a simple closed
curve. At each intersection point between 3 and some «;, we do surgery
as in Figure 3.3. The rule for the surgery is to resolve the intersection in
the unique way so that if we follow an arc of (3 toward the intersection, the
surgered arc turns left at the intersection. Again, this does not rely on any
orientation of «; or of 3 but rather on the orientation of the surface. After
performing this surgery at each intersection, the result is a simple closed
curve in the class T, (b).

(7}

Figure 3.3 Dehn twists via surgery.

3.1.2 NONTRIVIALITY OF DEHN TWISTS

If a is the isotopy class of a simple closed curve that is homotopic to a point
or a puncture, then 7, is trivial in Mod(S)—whatever twisting is done on
the annulus can be undone by untwisting the disk or once-punctured disk
inside. We can use the action of a Dehn twist on simple closed curves to
prove that all other Dehn twists are nontrivial.

Proposition 3.1 Let a be the isotopy class of a simple closed curve o in a
surface S. If a is not homotopic to a point or a puncture of S, then the Dehn
twist T, is a nontrivial element of Mod(5).

Proof. If a is a nonseparating simple closed curve, then by change of coor-
dinates we can find a simple closed curve 3 with i(«, 3) = 1. Denote the
isotopy class of 3 by b. As in Figure 3.2, one can draw a representative of
T, (D) that intersects 3 once transversely. By the bigon criterion, i(7,(b), b)
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is actually equal to 1 (a bigon requires two intersections). Therefore, T, (b)
is not the same as b, and so T}, is nontrivial in Mod(S5).

Perhaps a simpler way to phrase the proof in the case that a is nonsepa-
rating is to check that 7, acts nontrivially on H;(S;Z); see Chapter 6 for
more on this homology action. If « is a separating essential simple closed
curve, then the action of Tj, on H(.S;Z) is trivial, and so we are forced to
use the more subtle machinery of the change of coordinates principle and
the bigon criterion.

By the change of coordinates principle, an essential separating curve «
is as depicted in Figure 3.4 (possibly with different genera and different
numbers of punctures/boundary on the two sides of o). We can thus choose
an isotopy class b with i(a, b) = 2, and we consider the isotopy class T (b).
We claim that T, (b) # b, from which it follows that Ty, is nontrivial.

We now prove the claim. On the right-hand side of Figure 3.4, we show
representatives (3 and 3’ of b and T, (b); the given representatives intersect
four times. We will use the bigon criterion to check that all intersections are
essential and so i(7,(b),b) = 4, from which it follows that T, (b) # b. To
do this, note that 3 cuts 4’ into four arcs, 3], 35, 35, and (3}, and similarly
B cuts 3 into four arcs (31, B2, 83, and (4. For each 3; there is a unique ﬁ}
that has the same pair of endpoints on 3N (3. This gives four candidates for
bigons. But each of these four candidate bigons 3; U ,6’} is a nonseparating
simple closed curve, and so none is an actual bigon. This proves the claim,
and so Ty, is nontrivial.

The remaining case is that « is homotopic to a boundary component of
S and that « is neither homotopic to a point or a puncture. It follows that
S is some surface with boundary other than the disk or the once-punctured
disk. Let S denote the double of S, obtained by taking two copies of S
and identifying corresponding boundary components. In .S, the curve « be-
comes essential. By our definition of the mapping class group for a surface
with boundary, if T, were trivial in Mod(.S), it would be trivial in Mod(S),
contradicting the previous cases. O

(0%

Figure 3.4 Checking that a Dehn twist about a separating simple closed curve is nontrivial.
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3.2 DEHN TWISTS AND INTERSECTION NUMBERS

We have already seen the effectiveness of analyzing Dehn twists (and other
mapping classes) via their actions on simple closed curves. We now give
two explicit formulas for this action.

Proposition 3.2 Let a and b be arbitrary isotopy classes of essential simple
closed curves in a surface and let k be an arbitrary integer. We have

i(T;(b),b) = |kli(a, b)*.

We remark that, as an important consequence of Proposition 3.2, we have
the following:

Dehn twists have infinite order.

The only observation needed to prove this fact is that given an isotopy class
a of essential simple closed curves, one can find an isotopy class b with
i(a,b) > 0. As in the proof of Proposition 3.1, this is accomplished with the
change of coordinates principle. Thus Proposition 3.2 is a generalization of
Proposition 3.1. What is more, the proof of Proposition 3.2 is a generaliza-
tion of the proof of Proposition 3.1.

Proof. We choose representative simple closed curves « and 3 in minimal
position and form a simple closed curve 3’ in the class of T, (b) using the
surgical recipe given above. More specifically, we take ki(a,b) parallel
copies of « lying to one side of « and one copy of 3 lying parallel to 3,
and then we surger as in Figure 3.3; see the left-hand side of Figure 3.5 for
the case of i(a,b) = 3 and k = 1.

/6/
4! V2

5 Hi—]

« « «

Figure 3.5 The simple closed curves in the proof of Proposition 3.2.

Simply by counting, we see that

180 8| = |kli(a,b)”.



70 CHAPTER 3

Thus it suffices to show that 3 and /3’ are in minimal position. By the bigon
criterion, we only need to check that they do not form any bigons.

We cut 3 and (3’ at the points of 3 N 3’ and call the resulting closed arcs
{B;} and {B]}. We see that there are two types of candidate bigons, that
is, simple closed curves that can be formed from one arc 3; and one arc
ﬁ}: either the orientations of the two intersection points are the same, as for
the curve ~; on the right-hand side of Figure 3.5, or the orientations of the
intersection points are different, as for 5 in the same figure. In a true bigon,
the orientations at the two intersection points are different, and so the simple
closed curve ~; in the first case cannot be a bigon. In the second case, if o
were a bigon, then since the vertical arcs of 3’ are parallel to arcs of «, we
see that v and /3 form a bigon, contrary to assumption. O

Proposition 3.4 below is a useful generalization of Proposition 3.2. In
order to prove it, we require the following lemma.

Lemma 3.3 Let « and 3 be simple closed curves in a surface. Suppose that
« and (3 are in minimal position. Given a third simple closed curve -, there
exists a simple closed curve ~' that is homotopic to ~ and that is in minimal
position with respect to both o and (3.

Proof. By perturbing v by isotopy if necessary, we may assume that + is
transverse to both « and 3. If «y is not in minimal position with «, say, then
by the bigon criterion « and v form a bigon. We can take this bigon to be
innermost with respect to « and ~. By the assumption that « and [ are in
minimal position, any arc of intersection of 5 with this bigon either connects
the a-side of the bigon to the y-side, or the y-side to itself. In the latter case,
we have a bigon formed by § and + that is contained inside the original
bigon.

Continuing in this way, we can find either a bigon formed by « and y or
a bigon formed by [ and ~ that is innermost among all such bigons. Say the
innermost bigon is formed by « and . As above, any intersection of 3 with
this bigon is an arc connecting one side to the other. Thus we can push y
by homotopy across the bigon, reducing the number of intersection points
with a by 2 and preserving the number of intersection points with 3. We can
repeat this process until all bigons are eliminated, and the lemma is proved.
O

Another approach to Lemma 3.3 is the following: one can show that there
exists a hyperbolic metric on the surface so that the curves o and 3 are
geodesics [61, Exposé 3, Proposition 10]. Then the curve 4’ can be taken to
be the geodesic in the free homotopy class of ~.



DEHN TWISTS 71

Proposition 3.4 Let ay,...,a, be a collection of pairwise disjoint isotopy
classes of simple closed curves in a surface S and let M = [[ g
Suppose that e; > 0 for all i or e; < 0 for all i. If b and c are arbitrary
isotopy classes of simple closed curves in S, then

n

i(M(b),¢) = lesli(as, b)i(ai, ¢)| < i(b, ).

=1

Setting n = 1, e; = k, and ¢ = b gives Proposition 3.2 as a special
case. There is a version of Proposition 3.4 where the e; are allowed to have
arbitrary signs, but the proof is not as straightforward; we refer the reader to
[106, Lemma 4.2].

Proof. We start by forming a representative 3’ of M (b) as in the proof of
Proposition 3.2. As in that proof, it follows from the bigon criterion that 3
and (' are in minimal position. This uses the fact that all of the twists are
in the same direction, that is, the e; all have the same sign. By Lemma 3.3,
there is a representative +y of ¢ that is in minimal position with both 3 and 3'.
By perturbing ~ if necessary, we can assume that it does not pass through
BNg.

There is a continuous map of the disjoint union of >_ |e;|i(a;, b) copies
of St into S with image 3U 3’ and where the images of |e;| copies of S lie
in the class a;. Each copy of a; intersects +y in at least i(a;, ¢) points, by the
definition of geometric intersection number. Since + is in minimal position
with 3 and (3’, we obtain

> lesli(ai,b)i(as, ) < [(BUB) NAy| = i(M(b), ) +i(b,c).

It remains to prove that

) < Z leili(ai, b)i(a;, c) + (b, c).

For this it suffices to find representatives of M (b) and ¢ whose intersection
consists of Y |e;|i(ai, b)i(a;, ¢) + (b, ¢) points. The most natural represen-
tatives satisfy this property. Precisely, for M (b) we can choose a curve that
lies in the union of the curve 3 and small regular neighborhoods of disjoint
representatives «; of the a;. Then, for ¢, we take a curve that cuts across each
a;-annulus in i(a;, ¢) arcs and intersects 3 in i(b, ¢) points not contained in
the a;-annuli. O

Pairs of filling curves. We now give one useful consequence of Proposi-
tion 3.4. Say that a pair of isotopy classes {a,b} of simple closed curves
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in a surface S fill if any pair of minimal position representatives fill (i.e.,
the complement of the representatives in the surface is a collection of disks
and once-punctured disks). This is the same as saying that for every isotopy
class c of essential simple closed curves in the surface, either i(a, c¢) > 0 or
i(b,c) > 0.

Proposition 3.5 Let g,n > 0 and assume that x (S, ) < 0. There exists a
pair of simple closed curves in Sy, that fill Sy .

Proof. Choose a maximal collection {ay, ..., oy } of pairwise disjoint, non-
homotopic, essential simple closed curves in S, ,,. When we cut S, ,, along
the «;, we obtain a collection of surfaces. Each of these surfaces is a sphere
with b boundary components and p punctures with b + p = 3 (cf. Sec-
tion 8.3).

We claim that there is a simple closed curve 3 in Sy ,, so that i(3, a;) > 0
for each 7. We can construct (3 as follows. First, we cut Sy ,, along the ;.
On each component of the cut surface, we then connect by an arc each pair
of distinct boundary components coming from the a;. We can take these
arcs to be disjoint. In S, ,,, these arcs can be pasted together in an arbitrary
fashion in order to obtain a collection 1, . .., §; of pairwise disjoint simple
closed curves in Sy .

By the bigon criterion, each 3; is in minimal position with respect to
each o; and each ; intersects either one or two of the 3;. Suppose that (3;
and (3 intersect «; and that 3; and (3, are distinct. Then we can perform
a half-twist about «; so that 3; and (3;; become a single curve. Since this
process does not create any bigons, the resulting collection {3} is still in
minimal position with each «a;. Continuing in this way, we obtain a single
simple closed curve J that intersects each a; and is in minimal position with
respect to each «;, as desired.

Let M = T,, ---Ty,. We claim that 5 and M (3) fill S, .. Indeed, let
~y be an arbitrary isotopy class of simple closed curves in S, ,,. We wish to
show that either i(3,v) > 0 or (M (5),7) > 0. By Proposition 3.4, we
have

i(M(B),7) =Y ila, BYilou, )| <i(B,7).

=1

If i(3,~y) and i(M(3), ) are both equal to zero, then this immediately im-
plies that i(cv;,y) = O for each ¢. This means that - is isotopic to some ;.
But then i(+, 3) > 0 by the construction of 3, and so we have a contradic-
tion. a
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3.3 BASIC FACTS ABOUT DEHN TWISTS

In this section we prove some fundamental facts about Dehn twists that will
be used repeatedly throughout this book. Throughout this section a and b
denote arbitrary (unoriented) isotopy classes of simple closed curves.

Fact3.6 1T, =T, <= a =0

We have already addressed the reverse implication of Fact 3.6, which says
that Dehn twists are well-defined mapping classes. For the forward impli-
cation, we start by noting that the statement is not as obvious as it seems.
Indeed, suppose we know that T, = T3. Then we know that, given any two
representatives of T, and 7} with annular supports (neighborhoods of sim-
ple closed curves in the classes a and b), there is an isotopy between the
representative homeomorphisms. One would then like to say that there is
an induced isotopy from one annular support to the other and hence an iso-
topy between curves. But partway through the isotopy of homeomorphisms,
the support might become something other than an annulus—perhaps the
whole surface, even—and we have lost any information we had about sim-
ple closed curves.

So assume now that a # b. We will show that T,, # T;. We start by
finding an isotopy class ¢ of simple closed curves so that i(a,c) = 0 and
i(b,c) # 0. There are two cases. First, if i(a,b) # 0, then we can take
¢ = a.If i(a,b) = 0, then one can use change of coordinates to easily
find c (there are several cases, depending on the separation properties of the
curves). Given any such choice of ¢, we apply Proposition 3.2 and find

i(Ta(c),0) = i(a,¢)® = 0 #i(b,¢)* = i(Ty(c), c).
It follows that T}, (c) # Tj(c), and so Ty, # Tp.
We have the following formula for the conjugate of a Dehn twist.

Fact 3.7 For any f € Mod(S) and any isotopy class a of simple closed
curves in S we have

Tya) = fTuf "

Fact 3.7 can be checked directly as follows. First, recall that we apply
elements of the mapping class group from right to left. Let ¢ denote a rep-
resentative of f, let « denote a representative of a, and let v, denote a
representative of 7, whose support is an annulus. Note that ¢! takes a reg-
ular neighborhood of ¢(«) to a regular neighborhood of « (preserving the
orientation), then v, twists the neighborhood of «, and ¢ takes this twisted
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neighborhood of « back to a neighborhood of ¢(«) (again preserving the
orientation). So the net result is a Dehn twist about ¢(«).
From the previous facts we obtain the following.

Fact 3.8 For any f € Mod(S) and any isotopy class a of simple closed
curves in S, we have

f commutes with T,, <= f(a) = a.
Indeed, by Facts 3.7 and 3.6, we have
JT :Taf<:>fTaf71 =T,
<~ Tf(a) =T,
< f(a) = a.
By the classification of simple closed curves in S (see Section 1.3), given

any two nonseparating simple closed curves @ and b in S, there exists i €
Mod(S) with h(a) = b. Hence Fact 3.7 also gives the following.

If a and b are nonseparating simple closed curves in S, then T,
and Ty, are conjugate in Mod(S).

The last statement can be generalized, using change of coordinates, to twists
about any two simple closed curves of the same topological type.
The next fact follows from Proposition 3.2 and Fact 3.8.

Fact 3.9 For any two isotopy classes a and b of simple closed curves in a
surface S, we have

i(a,b) =0 <= T,(b) =b = T,T, = T,1,.

The only nontrivial part of the proof of Fact 3.9 is that the second state-
ment implies the first. But if 7},(b) = b, then i(7;,(b),b) = i(b,b) = 0. By
Proposition 3.2, i(T,(b),b) = i(a,b)?, and it follows that i(a, b) = 0.

Powers of Dehn twists. There are analogues of each of the above facts for
powers of Dehn twists. For f € Mod(S), we have

Je=1 _ i
T2l =Ty
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and so f commutes with T? if and only if f(a) = a. Also, for nontrivial
Dehn twists T, T and nonzero integers j, k, we have

Ti=Tf<=a=bandj=k
TITF = TFT) <= i(a,b) = 0.

In each case the proof is essentially the same as the cases when j = k = 1.

In the remainder of this section, we give three applications of the Alexan-
der method and our basic facts about Dehn twists: we compute the center
of the mapping class group, we derive some geometrically induced homo-
morphisms between mapping class groups, and we give computations of
mapping class groups of certain surfaces with boundary.

3.4 THE CENTER OF THE MAPPING CLASS GROUP
Recall that the center Z(G) of a group G is the subgroup of G consisting
of those elements that commute with every element of G. We will apply

Fact 3.8 and the Alexander method to compute the center of Mod(5).

THEOREM 3.10 For g > 3, the group Z(Mod(Sy)) is trivial.

Figure 3.6 The simple closed curves used to determine the center of Mod(S).

Proof. By Fact 3.8, any central element f of Mod(S,) must fix every iso-
topy class of simple closed curves in S,. Consider the simple closed curves
ag, . . . , aiag shown in Figure 3.6. By statement 1 of the Alexander method,
f has a representative ¢ that fixes the graph Uc;, and thus ¢ induces a map
¢ of this graph.

The graph Ucy; is isomorphic to the abstract graph I' shown in Figure 3.7
for the case ¢ = 4. For g > 3, the only automorphisms of I' come from
flipping the three edges that form loops and swapping pairs of edges that
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Figure 3.7 The collection of simple closed curves in Figure 3.6 form a graph in Sy that is
abstractly isomorphic to the graph I' shown here for the case g = 4.

form a loop. In particular, any automorphism of I" must fix the three edges
coming from ay. Thus we see that ¢ preserves the orientation of «, and
S0 since ¢ is orientation-preserving, it must also preserve the two sides of
ay. It follows that ¢, does not flip the edge of I' coming from «, and it
does not interchange the two edges coming from a3 or the two coming from
as. Inductively, we see that ¢, fixes each edge of I with orientation. By
statement 2 of the Alexander method, plus the fact that the {c;} fill S,, we
have that ¢ is isotopic to the identity; that is, f is the identity. O

The proof of Theorem 3.10 actually shows that the center of any finite
index subgroup of Mod(Sy) is trivial when g > 3 since a finite-index sub-
group contains some power of each Dehn twist and since Fact 3.8 applies to
powers of Dehn twists.

Eilcje

Figure 3.8 Rotations by 7 about the indicated axes give hyperelliptic involutions of the
punctured surfaces So,2, So,4, S1,1, and S1,2.

By choosing appropriate configurations of simple closed curves on
other surfaces, the method of proof of Theorem 3.10 shows that the only
candidates for nontrivial central elements of (finite-index subgroups of)
Mod(S,,,,) are the hyperelliptic involutions of 72 and S», as well as the hy-
perelliptic involutions shown in Figure 3.8. So the order of Z(Mod(Sy ,))
is at most 2 when S , is one of the punctured surfaces Sp 2, 51,0, S1,1, 51,2,
or Sy o, the order of Z(Mod(Sp.4)) is at most 4, and Z(Mod(Sy.,,)) is triv-
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ial in all other cases. In the case of Mod(.Sy 4), the center is trivial since the
the subgroup generated by the hyperelliptic involutions acts faithfully on the
four punctures, and the symmetric group on the four punctures is centerless.

On the other hand, to show that a mapping class z really is an element of
Z(Mod(S)), it suffices to choose a generating set of Dehn twists and half-
twists for Mod(.S) and show that z fixes each of the corresponding isotopy
classes of simple closed curves and simple arcs (see Corollary 4.15). In this
way, we find that Z(Mod(S,,,)) ~ Z/2Z when Sy, is So2, S1,0. S1.1,
S1,2, or Sp 0. By the same argument, for a surface with boundary, the Dehn
twist about any boundary component is central.

We summarize the results for punctured surfaces in the following table.

| Surface (with punctures) | Z(Mod(95)) |

So0,2, 51,0, 51,1, 51,2, 52,0 Ly
All other S ,, 1

As stated in the proof of Theorem 3.10, these nontrivial central elements
have the property that they fix the isotopy class of every simple closed curve.

3.5 RELATIONS BETWEEN TWO DEHN TWISTS

The goal of this section is to answer the question: what algebraic relations
can occur between two Dehn twists? In fact, we answer the more general
question where powers of Dehn twists are allowed. We have already seen
that Dehn twists about disjoint curves commute in the mapping class group.
The next most basic relation between twists is the braid relation. Except in a
few cases, we will see that there are no other relations between Dehn twists.

3.5.1 THE BRAID RELATION

The following proposition gives a basic relation between Dehn twists in
Mod(S) called the braid relation.

Proposition 3.11 (Braid relation) If a and b are isotopy classes of simple
closed curves with i(a,b) = 1, then

T, T, T, = TyT, T

Proof. The relation

T, T, T, = TyT. T}
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Figure 3.9 The proof of Proposition 3.12.

is equivalent to the relation
(L) To(TuTh) ™" = T
By Fact 3.7, this is equivalent to the relation
T, 1,(a) = Tb-
Applying Fact 3.6, this is equivalent to the equality
ToTy(a) = b.

By the change of coordinates principle, it suffices to check the last statement
for any two isotopy classes a and b with i(a,b) = 1. The computation is
shown in Figure 3.9, where « is some representative of a and (3 is some
representative of b. a

If a is the (1,0)-curve and b is the (0,1)-curve on the torus 72, then
via the isomorphism of Theorem 2.5 the braid relation corresponds to the
familiar relation in SL(2, Z):

GHEDGD-GHG D6

The next proposition records our rephrasing of the braid relation for use
in the proof of Theorem 4.1 below.
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Proposition 3.12 If a and b are isotopy classes of simple closed curves that
satisfy i(a,b) = 1, then T, Ty(a) = 0.

The braid relation gets its name from the analogous relation in the braid
group (see Section 9.4).

One can ask for a converse to the braid relation: if two Dehn twists satisfy
the braid relation algebraically, then do the corresponding curves necessarily
have intersection number one? McCarthy gave the following proof that the
answer is yes [144]. Theorem 3.14 below is a much more general fact; we
consider Proposition 3.13 as a warmup.

Proposition 3.13 If a and b are distinct isotopy classes of simple closed
curves and the Dehn twists T, and Ty, satisfy T, TyT, = TyT,T), then
i(a,b) = 1.

Proof. As in the proof of Proposition 3.11, the relation 7,1, T, = T, 1,7,
is equivalent to the statement that 7, 7,(a) = b, which implies

i(a, T,Tp(a)) = i(a,b).

Applying T, ! to both curves on the left-hand side of the equation, we see
that

i(aa Tb(a)) = i(aa b)
Now, by Proposition 3.2, we have that
i(a,b)? = i(a,b).

And so i(a, b) is either equal to O or 1. If i(a, b) were 0, an application of
Fact 3.9 reduces the relation to T, = T, which, by Fact 3.6, contradicts the
assumption a # b. Thus i(a,b) = 1. O

We note that the same proof really shows the stronger result that if a # b
and TY TS = TFTITY, theni(a,b) = 1and j = k = £1.

3.5.2 GROUPS GENERATED BY TWO DEHN TWISTS

Now that we know the braid relation it is natural to try to find other rela-
tions between two Dehn twists. In this subsection we will give a complete
classification of such relations. We begin with the following.

THEOREM 3.14 Let a and b be two isotopy classes of simple closed curves
in a surface S. If i(a,b) > 2, then the group generated by T, and Ty, is
isomorphic to the free group F5 of rank 2.
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We can also say what happens in the other cases. If a = b, then (T}, T},) ~
Z since TY = Tlf ifand only ifa = band j = k. If a # b and i(a,b) = 0,
then (T}, T}) is isomorphic to Z2 by Fact 3.9 plus the fact that T = Tlf“ if
and only if « = b and j = k. When i(a,b) = 1, we have that

(T, Ty) =~ Mod(S}) = (z,y | zyz = yay),

where 511 is a torus with an open disk removed (see above).

We remark that the question of which groups can be generated by three
Dehn twists is completely open. See Section 5.1 for one relation between
three Dehn twists.

Below we give the proof of Theorem 3.14 published by Ishida and
Hamidi-Tehrani [76, 103]. The theorem, though, was apparently known to
Ivanov (and perhaps others) in the early 1980s. We first introduce the ping
pong lemma, which is a basic and fundamental tool from geometric group
theory. It is a method to prove that a group is free by understanding how it
acts on a set. Poincaré used this method to prove that if two hyperbolic trans-
lations have different axes, then sufficiently high powers of these elements
generate a free group of rank 2.

Lemma 3.15 (Ping pong lemma) Let G be a group acting on a set X. Let
91, - - -, gn be elements of G. Suppose that there are nonempty, disjoint sub-
sets X1, ..., Xy of X with the property that, for each i and each j # i, we
have gf(X j) C X; for every nonzero integer k. Then the group generated
by the g; is a free group of rank n.

Proof. We need to show that any nontrivial freely reduced word in the g;
represents a nontrivial element of G. First suppose that w is a freely reduced
word that starts and ends with a nontrivial power of g;. Then for any x € X5,
we have w(z) € Xi, and so w(x) # z since X1 N Xy = (. Thus w
represents a nontrivial element of g. Since any other freely reduced word
in the g; is conjugate to a word that starts and ends with g1, every freely
reduced word in the g; represents an element of G that is conjugate to a
nontrivial element and hence is itself nontrivial. a

Proof of Theorem 3.14. Suppose that i(a,b) > 2. Let G be the group gen-
erated by g1 = T, and go = T} and let X be the set of isotopy classes
of simple closed curves in S. The group G acts on X. With the ping pong
lemma in mind, we define sets X, and X as follows:

Xo={ce X :i(e,b) >i(c,a)},
Xp={ce X :i(c,a) >i(c,b)}.
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These sets are obviously disjoint, and they are nonempty since a € X, and
be Xy

By the ping pong lemma, the proof is reduced to checking that 7¥(X,) C
X, and TF(X,) C X, for k # 0. By symmetry, we need to check only the
former inclusion.

Setting M = T* in Proposition 3.4 yields

i(T*(c),b) — |kli(a, b)i(a,c)| < i(b,c),
and so
—i(b,¢) <i(T¥(c),b) — |kli(a, b)i(a,c) < i(b,c).

If ¢ € X, then i(a,c) > i(b,c). Since k # 0, the left-hand inequality
implies

i(TF(c),b) > |kli(a, b)i(a, ¢

a

) —i(b,c)
> 2|kli(a, c) — i(b,c)
> 2|kl|i(a,c) —i(a,c)
= (2|k| = 1)i(a, c)
>i(a,c)
=i(Ty (), Ty (c))
=i(a, Ty (c)).

Thus (T (c),b) > i(T¥(c),a), and so T (c) € X,, as desired. O

A free group in SL(2,Z). The proof of Theorem 3.14 given above is
inspired by a proof that the matrices

(01) = (u7)

generate a free subgroup of SL(2,7Z) for n > 2 (this fact is originally due
to Magnus [136]). In this case, the sets used for the ping pong lemma are
{(z,y) € 2% : |z| > |yl} and {(z,y) € Z° : |y| > |=[}.

The classification of groups generated by two Dehn twists. With a little
more care, the method of proof of Theorem 3.14 can be applied to give the
stronger statement that (T3, 7)) ~ F except if i(a,b) = 0 orif i(a,b) = 1
and the set {j, k} is equal to {1}, {1,2}, or {1,3}. When j = k = 1, we
already know that we have the braid relation. And in the other exceptional
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cases, there exist nontrivial relations as well. For instance, if i(a,b) = 1,
then 7.2 and T}, satisfy the relation

T2T,T2T, = Ty T>T, T?
and T2 and T, satisfy
T3TT3T,T3T, = T, TS T, T2T, T3

What is more, it turns out that these are the defining relations for the groups
(T2, T;) and (T2, T}). The group (T2, T}) corresponds to a well-known
index 3 subgroup of Bs (the subgroup fixing the first strand). The group
(T3, T,) does not seem to be a well-known subgroup of Bs. Luis Paris has
explained to us that this is an index 8 subgroup of B3, and he has used the
Reidemeister—Schreier algorithm to give an elementary proof that the stated
relation is the unique defining relation; see [174].

Combining the results from this section, we can completely list all possi-
bilities for groups generated by powers of two Dehn twists. In the table we
assume that ¢ and b are essential, that j > k£ > 0, and that the underlying
surface is not 7% or S ;.

‘ ‘ Group generated by TC{, Tf ‘

i(a,b) =0,a="0 | (T, TF) =~ (z,y |z = y) ~ Z
i(a,b) =0,a #b (Tg,Tf>%<x,y\my:ym>%ZQ
i(a,b) =1 (T, Tp) = (z,y|zyz = yay)
(T7,Th) =~ (z,y|ryzy = yzyz)
(T3, Th) ~ (,y |wyzyzy = yoyzyz)
(T, TF) ~ (z,y|) =~ F otherwise
i(a,b) > 2 (Tg,Tf>z<x,y|>%F2

If the surface is 7% or S1,1 and i(a,b) = 1, we have the added relations
(T.T)6 = 1, (T2Ty)* = 1, and (T3T3)% = 1.

3.6 CUTTING, CAPPING, AND INCLUDING

In this section we apply our knowledge about Dehn twists to address a ba-
sic general question about mapping class groups: when does a geometric
operation on a surface induce an algebraic operation on the corresponding
mapping class group? We investigate three such operations: including a sur-
face into another surface, capping a boundary component of a surface with
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a punctured disk, and deleting a simple closed curve from a surface. We will
see that in each case there is indeed an induced homomorphism on the level
of mapping class groups.

The results in this section are somewhat technical but very useful. The
reader might consider skipping the proofs on a first reading.

3.6.1 THE INCLUSION HOMOMORPHISM

When S is a closed subsurface of a surface S’, there is a natural homomor-
phism 7 : Mod(S) — Mod(S5"). For f € Mod(S), we represent it by some
¢ € Homeo™ (S, d5). Then, if ¢ is the element of Homeo™ (5’,95") that
agrees with ¢ on S and is the identity outside of S, we define n(f) to be
the class of ngb The map 7 is well defined because any homotopy between
two elements of ¢ € Homeo™ (S, 0S) gives a homotopy between the corre-
sponding elements of Homeo™ (5", 95").

Our goal in this subsection is to describe the kernel of 1 (Theorem 3.18
below). We begin with a simple lemma.

Lemma 3.16 Let o, ..., oy be a collection of homotopically distinct sim-
ple closed curves in a surface S, each not homotopic to a point in S. Let 3
and (3’ be simple closed curves in S that are both disjoint from Ucy; and are
homotopically distinct from each ;. If 3 and (3’ are isotopic in S, then they
are isotopic in S — Uaqy.

Proof. 1t suffices to find an isotopy from 3 to 3’ in S that avoids Ucy;. First,
we may modify 3 so that it is transverse to 3" and is still disjoint from Ucy;.
If 3N 3 =0, then 3 and /3’ form the boundary of an annulus A in S. Since
3 (and /3') is not homotopic to any «, it cannot be that any «; are contained
in A. The annulus A gives the desired isotopy from 3 to 3.

If 3N 3" # (), then by the bigon criterion they form a bigon. Since the o
are not homotopic to a point and (Ue;) N (B U B) = 0, the intersection of
Ucy; with the bigon is empty. We can thus push 3 across the bigon, keeping
(3 disjoint from Uc; throughout the isotopy. By induction, we reduce to the
case where 3 and (3’ are disjoint. This completes the proof. O

LEMMA 3.17 Let {ay,...,an} be a collection of distinct nontrivial iso-
topy classes of simple closed curves in a surface S and assume that
i(a;,aj) = 0 for all i,j. Let {b1,...,b,} be another such collection. Let

Pi, ¢ € Z — {0} If

PLP2 .. TPm _ Tdi42 | dn
TPVTP2 - TP =TT T
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in Mod(S), then m = n and the sets {T5; } and {T,"} are equal. In partic-
ular,

(Toy s Tags -y Ta,,) =~ 2.

A mapping class [[7a’ as in Lemma 3.17 is called a multitwist.
Lemma 3.17 is a generalization of Fact 3.6, and in fact the proof is also
a straightforward generalization. Note that in the statement the a; and b; are
allowed to be peripheral.

THEOREM 3.18 (The inclusion homomorphism) Let S be a closed sub-
surface of a surface S’. Assume that S is not homeomorphic to a closed
annulus and that no component of S’ — S is an open disk. Let 7
Mod(S) — Mod(S’) be the induced map. Let o, ..., q,, denote the
boundary components of S that bound once-punctured disks in S’ — S and
let {B1,71},---,{Bn,sn} denote the pairs of boundary components of S
that bound annuli in S" — S. Then the kernel of 1 is the free abelian group

ker(n) = (Toy, ..., am,Tngil,...,TﬁnT,;Ll>.

In particular, if no connected component of S’ — S is an open annulus, an
open disk, or an open once-marked disk, then 7 is injective.

The annulus is a special case for Theorem 3.18 for the simple fact that it
has two boundary components that are isotopic. If .S is an annulus, then 7
is injective unless S’ is obtained from S by capping one or both boundary
components with disks or once-punctured disks.

Proof. Let f € ker(n) and let ¢ € Homeo™(S,05) be a representa-
tive. As above, we may extend ¢ by the identity in order to obtain $ €
Homeo™ (S, 85"). By definition, ¢ represents 7( f ). Therefore, ¢ lies in the
connected component of the identity in Homeo™ (57, 0.5").

Let ¢ be an arbitrary oriented simple closed curve in .S. Since gg is isotopic
to the identity, we have that 5(5) is isotopic to & in S. Since ¢ agrees with
¢ on S, we have that ¢() is isotopic to 4 in S’. By Lemma 3.16 and the
assumption on S’ — S, we have that ¢(9) is isotopic to ¢ in S.

We can choose a collection of simple closed curves 4y, ..., in S that
satisfy the three properties in the statement of the Alexander method (pair-
wise minimal position, pairwise nonisotopic, no triple intersections) and so
that the surface obtained from S by cutting along UJ; is a collection of disks,
once-punctured disks, and closed annular neighborhoods N; of the bound-
ary components. Moreover, we can choose {J; } so that any homeomorphism
that fixes Ud; U 0.5 necessarily preserves the complementary regions.
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By the first statement of the Alexander method, ¢ is isotopic (in 5) to
a homeomorphism of S that fixes U§; U dS. Since Mod(D?) = 1 and
Mod(D? — point) = 1 (Lemma 2.1), it follows that f has a representa-
tive that is supported in the N;. Since Mod(A) ~ Z (Proposition 2.4), it
follows that f is a product of Dehn twists about boundary components. By
Lemma 3.17, f must become the trivial multitwist in S”. The theorem fol-
lows. a

The proof of Theorem 3.18 extends to the case where S is disconnected
and Mod(.S) is taken to be the direct product of the mapping class groups
of its connected components.

3.6.2 THE CAPPING HOMOMORPHISM

One particularly useful special case of Theorem 3.18 is the case where S’—S
is a once-punctured disk. We say that S’ is the surface obtained from S
by capping one boundary component. In this case we have the following
statement.

Proposition 3.19 (The capping homomorphism) Let S’ be the surface
obtained from a surface S by capping the boundary component 3 with
a once-marked disk; call the marked point in this disk pg. Denote by
Mod(S,{p1,...,pr}) the subgroup of Mod(S) consisting of elements that
fix the punctures py,...,px, where k > 0. Let Mod(S’,{po, ... ,pr})
denote the subgroup of Mod(S’) consisting of elements that fix the
marked points po,...,py and then let Cap : Mod(S,{p1,...,pr}) —
Mod(S’,{po, . ., pr}) be the induced homomorphism. Then the following
sequence is exact:

Ca
1 — (T) — Mod(S, {p1,-.-,px}) =% Mod(S", {po, - - -,pr}) — 1.

One might also wonder about the case where a boundary component of
S’ is capped by a (unmarked) disk. The kernel in that case is isomorphic to
the fundamental group of the unit tangent bundle of S’; see Section 4.2.

3.6.3 THE CUTTING HOMOMORPHISM

The next geometric operation we consider is the following. Let o be an
essential simple closed curve in a surface S. We can delete o from S in
order to obtain a surface S — « that has two more punctures than .S does.
For example, if S has no boundary, then S — « can be identified with the
interior of the surface obtained by cutting S along a.
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Let a denote the isotopy class of « and let Mod(S,a) denote the sta-
bilizer in Mod(.S) of a. We would like to show that there is a well-defined
homomorphism Mod (S, a) — Mod(S—«). There is an obvious map: given
f € Mod(S, a), choose a representative ¢ that fixes a. The homeomorphism
¢ restricts to a homeomorphism of S — « and hence gives an element of
Mod(S — «). In order to show that this map ¢ : Mod(S,a) — Mod(S — «)
is well defined, we need to show that if two homeomorphisms of the pair
(S, «v) are homotopic as homeomorphisms of S, then they are homotopic
through homeomorphisms that fix &. We now show that this is indeed the
case.

Proposition 3.20 (The cutting homomorphism) Let S be a closed surface
with finitely many marked points. Let oy, . . . , oy, be a collection of pairwise
disjoint, homotopically distinct essential simple closed curves in S. There is
a well-defined homomorphism

¢ : Mod(S, {[a1],- -, [an]}) — Mod(S — Ua;)

with kernel (T, ..., Ty, ).

Proof. 1t is clear that the map ( defined above is a homomorphism as long
as it is well defined. Thus, we only need to show that ( is well defined.

Let NV be an open regular neighborhood of Uc;. The inclusion S—N — S
induces a homomorphism 7; : Mod(S — N) — Mod(S). The map
surjects onto Mod(S, {[a1], ..., [an]}), and by Theorem 3.18 its kernel K
is generated by elements Ta;r T(;,l where a;r and «; are the two boundary

components of N that are isotopzic to a; in S.

Let S — N denote the surface obtained from S — N by capping each
boundary component with a punctured disk. The surface S — N is naturally
homeomorphic to S — Ucy;, and thus there is a canonical isomorphism 7 :
Mod(S — N) — Mod(S — U;).

By Theorem 3.18, the kernel of the homomorphism 7, : Mod(S — N) —
Mod(S — N) is the group K generated by the T’ + and T -.

We consider the following diagram. Z Z
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K,
1 K> Mod (S — N) ——2 = Mod(§ — N)
m @) ~|T
Mod(S, {[a1], .. , [an]}) —— Mod(S — Ua)
1

Since K7 < Ko, it follows that 7 o 79 0 771_1 is well defined. But this com-
position is nothing other than the map ¢ defined above, and so we are done.
(]

3.6.4 COMPUTATIONS OF MAPPING CLASS GROUPS VIA CAPPING

We can use Proposition 3.19 to determine the mapping class groups of some
surfaces with boundary.

Let P denote a pair of pants, that is, a compact surface of genus 0 with
three boundary components (and no marked points). Recall from Proposi-
tion 2.3 that PMod(Sp 3) = 1. Starting from this fact and applying Propo-
sition 3.19 three times, we obtain the isomorphism

Mod(P) ~ Z3.

Let S denote a torus minus an open disk. We will show that

Mod(S}) ~ SL(2, Z),
where SIW) denotes the universal central extension of SL(2, Z). We will
need the following group presentations (see [195, Section 1.5]):
SL(2,Z) ~ (a,b| aba = bab, (ab)® = 1)

—~—

SL(2,Z) ~ (a,b| aba = bab).

From these presentations one sees that there is a surjective homomorphism

e~

SL(2,7) — SL(2,Z) sending a to a and b to b with kernel ((ab)®) =~ Z.

There are also homomorphisms SL(2,7Z) — Mod(S]) and SL(2,Z) —
Mod(S1,1), where in each case the generators a and b map to the Dehn twists
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about the latitude and longitude curves. These maps fit into the following
diagram of exact sequences, where each square commutes:

14>24>SIT(57/Z)4>SL(2,Z)4>1

.

Ca;
1 ——= 27— Mod(S7}) . Mod(S1,1) ——1

The desired isomorphism follows from the five lemma.

—~——

We mention that the group SL(2, Z) is also isomorphic to the braid group
on three strands (see Chapter 9) and the fundamental group of the comple-
ment of the trefoil knot in 52, as well as the local fundamental group of the
ordinary cusp singularity, that is, the fundamental group of the complement
in C? of the affine curve 22 = 7°.



Chapter Four

Generating the Mapping Class Group

Is there a way to generate all (homotopy classes of) homeomorphisms of
a surface by compositions of simple-to-understand homeomorphisms? We
have already seen that Mod(7?) is generated by the Dehn twists about the
latitude and longitude curves. Our next main goal will be to prove the fol-
lowing result.

THEOREM 4.1 (Dehn-Lickorish theorem) For g > 0, the mapping class
group Mod(Sy) is generated by finitely many Dehn twists about nonsepa-
rating simple closed curves.

Theorem 4.1 can be likened to the theorem that for each n > 2 the
group SL(n,Z) can be generated by finitely many elementary matrices. As
with the linear case, Theorem 4.1 is fundamental to our understanding of
Mod(Sy).

In 1938 Dehn proved that Mod(.S,) is generated by 2¢(g—1) Dehn twists
[51]. Mumford, building on Dehn’s work, showed in 1967 that only Dehn
twists about nonseparating curves were needed [164]. In 1964 Lickorish, ap-
parently unaware of Dehn’s work, gave an independent proof that Mod(.S,)
is generated by the Dehn twists about the 3g— 1 nonseparating curves shown
in Figure 4.5 below [131].

Figure 4.1 Dehn twists about these 2g + 1 simple closed curves generate Mod(Sy).

In 1979 Humphries [101] proved the surprising theorem that the twists
about the 2g + 1 curves in Figure 4.1 suffice to generate Mod(.S,). These
generators are often called the Humphries generators. Humphries further
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showed that any set of Dehn twist generators for Mod(S,) must have at
least 2g + 1 elements; see Section 6.3 for a proof of this fact.

Punctures and pure mapping class groups. Theorem 4.1 is simply not
true for surfaces with multiple punctures since no composition of Dehn
twists can permute the punctures. Let PMod(Sy,,) denote the pure map-
ping class group of Sy ,,, which is defined to be the subgroup of Mod (S, )
consisting of elements that fix each puncture individually. The action of
Mod(Sy,) on the punctures of S, ,, gives us a short exact sequence

1 — PMod(Sy,n) — Mod(Sy,n) — Xn — 1,

where X.,, is the permutation group on the n punctures. We will show for
any surface Sy ,, that PMod(Sy.,,) is finitely generated by Dehn twists (see
Theorems 4.9 and 4.11). We will give a finite generating set for the full
group Mod (S, ) in Section 4.4.4.

In the case n = 1, we have PMod (S, 1) = Mod(Sg,1). If we place a
marked point at the rightmost point of S, in Figure 4.1, we obtain a collec-
tion of curves in Sy 1. A slight modification of our proof of Theorem 4.1
will show that the corresponding Dehn twists form a generating set for
MOd(SgJ).

Outline of the proof of Theorem 4.1. In proving Theorem 4.1, we will ac-
tually need to prove a more general statement. Precisely, we will prove that
PMod(Sy,5,) is generated by finitely many Dehn twists about nonseparating
simple closed curves for any g > 1 and n > 0 (Theorem 4.11 below).

We begin by giving a brief outline of the weaker statement that
PMod(S,5,) is generated by the (infinite) collection of all Dehn twists about
nonseparating simple closed curves. We do this in order to motivate two im-
portant tools: the complex of curves and the Birman exact sequence. Each
of these tools is of independent interest and is introduced before the proof
of Theorem 4.1.

The argument is a double induction on g and n with base case S ;.

Step 1: Induction on genus. Suppose g > 2 and let f € PMod(S,,,). Let a
be an arbitrary isotopy class of nonseparating simple closed curves in S ,,.
We want to show that there is a product i of Dehn twists about nonsepa-
rating curves in .S, ,, that takes f(a) to a. For if this is the case, then we
can regard hf as an element of the mapping class group of S;_1 5,12, the
surface obtained from S, ,, by deleting a representative of a. Then we can
apply induction on genus.

If we are fortunate enough that i(a, f(a)) = 1, then Proposition 3.12
gives that T'y(4) T, takes f(a) to a, and we are done. In the general case, we
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just need to show that there is a sequence of isotopy classes of simple closed
curves a = ¢y, ...,cp = f(a)in Sy, so that i(¢;, ¢;+1) = 1. This is exactly
the content of Lemma 4.5. In the language of Section 4.1, this lemma is
phrased in terms of the connectedness of a particular “modified complex of
nonseparating curves.”

Step 2: Induction on the number of punctures. Suppose g > 1 and n > 1.
The inductive step on n reads as follows. There is a natural map S, —
Sgn—1 where one of the punctures/marked points is “forgotten” and this
induces a surjective homomorphism PMod(S, ) — PMod(Sy n—1). El-
ements of the kernel come from “pushing” the nth puncture around the
surface, and the Birman exact sequence (Theorem 4.6) identifies the ker-
nel with 7(Sg,—1). We also show that generators for 71 (Sg,—1) cor-
respond to products of Dehn twists about nonseparating simple closed
curves; see Fact 4.7. In other words the difference between PMod (S, )
and PMod (S, ,—1) is (finitely) generated by products of Dehn twists about
nonseparating curves, and so this completes the inductive step on the num-
ber of punctures.

We give the details of the proof of Theorem 4.11 in Section 4.3.

The word problem. Aside from his seminal work on the mapping class
group, another of Max Dehn’s highly influential contributions to mathemat-
ics is the idea of the word problem for a finitely generated group I'. The
word problem for I asks for an algorithm that takes as input any finite prod-
uct w of elements from a fixed generating set for I" (and their inverses) and
as output tells whether or not w represents the identity element of I'. It is
a difficult result of Adian from the 1950s that there are finitely presented
groups I' with an unsolvable word problem; that is, no such algorithm for
I" as above exists. It is not difficult to prove that the (un)solvability of the
word problem for a given group does not depend on the generating set.

Now consider Mod(.S) with an explicit finite generating set, say for ex-
ample the Humphries generators (see below). Suppose we are given any
finite product w of these generators. We can choose a collection C of curves
and arcs that fill .S, and we can apply each generator in w to each curve and
arc of C. We can then use the bigon criterion and the Alexander method to
determine whether the element of Mod(SS) is trivial or not. Thus Mod(.S)
has a solvable word problem.

THEOREM 4.2 Let S = S, . The group Mod(S) has a solvable word
problem.
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4.1 THE COMPLEX OF CURVES

The complex of curves C(S), defined by Harvey [88], is an abstract simpli-
cial complex associated to a surface S. Its 1-skeleton is given by the follow-
ing data.

Vertices. There is one vertex of C(S) for each isotopy class of
essential simple closed curves in S.

Edges. There is an edge between any two vertices of C(.S) cor-
responding to isotopy classes a and b with i(a, b) = 0.

More generally, C(S) has a k-simplex for each (k + 1)-tuple of vertices
where each pair of corresponding isotopy classes has geometric intersec-
tion number zero. In other words, C(.S) is a flag complex, which means that
k + 1 vertices span a k-simplex of C(.S) if and only if they are pairwise-
connected by edges.! While we make use only of the 1-skeleton of C(S),
the higher-dimensional simplices are useful in a number of applications (see,
e.g., [107]).

Note that, as far as the complex of curves is concerned, a puncture has
the same effect as a boundary component (simple closed curves that are
homotopic to either a puncture or a boundary component are inessential).
Therefore, we will deal only with punctured surfaces.

4.1.1 CONNECTIVITY OF THE COMPLEX OF CURVES

The following theorem, first stated by Harvey, was essentially proved by
Lickorish (Figure 4.2 is his) [131]. Lickorish used it in the same way we
will: to show that Mod(.S) is finitely generated.

THEOREM 4.3 If3g +n > 5, then C(Sy.5,) is connected.

The hypothesis of Theorem 4.3 is equivalent to the condition that C(S ,,)
has edges. In particular, Theorem 4.3 holds for every surface S, , except
when g =0andn < 4,or g =1 and n < 1. We will discuss these sporadic
cases below.

Theorem 4.3 can be rephrased as stating that for any two isotopy classes a
and b of simple closed curves in Sy ,,, there is a sequence of isotopy classes

a==cl,...,c, =Db

so that ’i(Ci, Ci+1) =0.

'In other words, every nonsimplex contains a nonedge.
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Proof. Suppose we are given two vertices a,b € C(Sy5,); thus a and b are
isotopy classes of simple closed curves in S, ,. We must find a sequence
a=cy,...,c, =bwithi(c,cit1) = 0. We induct on i(a, ).

If i(a,b) = 0, then there is nothing to prove. If i(a,b) = 1, then we can
find representatives « and (3 that intersect in precisely one point. A closed
regular neighborhood of oo U (3 is a torus with one boundary component.
Denote by c the isotopy class of this boundary component. If ¢ were not
essential, that would mean that either S,,, ~ Si1 or Sy, ~ T2, which
violates the condition 3g + n > 5. Therefore, a, c, b gives the desired path
in C(Syn).

For the inductive step we assume that i(a, b) > 2 and that any two simple
closed curves with intersection number strictly less than i(a, b) correspond
to vertices that are connected by a path in C(Sy ,,). We now prove the induc-
tive step by giving a recipe for finding an isotopy class ¢ with both i(c, a)
and i(c, b) less than i(a, b).

Let a and 3 be simple closed curves in minimal position representing
a and b. We consider two points of their intersection that are consecutive
along (3. We orient « and [ so that it makes sense to talk about the index of
an intersection point of o and 3, be it +1 or —1.

g

§a! 72

O —="—+

Figure 4.2 The surgered curves in the proof of Theorem 4.3.

If the two intersection points have the same index, then ¢ can be chosen to
be the class of v shown in bold on the left-hand side of Figure 4.2 (outside
the figure, v follows along «). We see that - is essential since |aNy| = 1. We
emphasize that we construct « so that, outside the local picture indicated in
the figure, v always lies just to the right of «; in particular,  can be chosen
so that it intersects 3 fewer times than « does (it “skips” one of the two
intersections in the figure).

If the two intersection points have opposite indices, consider the (distinct)
simple closed curves 7; and o shown in bold on the right-hand side of
Figure 4.2. Neither v; nor 3 can be null homotopic since that would mean
that « and 3 were not in minimal position. If both +; and ~ are homotopic
to a puncture, it follows that o bounds a twice-punctured disk on one of its
sides (the side containing ; and ~9). In this case there are similarly defined
curves 3 and 4 on the other side of a.. Again, neither 3 nor ~y4 can be null
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homotopic. Also, it cannot be that both ~3 and 4 are peripheral because that
would imply that S, ,, =~ S 4, violating the condition 3g 4 n > 5. Thus we
can choose c to be the class of either 3 or 4.

By construction, it is evident that i(c, b) < i(a,b) andi(c,a) < i(a,b) (in
fact, i(a, c) is either O or 1). By our inductive hypothesis, the vertices a and
c are connected by a path in C(.S, 5,), and the vertices b and c are connected
by a path. The concatenation of these paths is a path between the vertices a
and b. O

We point the reader to Ivanov’s survey [107, Section 3.2], where he gives
a beautiful alternative proof of Theorem 4.3 using Morse—Cerf theory. The
key idea is that two simple closed curves that are level sets of the same
Morse function are necessarily disjoint.

Sporadic cases and the Farey complex. In the cases of S, So,1, So,2, and
So,3, the complex of curves is empty, and in the cases of T2, S1,1, and Sp 4
it a countable disjoint union of points. If we alter the definition of C(S) by
assigning an edge to each pair of distinct vertices that realizes the minimal
possible geometric intersection in the given surface, then the disconnected
complexes become connected. In each of the latter three cases above, C(.5)
is isomorphic to the Farey complex, which is the ideal triangulation of H?
indicated in Figure 4.3.

Figure 4.3 The Farey complex.
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The more classical description of the Farey complex is as follows. It is
the flag complex where vertices correspond to cyclic subgroups of Z?2, and
two vertices span an edge if the corresponding primitive vectors span Z?.

4.1.2 THE COMPLEX OF NONSEPARATING CURVES

Let NV(S) denote the subcomplex of C(.S) spanned by vertices correspond-
ing to nonseparating simple closed curves. This subcomplex is called the
complex of nonseparating curves. This is an intermediate complex between
the complex of curves and the modified complex of nonseparating curves
N (S) (defined below), which is the complex that will actually be used in
the proof of Theorem 4.1.

THEOREM 4.4 If g > 2, then N'(Sy,,) is connected.

Proof. We first prove the theorem for ¢ > 2 and n < 1 and then use in-
duction on n to obtain the rest of the cases. So let S be either S, or Sy 1.
If a and b are arbitrary isotopy classes of simple closed nonseparating sim-
ple closed curves in S, then by Theorem 4.3 there is a sequence of isotopy
classes a = c1,..., ¢, = bwithi(c;, ¢i41) = 0.

We will alter the sequence {c¢;} so that it consists of isotopy classes of
nonseparating simple closed curves. Suppose c; is separating. Let ; be a
simple closed curve representing ¢; and let S’ and S” be the two components
of Sy — i. By the assumption that ¢ > 2 and n < 1, both S” and S” have
positive genus. If ¢;—; and c; 1 have representatives that lie in different
subsurfaces, then i(c;—1,¢;+1) = 0 and we can simply remove ¢; from the
sequence. If ¢;_1 and c; 1 have representatives that both lie in S’, then we
replace c; with the isotopy class of a nonseparating simple closed curve in
S”. We repeat the above process until each ¢; is nonseparating, at which
point we have obtained the desired path in A (S). This proves the theorem
in the case n < 1.

For the induction on n we assume n > 2 and proceed as above. The only
possible problem is that it might happen that representatives of ¢;_; and
ci+1 lie on S’ and S” has genus 0. But then S” has genus ¢ > 2 and has
fewer punctures than the original surface .S, so by induction we can find a
path in NV (S’) between the vertices corresponding to ¢;_1 and ¢;11, and we
replace ¢; by the corresponding sequence of isotopy classes of curves in S.
(]

Theorem 4.4 is not true for any surface of genus 1. Indeed, the map
Sy, — T? obtained by filling in the n punctures induces a surjective sim-
plicial map N'(S1,) — C(T?), where the simplicial structure on C(7?) is
the original simplicial structure, which is disconnected.
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4.1.3 A MODIFIED COMPLEX OF NONSEPARATING CURVES

Let N/ (S) denote the 1-dimensional simplicial complex whose vertices are
isotopy classes of nonseparating simple closed curves in the surface .S and
whose edges correspond to pairs of isotopy classes a, b with i(a,b) = 1.

LEMMA 4.5 If g > 2 and n > 0, then the complex N(ng) is connected.

Proof. Let a and b be two isotopy classes of simple closed curves in Sy j,.
By Theorem 4.4, there is a sequence of isotopy classes a = ¢1,...,¢c, = b
representing vertices of A (Sg,n) with i(c;,ci41) = 0. By the change of
coordinates principle, for each ¢ one can find an isotopy class d; of non-
separating simple closed curves with i(c;, d;) = i(d;,c;y1) = 1. The se-
quence @ = c¢1,dy,¢o,...,Ck_1,dg_1,Cr = b represents the desired path in

/\A/(ngn). O

The conclusion of Lemma 4.5 also holds for any S;, with n > 0.
This can be proved by induction. The base cases are 7?2 and S1,1, where

N(T?) ~ N (S1,1) is the 1-skeleton of the Farey complex. The inductive
step on n is similar to the inductive step on punctures in the proof of Theo-
rem 4.4.

4.2 THE BIRMAN EXACT SEQUENCE

As mentioned above, the proof of Theorem 4.1 will be a double induction on
genus and the number of punctures. The Birman exact sequence will provide
the inductive step for the number of punctures. More generally, it is a basic
tool in the study of mapping class groups.

4.2.1 THE POINT-PUSHING MAP, THE FORGETFUL MAP, AND THE BIRMAN
EXACT SEQUENCE

Let S be any surface, possibly with punctures (but no marked points) and
let (S, z) denote the surface obtained from .S by marking a point z in the
interior of S. There is a natural homomorphism

Forget : Mod(S, z) — Mod(S)

called the forgetful map. This map is realized by forgetting that the point z is
marked. The forgetful map is clearly surjective: given any homeomorphism
of S, we can modify it by isotopy so that it fixes .
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The group Mod (S, x) is isomorphic to the subgroup G of Mod(S — x)
preserving the puncture coming from x. The forgetful map can be inter-
preted as the map G — Mod(S) obtained by “filling in” the puncture x. In
other words, Forget is the map induced by the inclusion S — z — S.

We would like to describe the kernel of Forget. Let f € Mod(S, x) be an
element of the kernel of Forget and let ¢ be a homeomorphism representing
f. We can think of ¢ as a homeomorphism ¢ of S. Since Forget(f) = 1,
there is an isotopy from ¢ to the identity map of S. During this isotopy, the
image of the point z traces out a loop « in S based at x. What we will show
is that by pushing = along a~! we can recover f € Mod(S, z).

Now to make the idea of pushing more precise. Let o be a loop in S
based at z. We can think of « : [0, 1] — S as an “isotopy of points” from x
to itself, and this isotopy can be extended to an isotopy of the whole surface
S (this is the O-dimensional version of Proposition 1.11). Let ¢, be the
homeomorphism of S obtained at the end of the isotopy. By regarding ¢,
as a homeomorphism of (S, x), and then taking its isotopy class, we obtain
a mapping class Push(a) € Mod(S,z). The way we think of Push(«)
informally is that we place our finger on = and push z along «, dragging the
rest of the surface along as we go.

What one would like of course is for the mapping class Push(«) to be
well defined, that is, not to depend on the choice of the isotopy extension.
One would also want Push(a) to not be dependent on the choice of «
within its homotopy class. In other words, one hopes to have a well-defined
push map*

Push : w1 (S,z) — Mod(S, ).

It turns out that this is indeed the case. But it is not obvious at all. To begin
with, there is no way in general to extend a homotopy of a loop to a homo-
topy of a surface (rather, only isotopies can be extended). More to the point,
what if we modify « by a homotopy that passes the loop over the marked
point z? There is certainly no obvious way to show that the corresponding
homeomorphisms of the marked surface (S, ;) are homotopic.

The Birman exact sequence gives that the point-pushing map is indeed
well defined and that its image is exactly the kernel of the forgetful map.

THEOREM 4.6 (Birman exact sequence) Let S be a surface with x(S) <
0, possibly with punctures and/or boundary. Let (S, x) be the surface ob-
tained from S by marking a point x in the interior of S. Then the following

Birman’s original terminology was “spin map.”
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sequence is exact:

1 — m(S,x) Push Mod(S, z) Forggt Mod(S) — 1.

Once we know that Push is well defined, it follows immediately from the
definitions that its image is contained in the kernel of the map Forget and
that it surjects onto the kernel of Forget. Also, it is easy to see that Push is
injective for x(S) < 0. Indeed, any representative Push(c«) € Mod(S, x)
can be thought of as a map of pairs (S, z) — (S, z) whose induced automor-
phism of 71 (.S, x) is the inner automorphism I,,. Since 71 (S) is centerless,
we have that I, is nontrivial whenever « is. Thus if « is nontrivial, then the
homeomorphism ¢, : (S,z) — (S, z) defined above is not homotopic to
the identity as a map of pairs, from which it is immediate that Push(«) is
nontrivial as an element of Mod(S, z). In summary, the entire content of
Theorem 4.6 is that Push is well defined.

We remark that Theorem 4.6 still holds if we replace Mod with Mod™,
the extended mapping class group (see Chapter 8).

Also, we can take the restriction of the sequence to any subgroup of
Mod(S, ). The most commonly used restriction is to PMod (S, z). In this
case, Mod(S) should be replaced with PMod(S). We can rephrase the Bir-
man exact sequence in this case as follows:

1 — 7r1(Sg7n) — PMOd(SgJH_l) — PMOd(Sg’n) — 1.

We will show in Section 5.5 that the Birman exact sequence does not split.

A small technical point. Since products in Mod(S, x) are usually writ-
ten right to left and products in 71 (S, x) are usually written left to right,
we should define the map 71(S,z) — Mod(S,z) by sending « to the
map that pushes = along a~!, not o (otherwise we would obtain an anti-
homomorphism instead of a homomorphism). This issue will not play a role
in this book.

4.2.2 PUSH MAPS ALONG LOOPS IN TERMS OF DEHN TWISTS

For a simple loop « in S based at the point x, we can give an explicit rep-
resentative of Push(«) as follows. Identify a neighborhood of « with the
annulus S x [0,2]. We orient S x [0, 2] via the standard orientations on
St and [0,2]. Say the marked point z is at the point (0, 1) in this annulus.
There is an isotopy of the annulus given by

(0 + 27rt, ) 0<r<i,
O+2r(2—r)t,r) 1<r<2.

F((er)vt) = {
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We can extend F' by the identity to get an isotopy of S. When we restrict F’
to {z} x [0, 1], we get

F((0,1),) = (27t, 1).

In other words, the isotopy F' pushes x around the core of the annulus. Also,
the homeomorphism ¢ of (S, z) induced by F' at ¢ = 1 is a product of two
Dehn twists. More precisely, identifying the boundary curve S x {0} of the
annulus as a simple closed curve a in (S, ) and identifying S x {2} as a
curve bin (S, x), we have that ¢ is (isotopic to) 7,7, bfl. A smooth represen-
tative of Push(«) is shown in Figure 4.4. We summarize this discussion as
follows.

Fact 4.7 Let a be a simple loop in a surface S representing an element of
71(S, x). Then

Push([a]) = T,T, ,

where a and b are the isotopy classes of the simple closed curves in (S, x)
obtained by pushing o off itself to the left and right, respectively. The isotopy
classes a and b are nonseparating in (S, z) if and only if o is nonseparating

inS.

Figure 4.4 The point-pushing map Push from the Birman exact sequence.

Naturality. We record the following naturality property for the point-
pushing map.

Fact 4.8 For any h € Mod(S, x) and any o € w1 (S, z), we have
Push(hy(a)) = hPush(a)h™'.

Fact 4.8 follows immediately from the definitions.
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4.2.3 THE PROOF

We now give the proof of the existence of the Birman exact sequence.
Proof of Theorem 4.6. There is a fiber bundle
Homeo™ (S, z) — Homeo™ (.9) £s 4.1)

with total space Homeo™ (S), with base space S (i.e., the configuration
space of a single point in .S), and with fiber the subgroup of Homeo™ (.9)
consisting of elements that fix the point x (technically, we should allow only
homeomorphisms that fix 9.5 pointwise, but this does not affect the proof).
The map £ is evaluation at the point x.

We now explain why £ : Homeo™ (S) — S is a fiber bundle, that is, why
Homeo " () is locally homeomorphic to a product of an open set U of S
with Homeo™ (S, x) so that the restriction of £ is projection to the first fac-
tor. Let U be some open neighborhood of x in .S that is homeomorphic to a
disk. Given u € U, we can choose a ¢, € Homeo™ (U) so that ¢, (z) = u
and so that ¢,, varies continuously as a function of u. We have a homeomor-
phism U x Homeo™ (S, x) — £~1(U) given by

(ua¢) = ¢y 09

The inverse map is given by ¢ — (¢(z), ¢;(1x) o 1)). For any other point
y € S, we can choose a homeomorphism £ of S taking x to y. Then there is
a homeomorphism £~1(U) — £71(&(U)) given by ¥ +— & o9, and so we
have verified the fiber bundle property.

The theorem now follows from the long exact sequence of homotopy
groups associated to the above fiber bundle. The relevant part of the se-
quence is the following.

- — m1(Homeo™ (S)) — m1(S) — mo(Homeo™ (S, z))
— mo(Homeo™ (S)) — mo(S) — --- .

By Theorem 1.14 the group 71 (Homeo™ (.9)) is trivial, and of course g (S)
is trivial. The remaining terms are isomorphic to the terms of the Birman
exact sequence.

Finally, the maps given by the long exact sequence of homotopy groups
are exactly the point-pushing map Push and the forgetful map Forget. O

There is a version of Theorem 4.6 where one forgets multiple punctures
instead of a single version; see Chapter 9. However, in most cases, one can
simply apply Theorem 4.6 iteratively in order to forget one puncture at a
time.
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Surfaces with x(S) > 0. In the proof of Theorem 4.6, we used the as-
sumption that x(S) < 0 in order to say that ; (Homeo™(S)) = 1. But we
can still use the long exact sequence coming from the fiber bundle (4.1) for
other surfaces. For instance, for the torus 7% we have 71 (Homeo™ (T?)) ~
71 (T?) ~ 72, and the relevant part of the short exact sequence becomes

=725 72 5% Mod(Sy,1) — Mod(T?) — 1 — - -
This gives another proof that Mod(S1 1) ~ Mod(T?).

4.2.4 GENERATING Mod(So,»)

Let Sp 5, be a sphere with n punctures. As per Section 2.2, PMod(Sp ) = 1
for n < 3. To understand the situation for more punctures, we can apply the
Birman exact sequence:

1 — 71'1(5073) — PMOd(SOA) — PMOd(SQg) — 1.

Since 71 (Sp,3) ~ F», we obtain that PMod(Sp 4) ~ F». Moreover, the Bir-
man exact sequence gives geometric meaning to this algebraic statement:
elements of 71 (Sp,3) represented by simple loops map to Dehn twists in
PMod(Sp,4), and so the standard generating set for 7 (Sp 3) gives a gener-
ating set for PMod(Sp 4) consisting of two Dehn twists about simple closed
curves with geometric intersection number 2.

We can increase the number of punctures using the Birman exact se-
quence:

1— 7T1(SO74) — PMOd(SO75) — PMOd(SOA) — 1.

Since m1(S0,4) ~ F3 and PMod(Sp4) =~ F», we obtain PMod(Sy5) ~
F5 x F3. Inductively, we see that PMod(.Sp »,) is an iterated extension of
free groups. Applying Fact 4.7, plus the fact that 7 (Sp,,) is generated by
simple loops, we find the following.

THEOREM 4.9 For n > 0, the group PMod(Sy ,,) is generated by finitely
many Dehn twists.

To generate all of Mod(Sp,), we again apply the following exact se-
quence:

1 — PMod(Sp,,) — Mod(Sp,n) — X, — 1.

It follows that a generating set for Mod(.Sy 5, ) is obtained from a generating
set for PMod (S ,,) by adding lifts of generators for 3,,. We know that 3,
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is generated by transpositions. A simple lift of a transposition is a half-twist,
defined in Chapter 9.

4.2.5 CAPPING THE BOUNDARY

By souping up the proof of the Birman exact sequence, we can give an-
other perspective on the boundary capping sequence (Proposition 3.19) that
unifies it with the Birman exact sequence.

Let S° be a surface with nonempty boundary and let S be the surface
obtained from S° by capping some component 3 of 0.5° with a disk. Let p
be some point in the interior of this disk. As in Proposition 3.19, we have a
short exact sequence

1 — (Tj5) — Mod(5°) ¥ Mod(S, p) — 1. (4.2)

Note that (T) is central in Mod(S°) since any element of Mod(S5°) has a
representative that is the identity in a neighborhood of 95°.

We now give our second proof of Proposition 3.19 using the notation from
the sequence (4.2).

Second proof of Proposition 3.19. The proof has two steps. Step 1 is to
identify Mod(S°) with a different group and to reinterpret the capping map
in the new context, and Step 2 is to apply the method of proof of the Birman
exact sequence to the corresponding fiber bundle.

~

Step 1. Let (p,v) be a point of the unit tangent bundle UT'(.S) that lies
in the fiber above p. Let Diff (S, (p,v)) denote the group of orientation-
preserving diffeomorphisms of S fixing (p,v). The resulting mapping
class group, denoted Mod (S, (p,v)), is defined as mo(Diff ¥ (S, (p, v))). We
claim that there is an isomorphism

Mod(5°) ~ Mod(S, (p, v)).
To prove this isomorphism we first identify Mod(S°) with
7o(Diff*(S, D)), where D is the boundary capping disk, and diffeo-
morphisms are taken to fix D pointwise. This identification can be realized
by simply removing the interior of D. There is a fiber bundle

Diff t(S, D) — Diff (S, (p,v)) — Emb* ((D, 5), (p,v)),

where Emb™ (D, S), (p, v)) is the space of smooth, orientation-preserving
embeddings of D into S taking some fixed unit tangent vector in D to the
tangent vector (p,v). As in the proof of the Birman exact sequence, we
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obtain a long exact sequence of homotopy groups that contains the sequence

- = m(Emb* (D, 8), (p,v))) — mo(Diff* (5, D))
— mo(Diff T (S, (p,v))) — 7o(Emb™ ((D, S), (p,v))) — --- .

Since D is contractible, the space Emb*((D,S), (p,v))) is contractible,
and so we obtain the claimed isomorphism Mod(S, (p,v)) ~ Mod(S°)
(see [107, Theorem 2.6D] and [45]). N

The projection map (p,v) +— p induces a map Mod(S, (p,v)) —
Mod(§ , p) that makes the following diagram commute:

\

o Mod(S, p)

Mod

%

Thus we have succeeded in writing the map Cap in terms of Mod (S, (p, v)).

Step 2. We have another fiber bundle
Diff (S, (p,v)) — Diff*(S,p) — UT,(S),

where the second map is the evaluation map onto the fiber over p of the
unit tangent bundle of S. As in the proof of the Birman exact sequence, we
obtain a long exact sequence, part of which is

- — m (Diff (S, p)) — m (UT,(S)) — mo(Diff (S, (p,v)))
— 7o(DiffH(8, p)) — m(UT,(S)) —

These terms exactly give the desired short exact sequence. O

Not only is the last proof similar to the proof of the Birman exact se-
quence, but both proofs can actually be combined to give the following di-
agram, which encapsulates the two points of view. In the diagram all se-
quences are exact and all squares commute.
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Q

1 — 1 (UT(S)) — Mod(5°) —— Mod(5) —= 1

lz

1 ——71(8) —= Mod(S,p) — Mod(S) —= 1

1 1

To get the middle row directly, one can consider the fiber bundle

Diff* (S, (p,v)) — Diff T (S) — UT(S).

4.3 PROOF OF FINITE GENERATION

To show that Mod(S) is finitely generated we consider its action on complex
N (). Note that Mod (S) indeed acts on A/(S) since homeomorphisms take
nonseparating simple closed curves to nonseparating simple closed curves
and homeomorphisms preserve geometric intersection number. It is a basic
principle from geometric group theory that if a group G acts cellularly on
a connected cell complex X and if D is a subcomplex of X whose G-
translates cover X, then G is generated by the set {g € G : gD N D # (0}
(this idea will be echoed in our proof of Theorem 8.2 below). The next
lemma is a specialized version of this fact designed specifically so that we
can apply it to the action of Mod(S) on J\A/(S)

Lemma 4.10 Suppose that a group G acts by simplicial automorphisms
on a connected, 1-dimensional simplicial complex X. Suppose that G acts
transitively on the vertices of X and that it also acts transitively on pairs of
vertices of X that are connected by an edge. Let v and w be two vertices of
X that are connected by an edge and choose h € G so that h(w) = v. Then
the group G is generated by the element h together with the stabilizer of v
in G.

Proof. Let g € G. We would like to show that g is contained in the subgroup
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H < G generated by the stabilizer of v together with the element h. Since
X is connected, there is a sequence of vertices

v =0,...,v = g(v)

where adjacent vertices are connected by an edge. Since G acts transitively
on the vertices of X, we can choose elements g; of G so that g;(v) = v;.
We take gy to be the identity and g to be g. We will prove by induction that
g; € H. The base case gy € H clearly holds. Now assume that g; € H. We
must prove that g; 1 € H.

Applying the element g; ! to the edge between v; = g;(v) and v;41 =
gi+1(v), we obtain the edge between v and g; 'g;41(v). Since G acts transi-
tively on ordered pairs of vertices of X that are connected by an edge, there
is an element r € G that takes the pair (v, g; ' gi11(v)) to the pair (v, w). In
particular, r lies in the stabilizer of v and rg;” ! gi+1(v) = w. We then have
that hrg; Lgi11(v) = v, which means that hrg; Lgi1 lies in the stabilizer
of v. In particular, hrg; Ygir1 € H. Since h and 7 lie in H by the definition
of H and since g; lies in H by induction, we have that g;; lies in H. In
particular, g = g lies in H, which is what we wanted to show. O

We are now ready to prove the following theorem, which contains Theo-
rem 4.1 as the special case n = 0.

THEOREM 4.11 Let Sy, be a surface of genus g > 1 with n > 0 punc-
tures. Then the group PMod (S ) is finitely generated by Dehn twists about
nonseparating simple closed curves in S ,.

Recall that we already showed that PMod (.S ) is finitely generated by
Dehn twists for n > 0 (Theorem 4.9).

Proof. We will use double induction on genus and the number of punctures
of S, with base cases T2 = S1,0 and S 1.

We start with the inductive step on the number of punctures. Let g > 1
and let n > 0. Assuming that PMod(S, ) is generated by finitely many
Dehn twists about nonseparating simple closed curves {«;} in Sy ,,, we will
show that PMod(Sy, n,+1) is generated by finitely many Dehn twists about
nonseparating curves in Sy ,,+1. We may assume that (g,n) # (1,0) since
we know that Mod(S; 1) &~ Mod(T?) is generated by Dehn twists about
nonseparating simple closed curves.

We have the Birman exact sequence

1—m (Sg’n) — PMOd(Sg7n+1) — PMOd(ng) — 1.
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Since g > 1, we have that 71(Sy,,) is generated by the classes of finitely
many simple nonseparating loops. By Fact 4.7, the image of each of these
loops is a product of two Dehn twists about nonseparating simple closed
curves. We begin building a generating set for PMod(S, »,+1) by taking
each of these Dehn twists individually. In order to complete the generating
set, it remains to choose a lift to PMod(Sy ,,+1) of each Dehn twist gen-
erator Ty, of PMod(S, ). But given the nonseparating simple curve «; in
Sg.n, there exists a nonseparating curve in Sy 41 that maps to a; under
the forgetful map Sy 41 — Sy,n. Thus the Dehn twist Ty, in PMod (S ,,)
has a preimage in PMod (S, ,+1) that is a Dehn twist about a nonseparat-
ing simple closed curve in Sy ,41. This completes the inductive step on the
number of punctures.

Since we know that Mod(7"?) and Mod(S1,1) are each generated by two
Dehn twists about nonseparating simple closed curves (Section 2.2), it fol-
lows from the inductive step on the number of punctures that, for any n > 0,
the group PMod(.S1 ;) is generated by finitely many Dehn twists about non-
separating simple closed curves.

We now attack the inductive step on the genus g. Let g > 2 and assume
that PMod(S4—1,,) is finitely generated by Dehn twists about nonseparating

simple closed curves for any n > 0. Since N (Sy) is connected (Lemma 4.5)
and since by the change of coordinates principle Mod(.S,) acts transitively
on ordered pairs of isotopy classes of simple closed curves with geomet-
ric intersection number 1, we may apply Lemma 4.10 to the case of the
Mod(.S,) action on ./V(Sg).

Let a be an arbitrary isotopy class of nonseparating simple closed curves
in S, and let b be an isotopy class with i(a,b) = 1. Let Mod (S, a) denote
the stabilizer in Mod(Sy) of a. By Proposition 3.12, we have 1,7, (b) = a.
Thus, by Lemma 4.10, Mod(S,) is generated by Mod (S, a) together with
T, and T}, Thus it suffices to show that Mod(Sy, a) is finitely generated by
Dehn twists about nonseparating simple closed curves.

Let Mod(S,, @) be the subgroup of Mod(Sy, a) consisting of elements
that preserve the orientation of a. We have the short exact sequence

1 — Mod(Sy,d@) — Mod(Sy,a) — Z/27 — 1.

Since TyT?Ty, switches the orientation of a (use change of coordinates), it
represents the nontrivial coset of Mod(Sy,d) in Mod(S,,a). Thus it re-
mains to show that Mod(Sy, @) is finitely generated by Dehn twists about
nonseparating simple closed curves in S,.

By Proposition 3.20 we have a short exact sequence

1 — (T,) — Mod(Sy,d) — PMod(S; — a) — 1,
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where S; — « is the surface obtained from S, by deleting a representa-
tive o of a. The surface S, — o is homeomorphic to S;_1 2. By our induc-
tive hypothesis, PMod(S,; — «) is generated by finitely many Dehn twists
about nonseparating simple closed curves. Since each such Dehn twist has a
preimage in Mod(Sy, @) that is also a Dehn twist about a nonseparating sim-
ple closed curve, it follows that Mod(S,, @) is generated by finitely many
Dehn twists about nonseparating curves, and we are done. O

4.4 EXPLICIT SETS OF GENERATORS

The goal of this section is to find an explicit finite set of Dehn twist gen-
erators for Mod(S). Our strategy for accomplishing this is to sharpen our
proof that Mod(.S) is generated by finitely many Dehn twists. More specif-
ically, we choose a candidate set of generators and check that each step of
the proof of finite generation can be achieved by using our candidate set.

4.4.1 THE CHAIN RELATION

In the very last step of our proof of Theorem 4.13 below, we will require the
following relation between Dehn twists. Recall that a sequence of isotopy
classes c1, ..., ¢y in a surface S is called a chain if i(c;,c;+1) = 1 for all 4
and i(c;, ¢j) = 0 for |i — j| > 1.

Proposition 4.12 (Chain relation) Let k > 0 and let c1,- - - , ci be a chain
of curves in a surface S. If we take representatives for the c; that are in min-
imal position and then take a closed regular neighborhood of their union,
then the boundary of this neighborhood consists of one or two simple closed
curves, depending on whether k is even or odd. Denote the isotopy classes
of these boundary curves by d in the even case and by dy and dy in the odd
case. Then the following relations hold in Mod(S):

(To, -+ T )*2 = Ty k even,
(Toy -+ T )M = Ty Ty, kodd.

In each case the relation in Proposition 4.12 is called a chain relation,
or a k-chain relation. The chain relation can be proved via the Alexander
method. In Chapter 9, we will derive the chain relations as consequences of
relations in the braid group.

The 2-chain relation is a well-known example of the chain relation. In
this case, the relation says that if i(a,b) = 1, then

(T.Ty)° = Ty,
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where d is the boundary of a regular neighborhood of a U b. If @ and b lie in
T? or 51,1, then Ty is trivial, and we have the relation (77 2T3)% = 1. Via the
isomorphism of Theorem 2.5, this is simply the relation

(ERIES
in SL(2, 7).

There is another version of the chain relation that is sometimes useful. In
the above notation, this other version reads

(TCQITCQ .. T

Ck

=T, and (T2T., - T.)" = Ty, Tu,,

for k even and odd, respectively.

Dehn twists have roots. A surprising consequence of the last relation is that
the Dehn twist about a nonseparating simple closed curve has a nontrivial
root in Mod(S,) when g > 2. If we consider a chain of simple closed
curves ci, ..., Czg—1 in Sy, then the two boundary components of a regular
neighborhood of Uc; are nonseparating simple closed curves in the same
isotopy class d, so we have

2 2g—1 2
(Tcchz T TCQg—l) 9 = Td .
Thus, since T commutes with each T, we have

(T8 Te, - T.

C2g—1

)1ngd]2g71 =Ty

McCullough—Rajeevsarathy proved that 2g—1 is actually the largest order
of a root of T; for any g > 2 [147]. It is not difficult to see that Dehn
twists about separating simple closed curves have roots: for example, if we
imagine fixing the subsurface of S, to one side of a separating curve d and
twisting the other side by an angle m, then we get a square root of T;;. A
more formal way to do this is to use the first chain relation with a chain of
even length.

4.4.2 THE LICKORISH GENERATORS

Our eventual goal is to show that the Humphries generating set (see the
beginning of the chapter) is indeed a generating set for Mod(Sy). As a first
step we show that the Dehn twists about the 3g — 1 simple closed curves
indicated in Figure 4.5 generate Mod(.S,). This specific generating set was
first found by Lickorish, and so we call these Dehn twists the Lickorish
generators [131].
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Figure 4.5 The Lickorish generating set for Mod(.S).

THEOREM 4.13 (Lickorish generators) For g > 1, the Dehn twists about
the isotopy classes

a1y...,0g,M1,...,Mg,C1,...,Cq—1

shown in Figure 4.5 generate Mod(Sy).

In the proof of Theorem 4.13 we refer to the Dehn twists in the statement
of the theorem as Lickorish twists, so as not to confuse the issue that we will
be proving that they are indeed generators for Mod(.S).

Proof. We proceed by induction on g. Since the Lickorish twists for the
torus 72 ~~ S, are the standard generators for Mod(TQ), the theorem is true
for the case of g = 1, and we may assume that g > 2.

We again apply Lemma 4.10 to the action of Mod(S,) on the 1-
dimensional simplicial complex N (S4) from Section 4.1. By Lemma 3.12,
we have Ty, T}, Ty, (m1) = a1. Thus by Lemma 4.10, it suffices to show
that Mod (S, m1), the stabilizer in Mod(Sy) of my, lies in the group gen-
erated by Lickorish twists.

If Mod(Sy, 1) is the subgroup of Mod(.S,) consisting of elements that
preserve the orientation of my, then we have

1 — Mod(Sy, 1) — Mod(Sg, m1) — Z/2Z — 1.

Since the product of Lickorish twists i, T; ,?11 T,, reverses the orientation of
my, it suffices to show that Mod(Sy, 7711 ) lies in the group generated by the
Lickorish twists.

By Proposition 3.20, we have the following exact sequence:
1 = (Tom,) — Mod(Sg,m1) — PMod(Spm,) — 1,

where S, ~ Sy_12 is the surface obtained by deleting a representative of
m from S, (this is perhaps a slight abuse of notation since we usually write
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Sm, to mean the surface obtained from a surface .S by cutting along a curve
m1). Since Ty, is a Lickorish twist, it is enough to show that PMod(S,,,, )

is generated by the images of the Lickorish twists.

Figure 4.6 The images of the curves from Figure 4.5 in Sy, and Sy,

We apply the Birman exact sequence (Theorem 4.6) twice. Let S, de-
note the surface obtained from S,,, by forgetting the first puncture m_ and
let S}, be the surface obtained from S, by forgetting the second punc-
ture m,.. We then have the following maps of exact sequences where each

square commutes:

) 2 PMod(Sy, ) ——= Mod(Sl, ) — 1

1 *>7T1(S;nl,

F

1]—— 7T1(Sg_1,1) — PMOd(Sg_LQ) —— MOd(Sg_Ll) —1
4.3)

and

1——=m (8, my) 2 Mod (S, ) —— Mod(SY,, ) —

O

| m(Sg_1) —= Mod(Sy_11) —= Mod(S,_) —= 1.
4.4

In the discussion below, we use the notation S,,,, Sy, , and S, instead
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Figure 4.7 Standard generators for 71 (S, , m4)

of the simpler notations S,_1 2, Sy—1,1, and Sy_1 in order to emphasize the
point that each of these surfaces comes with fixed maps S,,, — S},, —
Sy, - In particular, there is no choice for the images of the Lickorish twists
in Mod(S},,) and Mod(S}},,).

We start with sequence (4.4). The goal is to show that Mod(S;,, ) is
generated by the images of the Lickorish twists in Mod(S],,,); that is, we
want to show that Mod(S],,) is generated by the Dehn twists about the
simple closed curves shown at the bottom of Figure 4.6. By induction,
Mod(S;,,) = Mod(S,_1) is generated by the Dehn twists about the im-
ages of these curves in S;, ~ S,_1, and so by the exact sequence (4.4), it
suffices to show that each element of Push/(m1(S]),,)) is a product of the
Dehn twists given at the bottom of Figure 4.6.

Standard generators for 71(S;,, ) = m1(Sy—1) are shown in Figure 4.7.
The mapping class Push’(aq) is equal to the product TCITWQQ1 (refer to Fig-
ure 4.6), so this element is a product of Lickorish twists.

We now explain how to write Push/(/31) as a product of Lickorish twists.
Using Lemma 3.12, we see that

TszCLQ (al) = ﬁ1~

Thus, by Fact 4.8, Push/(31) is conjugate to Push’(ay) by a product of
Lickorish twists and hence itself is a product of Lickorish twists.

Repeating this conjugation trick, we see that the image of each standard
generator for 71 (S, ) under Push’ is a product of the images of the Lick-
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orish twists in Mod(S},, ). The required formulas are

(T T (T T ) (Bim1) = B,
T, T.b (B) =0y

Q417 MG41

We remark that the Lickorish twists seem to be exactly designed for com-
pleting this step.

S,

Figure 4.8 The Dehn twists Tmzz, R ) | are all products of Lickorish twists.
-

Turning to sequence (4.3), it now remains to show that
Push(m(S;,,,m—)) lies in the group generated by the Dehn twists
about the simple closed curves shown at the top of Figure 4.6. The proof is
essentially the same as the previous argument. To facilitate the argument,
it is helpful to notice that each Ty, is a product of Lickorish twists where
the mj, ..., mj_; are the isotopy classes shown in Figure 4.8. This follows
from the chain relation

(TngTayTey 1 Ta, ,Te

Cg—1

Ty, T )27k D — T, T,

g—2 Ap+1-+Ck

This completes the proof. O

4.4.3 THE HUMPHRIES GENERATORS

We can now give Humphries’ proof that the Humphries generators do indeed
form a generating set for Mod(S,).

THEOREM 4.14 (Humphries generators) Let ¢ > 2. Then the group
Mod(Sy) is generated by the Dehn twists about the 2g + 1 isotopy classes
of nonseparating simple closed curves

a1y...,0g,C1y...,Cq—1,MM71,TM2
shown in Figure 4.5.

In Proposition 6.5 below we show that Theorem 4.14 is sharp in the sense
that, for g > 2, any generating set for Mod(.S,) consisting only of Dehn
twists must have at least 2g + 1 elements.
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Proof of Theorem 4.14. By Theorem 4.13 it suffices to show that the Licko-
rish twists Ty, - . . , T, can each be written in terms of the other Lickorish
twists.

Forany 1 <i < g — 2, we will find a product h of Dehn twists about the
a;, ¢;, and m;41 that takes m; to m;o. It will then follow from Fact 3.7 in
Section 3.3 that

— }. -1
iy = hilin;hy
and the theorem will be proved.
a; Ait1
Qj+2 —_— —_—
Ci Cit+1
my mMit1 mMi+2 myg l

== — = — =

Figure 4.9 Taking m; to m;o.

The top left of Figure 4.9 shows the simple closed curves we will
use. In the top right of the figure we see m,;. The bottom right shows
Tonir Tos 1 Te; Ta, (m;), and the bottom left shows the image d of the lat-
ter under the product

Te 1o Ta, T

Cit14 Qi1 4 a2 Cig1 e

Note that the last curve is symmetric with respect to the ith and (7 + 2)nd
holes. It follows that we can use a similar product of Dehn twists A’ in order
to take d to m; 2. Since h used m; 1 and no other m, it follows that R will
use m;41 and no other m;. This completes the proof. O

4.4.4 SURFACES WITH PUNCTURES AND BOUNDARY

Given the Humphries generators for the mapping class group of a closed
surface, we can use the Birman exact sequence to find a finite set of gener-
ators for the mapping class group of any surface S, ,, of genus g > 0 with
n > 0 punctures.

The 2¢g 4 n twists about the simple closed curves indicated in Figure 4.10
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Figure 4.10 Twists about these simple closed curves generate PMod(Sy,»).

give a generating set for PMod (S ,,) when n > 0. The argument in the last
step of Theorem 4.13, that is, the argument that the images of Push and
Push’ lie in the group generated by the Lickorish twists, applies in this case
to show that the given set of Dehn twists generates PMod (S ).

To obtain a generating set for all of Mod(Sy ), we can take a gener-
ating set for PMod(S,,) together with a set of elements of Mod (S, )
that project to a generating set for the symmetric group 3,. One standard
generating set for X, consists of n — 1 transpositions. The most natural ele-
ments of Mod (S, ,,) that map to transpositions in 3, are the half-twists dis-
cussed in Chapter 9. We thus have the following corollary of Theorems 4.9
and 4.11.

Corollary 4.15 For any g,n > 0, the group Mod(S, ) is generated by a
finite number of Dehn twists and half-twists.

Finally, let S be a compact surface with boundary (and no marked points).
Recall that the elements of Mod(S) do not permute the boundary compo-
nents of S. By Proposition 3.19, we see that Mod(SS) is generated by Dehn
twists about nonseparating simple closed curves if each Dehn twist about
a boundary curve is a product of Dehn twists about nonseparating simple
closed curves. It turns out that for g > 2 this is possible. Consider the sim-
ple closed curves shown in Figure 4.11. A special case of the star relation
from Section 5.2 gives that

(Te, Te, Te, Ty)* T, ' Ty !

is equal to the Dehn twist about the boundary curve d.
We thus have the following.

Corollary 4.16 Let S be any surface of genus g > 2. The group PMod(.S)
is generated by finitely many Dehn twists about nonseparating simple closed
curves in S.

In particular, for any surface S with punctures and/or boundary,
PMod(S) is generated by the Dehn twists about the simple closed curves
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Figure 4.11 Writing the Dehn twist about the boundary in terms of Dehn twists about non-
separating curves.

shown in Figure 4.10 (in the figure, one can interpret the small circles as
either boundary components or as punctures).

On the other hand, for a genus 1 surface S with more than one boundary
component, Mod(S) is not generated by Dehn twists about nonseparating
curves. In this case, there is a generating set consisting of finitely many Dehn
twists about nonseparating curves and b — 1 Dehn twists about boundary
curves, where b is the number of boundary components. It follows from the
computation of H;(Mod(S);Z) (Section 5.1 below) that all b — 1 Dehn
twists are needed.



Chapter Five

Presentations and Low-dimensional Homology

Having found a finite set of generators for the mapping class group, we now
begin to focus on relations. Indeed, one of our main goals in this chapter
is to give a finite presentation for Mod(.S). In doing so, we will see some
beautiful topological ideas, as well as some useful techniques from geomet-
ric group theory.

The relations in a group G are intimately related to the first and second ho-
mology groups of . Recall that the homology groups of G are defined to be
the homology groups of any K (G, 1)-space. The first and second homology
groups have direct, group-theoretic interpretations. For example, H1(G;7Z)
is just the abelianization of GG. Also, Hopf’s formula, given below, gives an
explicit expression for Ho(G;Z) in terms of the generators and relators for
G. In this chapter we will give explicit computations of the first and second
homology groups of the mapping class group.

5.1 THE LANTERN RELATION AND H; (Mod(S); Z)

In the late 1970s D. Johnson discovered a remarkable relation among Dehn
twists. He called it the lantern relation since his diagram for the relation was
“lanternlike” [51, 115]. In the 1990s N. V. Ivanov pointed out that Dehn,
in his original paper on mapping class groups from 1938, had already dis-
covered the lantern relation. The existence of this relation has a number of
important implications for the structure of mapping class groups. As a first
example, we will use the lantern relation to show that Mod(S) has trivial
abelianization for most .S.

5.1.1 THE LANTERN RELATION

The lantern relation is a relation in Mod(S) between seven Dehn twists,
all lying on a subsurface of S homeomorphic to Sél, a sphere with four
boundary components.

Proposition 5.1 (Lantern relation) Let x, y, z, b1, bs, b3, and by be sim-
ple closed curves in a surface S that are arranged as the curves shown in
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Figure 5.1 Two views of the lantern relation in S§.

Figure 5.1. Precisely, this means that there is an orientation-preserving em-
bedding Sal — S and that each of the above seven curves is the image of the
curve with the same name in Figure 5.1. In Mod(S) we have the relation

T, T,T. = Ty, Ty, Ty, T,

Proof. As discussed in Section 3.1, any embedding of a compact surface S’
into a surface .S induces a homomorphism Mod(S”) — Mod(.S). Since re-
lations are preserved by homomorphisms, it suffices to check that the stated
relation holds in Mod(Sg).

To check the relation in Mod(Sg), we cut S into a disk using three arcs
and apply the Alexander method (actually, two arcs would suffice). The
computation is carried out in Figure 5.2.

For the computation, it is important to keep track of three conventions:
Dehn twists are to the left, the simple closed curves z, y, and z are config-
ured clockwise on the surface, and the relation is written using functional
notation (i.e., elements on the right are applied first). O

Any surface S with x(.S) < —2 contains an essential subsurface S” home-
omorphic to Sg . Indeed, if = and y are any two simple closed curves in S
with i(z,y) = 2 and i(z,y) = 0, then S’ can be taken to be any closed
regular neighborhood of z U y. To see this, one can use the fact that if o and
[ are any two simple closed curves in .S, and IV is any regular neighborhood
of U f3, then |x (V)| = |a N F]. As such, we see that the lantern relation
occurs in any such S.
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Figure 5.2 Proof of the lantern relation. The simple closed curves z, y, and z are shown in
Figure 5.1.

The lantern relation implies another relation that is simpler, yet still inter-
esting, namely,

T,T,T. = T,T.T, = T.T,T,.

This relation follows easily from the lantern relation plus the relation that
each Tj,, commutes with each of T, T}, and T,. We can contrast this result
with Theorem 3.14, which states that there are no relations between Dehn
twists 75, and T}, with i(a, b) = 2. Note that 7,7}, T, is not equal to 1.7, T,.

The lantern relation via the push map. There is another way to derive the
lantern relation that makes it much less mysterious. Let P be a pair of pants,
that is, a sphere with three boundary components. Embed P in the plane
and label the outer boundary component x and the inner components b;
and by. We obtain an element of Mod(P) by pushing b; around by, without
ever turning b; (think about a “do-si-do”’). From the Alexander method and
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Figure 5.3 we see that this map is equal to
—1p—1
T, T,

More formally, this push map is an element of the image of the homomor-
phism 71 (UT(A)) — Mod(P), where A is the annulus obtained by cap-
ping b; by a closed disk (see Section 4.2).

SO
¢

Figure 5.3 A push map.

isotopy

€ DG

Let SS be a sphere with four boundary components. We have the follow-
ing easy-to-see relation in w1 (UT(P)) < Mod(Sg), depicted on the left-
hand side of Figure 5.4: pushing b, around b3 and then pushing by around b,
is the same as pushing bs around both b3 and b;. In other words, using the
simple closed curves shown on the right-hand side of Figure 5.4, we have

(T.T, ' T, ' NT,T,,' T, ") = Ty, T, ' T, .

z
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Since the T, are central in this group, we can rewrite this as
T, T,T, = Ty, Ty, Ty, T, -

And this is exactly the lantern relation.

Figure 5.4 A new view of the lantern relation.

5.1.2 FIRST HOMOLOGY OF THE MAPPING CLASS GROUP

It is a basic fact from algebraic topology that, for any path-connected space
X, the group H;(X;Z) is isomorphic to the abelianization of 71 (X). Since
the homology of a group G is defined as the homology of any K (G, 1), we
have that the first homology group of G with integer coefficients is

G

~ yab
~ G

where [G, G] is the commutator subgroup of G and G® is the abelianization
of G.

THEOREM 5.2 For g > 3, the group Hi(Mod(Sy),Z) is trivial. More
generally, for any surface S with genus at least 3, we have that
Hy(PMod(S);Z) is trivial.

In other words, if the genus of S is at least 3, then the group PMod(.S)
is equal to its commutator subgroup, or equivalently, PMod(S)® is triv-
ial. A group with this property is called perfect. As we will see below, the
statement of Theorem 5.2 is false for g € {1, 2}.

The following proof is due to Harer [83].

Proof. Let S be a surface whose genus is at least 3. Since Dehn twists about
nonseparating simple closed curves are all conjugate (Fact 3.7), it follows
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that each of them maps to the same element under the natural quotient ho-
momorphism Mod(S) — H;(Mod(S);Z). Call this element h. Because
Mod(S) is generated by Dehn twists about nonseparating simple closed
curves (Corollary 4.16), it follows that H;(Mod(S);Z) is generated by h.

Figure 5.5 A copy of a sphere with four boundary components in a higher-genus surface,
which gives rise to a lantern relation between seven nonseparating simple closed
curves.

We now claim £ is trivial. Since the genus of S is at least 3, it is possible
to embed S§ in S so that each of the seven simple closed curves in Sg in-
volved in the lantern relation is nonseparating; see Figure 5.5. The image of
this lantern relation under the homomorphism Mod(S) — H;(Mod(S);Z)
gives the relation h* = h3, from which we deduce that A is trivial, giving
the theorem. O

The search for the right relation. Mumford was the first to attack
the problem of finding the abelianization of Mod(S,). He proved that
Hi(Mod(Sy);Z) is a quotient of Z/10Z for g > 2 [165]. In his paper, he
punctuated his result with a question-exclamation mark, ?!, an annotation
used in chess for a dubious move. As above, once you know that Mod(.Sy)
is generated by Dehn twists about nonseparating simple closed curves, it is
a matter of using relations between Dehn twists to determine the abelian-
ization. Mumford used the 3-chain relation (7,737.)* = T,T., hence his
result. Birman noticed that one could use a different relation to show that
the abelianization of Mod(S,) is a quotient of Z/27Z for g > 3 [21, 22].
Powell then produced a product of 15 nonseparating Dehn twists that equals
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the identity on Mod(S,) for g > 3, finally proving Theorem 5.2 [181].
Later, Harer [83] noticed that the lantern relation can be used to give a sim-
ple proof, as above.

For n > 1, the group Mod(S, ) is not perfect: if we take the sign of the
induced permutation on the punctures (or marked points), we get a surjective
homomorphism from Mod (S, ,,) to the abelian group Z/27Z.

ao Qay
ag

&= =
al as

Figure 5.6 The Dehn twists about these simple closed curves generate Mod(.S2).

5.1.3 LOW-GENUS CASES

In order to determine H;(Mod(S);Z) when S is a surface of genus 1 or 2,
we work directly from the known presentations of these groups.

Genus 2. The group Mod(S2) has the following presentation, due to
Birman-Hilden. In the presentation, we use a; to denote the Dehn twist
about the simple closed curve a; shown in Figure 5.6.

Mod(S2) = (a1, a2, a3, as,as | [a;,a;] =1 li —j] > 1,
AiQi41G5 = Qi+10;Q5+41,
(a1a2a3)" = a2,
[(asasazazaiaiazazasas), ar] = 1,

(a5a4a3a2a1a1a2a3a4a5)2 = ]_>

The first relation is simply disjointness, the second is the braid rela-
tion, and the third is a special case of the 3-chain relation (the two simple
closed curves forming the boundary of the 3-chain are isotopic). The ele-
ment asa4a3a2a10162030a405 appearing in the last two relations is exactly
the hyperelliptic involution. We give the Birman—Hilden proof of this pre-
sentation in Chapter 9, and we give a brief discussion of the hyperelliptic
relations later in this section.

To get a presentation for Mod(S2)?, we simply add the relations that
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all generators commute. This makes the first and fourth relations redundant.
The braid relations then tell us that all the a; represent the same element a
in the abelianization. The next relation becomes a2 = a2, or ¢! = 1, and
the last relation becomes a?° = 1, which is redundant. Thus Mod(S5) is
a cyclic group of order 10, as proved by Birman—-Hilden [26].

It turns out that for any surface S ,, of genus 2 with n > 0 punctures, we

have H;(Mod(S2,,);Z) ~ Z/10Z; see [124].

Genus 1. Similarly, we can find that H1(Mod(T?);Z) ~ Z/127 using the
classical presentation:

Mod(T?) ~ SL(2,Z) ~ (a,b | aba = bab, (ab)® = 1).

In Mod(T?), the elements a and b are Dehn twists about simple closed
curves that intersect once. The relations are the braid relation and the 2-
chain relation.

In the genus 1 case, adding punctures does not change the first homology
of Mod(.S), but adding boundary does. If S is a genus 1 surface with no
boundary, then H;(Mod(S);Z) ~ Z/127Z, and if S is a genus 1 surface
with b boundary components, then H;(Mod(S);Z) ~ 7b; again, see [124].
Combining the last statement with Proposition 3.19, we see that the map-
ping class group of a genus 1 surface with multiple boundary components is
not generated by Dehn twists about nonseparating simple closed curves (cf.
Section 4.4.4).

Genus zero. By again considering presentations, we see that if S, is a
sphere with n punctures, then H;(Mod(Sp.,); Z) is isomorphic to a cyclic
group of order 2(n — 1) or n — 1, depending on whether n is even or odd,
respectively. The presentation for Mod (S ) is

MOd(Som)=<01,...,Un_1’[0i,0j]=1 ‘i—j’>1,
0i0i+10; = 0i+10i0i+1,
(Ul Ce Un—l)n =1,
(0'1 O p—10np—1 " -0'1) = 1>

One can arrive at this presentation from a presentation for the braid
groups; the o; correspond to half-twists. See Chapter 9.

5.1.4 THE HYPERELLIPTIC RELATIONS

In our presentation of Mod(.S2) above we encountered a new, seemingly
complicated relation. Here we generalize this relation to higher-genus sur-
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faces, and in Chapter 9 we give a geometric explanation for this relation.

Let c1,...,co4+1 be a chain of isotopy classes of simple closed curves
in the closed surface Sy; that is, i(c;,ci+1) = 1 and i(c;,c;) = 0 when
|i — j| > 1. There is only one such chain in S, up to homeomorphism (this
follows from the fact that there is one 2g-chain in .S, up to homeomorphism,
as in Section 1.3). The product

T

C2g+1

T Ty - T,

C2g+1

is a hyperelliptic involution (the hyperelliptic involution when g is equal to
1 or2).
Thus we have the following hyperelliptic relations in Mod(S):

2
(T62g+1 T T61T01 T TC2g+1) =1,
[T62g+1 t TCITCI t T02g+17T02g+1] =L

A strange fact. If we rewrite the first hyperelliptic relation, we see that there
is a product of 4g + 1 Dehn twists that equals the inverse of one Dehn twist.
In other words, a right Dehn twist is a product of left Dehn twists. This, plus
the Dehn—Lickorish theorem, gives us the following surprising fact (pointed
out to us by Luis Paris):

Every element of Mod(S,) is a product of left (positive) Dehn
IWIsts.

5.2 PRESENTATIONS FOR THE MAPPING CLASS GROUP

We have already seen several relations between Dehn twists. In particular,
we have the disjointness relation (Fact 3.9), the braid relation, the chain
relation, the lantern relation, and the hyperelliptic relation. We will see that
these relations suffice to give a finite presentation for Mod(S).

5.2.1 WAJNRYB’S PRESENTATION

Finite presentations for the mapping class groups of closed surfaces of genus
1 and 2 were discussed in Section 5.1.2. McCool gave the first algorithm for
finding a finite presentation for the mapping class group of a higher-genus
surface [145]. His techniques are algebraic in nature; no explicit presenta-
tion has been derived from this algorithm.

Hatcher and Thurston made a breakthrough by finding a topologically fla-
vored algorithm for constructing an explicit finite presentation for Mod(.S).
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The algorithm was carried out by Harer, who produced a finite but un-
wieldy presentation [83]. Wajnryb used these ideas to derive the following
explicit presentation, which is considered to be the standard presentation for
Mod(S) [29, 209]. The exact form of the presentation given here is taken
from a survey paper by Birman [25]. In the statement, we use functional
notation as usual (elements applied right to left).

C1 Co

Figure 5.7 The Humphries generators for Mod(SS).

THEOREM 5.3 (Wajnryb’s finite presentation) Let S be either a closed
surface or a surface with one boundary component and genus g > 3. Let
a; denote the Humphries generator I, where c; is as shown in Figure 5.7.
The mapping class group Mod(S) has a presentation where the generators
are ay, . . . , aag, and the relations are as follows.

1. Disjointness relations

CLZ‘CLJ' = CLJ'CLZ' lf ’L'(Ci,Cj) =0

2. Braid relations

aiajai = ajaiaj lf Z‘(CZ‘,CJ‘) =1

3. 3-chain relation
4 __
(arazaz)” = agby,
where

-1
by = (agasazaiaiazasay)ag(asasazalaiasasay)

4. Lantern relation

apbaby = ajazasbs,
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where

b1 = (a4a5a3a4)_1a0(a4a5a3a4)
bg = (agagalag)_lbl(agagalag)
b3 = (a6a5a4a3a2uaf1a§1a§1azl)ao(a6a5a4a3a2uaf1aglaglaéfl)fl

and where
U = (a6a5)*1b1(a6a5)
5. Hyperelliptic relation (S closed)

(a29 ceeaqar vt a29)d = d(a29 ceearaq vt a’29)7

where d is any word in the generating set that, under the previous
relations, is equivalent to the Dehn twist about the simple closed curve
d in Figure 5.8.

Figure 5.8 Extra elements used in the relations for Wajnryb’s presentation for Mod(S). We
have labeled the simple closed curves by the corresponding elements of Mod(.5).

In the statement, we mean that the hyperelliptic relation is only needed
(and it is only true) for closed surfaces. The reason for the term “hyperel-
liptic relation” is that the product d(asgg - - - aja1 - - - asg)d is a hyperelliptic
involution.

Strictly speaking, Theorem 5.3 does not give a formal presentation of
Mod(Sy) since we have not given the element d in terms of the generators,
so we take care of that now. If we rephrase things, we need to write the
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Dehn twist d as a product of the generators a; in the mapping class group
of the surface with one boundary component. Let ng,...,n, be the Dehn
twists about the simple closed curves shown in Figure 5.9. Note that n, na,
and n, are the same as the Dehn twists aq, by, and d from Theorem 5.3.
Similarly to Section 4.4.3, we can inductively write the n; in terms of the
Humphries generators. We start with ny = a1 and ny = by. Then we have

-1
Nj42 = Winw,; -,
where

w; = (a2i+4a2i+3a2i+2nz‘+1)(a2i+1a2ia2i+2a2i+1)
(62i+3 a2i+2a2i+4a2i+3) (ni+1 427422541 a2i) .

Finally, set d = ng.

Figure 5.9 Extra elements used in the relations for Wajnryb’s presentation for Mod(S). We
have labeled the simple closed curves by the corresponding elements of Mod(S).

A presentation of the mapping class group of a surface with more than
one boundary component can be obtained by applying the Birman exact
sequence. Also, a presentation for Mod(.S,,1) can be obtained by combining
Wajnryb’s presentation with Proposition 3.19.

The effect of relations on homology. Harer notes that if we take the ab-
stract group with the Humphries generators and the first two sets of relations
in the Wajnryb presentation, then we have a group (an Artin group) whose
first homology is Z. We see from our proof of Theorem 5.2 that if we next
add in the lantern relation, the resulting group has trivial first homology. At
this point, our abstract group has trivial second homology, yet Harer proved
that Hy(Mod(Sy);Z) ~ Z (Theorem 5.8 below). Adding in the 3-chain
relation corrects this.

The algebrogeometric approach. Years before McCool’s result, Baily and
Deligne-Mumford gave different compactifications of M(S,), the moduli
space of Riemann surfaces homeomorphic to Sy, showing that M(Sy) is a
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quasiprojective variety [10, 52]. We will prove in Theorem 6.9 below that
Mod(Sy) has a finite-index subgroup I' that is torsion-free, from which it
follows that M (.S,) has a finite cover (corresponding to I') which is a man-
ifold, and so a smooth quasiprojective variety. Lojasiewicz had also shown
that any smooth quasiprojective variety has the homotopy type of a finite
complex; in particular, its fundamental group is finitely presented. We con-
clude that I', hence Mod(S,), is finitely presented. However, this approach
does not give an algorithm for finding an explicit finite presentation.

5.2.2 THE CUT SYSTEM COMPLEX

We now very briefly outline the strategy used to derive the presentation
in Theorem 5.3. In Section 5.3 below, we will give a complete proof that
Mod(Sy) is finitely presented, although we will not derive an explicit pre-
sentation.

The cut system complex. Hatcher—Thurston [89] defined a 2-dimensional
CW-complex X (Sy), called the cut system complex, as follows. Vertices of
X (Sy) correspond to cut systems in Sy, that is, (unordered) sets {ci, ..., ¢4}
where

1. each ¢; is the isotopy class of a nonseparating simple closed curve +;
in S
g

2. i(¢j,c¢j) = 0 forall i and j, and
3. Sy — U; is connected.

An example of a vertex in X (S,) is given by the set of isotopy classes
{a1,...,ay} shown in Figure 5.10. Vertices represented by {a;} and {b;}
are connected by an edge in X (Sy) if (up to renumbering) a; = b; for
2 S ) S gandi(al,bl) =1.

Just as the edges of X (S;) are defined by certain topological configu-
rations of curves, so are the 2-cells of X (S,). For example, we glue in
a triangle to the 1-skeleton of X (S;) for each triple of vertices that are
pairwise-connected by edges. For example, in Figure 5.10, the vertices
ve = {a,ag,...,a4}, vy = {b,as,...,a4}, and v, = {c,as,...,a,} span
a triangle in X (S,). The complex X (S;) also has squares and pentagons;
we refer the reader to the paper [89] for the details.

Hatcher-Thurston give a beautiful Morse—Cerf-theoretic proof that
X (Sy) is simply connected. Later Hatcher—Lochak—Schneps gave an alter-
nate proof for a closely related complex [92], and Wajnryb gave a combina-
torial proof of simple connectivity for the original complex [210].
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The mapping class group action. In general, when a group G acts co-
compactly on a simply connected complex X with finitely presented vertex
stabilizers and finitely generated edge stabilizers, the group G is finitely pre-
sented (see Proposition 5.6 below). For each orbit of vertices of X, there are
relations in G coming from the relations in those vertex stabilizers; for each
orbit of edges of X, there are relations in G coming from the generators
of those edge stabilizers (the relations identify elements of the two vertex
stabilizers); and finally there is one relation in G for each orbit of 2-cells in
X. See the paper by Ken Brown for details [37].

Since the complex X (.S;) is defined by topological rules, it follows that
Mod(Sy) acts on X (Sy). Using the change of coordinates principle, it is
not hard to see that the action is cocompact; indeed, there is a single orbit
of vertices and a single orbit of edges. Now, the stabilizer in Mod(.S,) of a
vertex of X () is closely related to a braid group. This is because if we cut
S, along the simple closed curves corresponding to a vertex of .S, the result
is a sphere with 2g boundary components; cf. Chapter 9. Therefore, the
presentation for a vertex stabilizer can be derived from known presentations
of braid groups or mapping class groups of genus O surfaces. Generating
sets for edge stabilizers are obtained similarly.

Wajnryb’s calculation. To give a flavor of the calculation used to get Wa-
jnryb’s actual presentation, we explain how the braid relation comes up in
his analysis of the action of Mod(S,) on X (S,). Of course, to verify the
braid relation in Mod(Sy) is not difficult (see Proposition 3.11). The point
here is that, by the general theory, a full set of relations for Mod(Sy) is ob-
tained by identifying elements of different cell stabilizers. We will realize
the braid relation as one such relation.

a = aq a9 as agq

Figure 5.10 The simple closed curves a; give a vertex of the cut system complex, and the
simple closed curves a, b, and ¢, along with ag, .. .ag, give a triangle of the
complex.

In what follows, we abuse notation, denoting a simple closed curve and
its associated Dehn twist by the same symbol.
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Let v, be the vertex of X (S) corresponding to the cut system {a; } given
in Figure 5.10. We will make use of two particular elements of the stabilizer
G, of vg, namely, the Dehn twist a and the element s = ba?b, where b is
the Dehn twist about the simple closed curve shown in Figure 5.10.

Let e, be the edge of X (.S;) spanned by the vertices v, and vy, defined
above. One element of the stabilizer G, of ey, is 7 = aba. Since 7 in-
terchanges the vertices of ey, it follows that 2 is an element of Gy, In
particular, it is the element sa® € G,,. So we obtain the following relation
(relation P10 in [210, Theorem 31]):

r? = sa®.
We now focus on the stabilizer of a 2-cell, namely, the triangle ¢,;. spanned
by vg, s, and v.. The element ar does not stabilize v, or ey, but it does
stabilize 4., inducing an order 3 rotation of £,.. Thus (ar)3 is an element
of G,,, and again one can write it as a word in the elements s,a € G,,,
namely, (asa)?. So we have the following relation (relation P11 in [210,
Theorem 31]):

(ar)® = (asa)?.

2

We can rewrite this last relation using the relation 2> = sa? and the trivial

relations aa=* = 1l and bb~—1 = 1.

Replacing r with aba and s with ba?b, we find

a’ba’ba’ba = a*ba’baba’ba
— (a®ba?)aba(a’ba) = (a*ba?)bab(a?ba)
—> aba =bab

Thus we see the braid relation arising from the action of Mod(S,) on
X (Sy); it comes from two relations one gets by flipping edges and by ro-
tating triangles. Deriving the complete presentation of Mod(Sy) given in
Theorem 5.3 is quite involved; we refer the reader to Wajnryb’s paper [210]
for details.

It is straightforward to carry out this procedure in the case of the torus.
The complex X (T2) is the Farey complex (see Section 4.1), and, in fact, the
relations r? = sa® and aba = bab already discussed suffice to present the
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group Mod(T?) ~ SL(2,7Z).

5.2.3 THE GERVAIS PRESENTATION

While Wajnryb’s presentation (Theorem 5.3) is the most well known and
classical presentation of Mod(SS), there are several other useful ones. We
now present one due to Gervais [71]. Some of the features of this presen-
tation are: it is fairly easy to write down explicitly, it works for the pure
mapping class group of any surface with boundary, and all of the relations
are described on uniformly small subsurfaces (tori with at most three bound-
ary components). Gervais’s derivation of this presentation is accomplished
by starting from Wajnryb’s presentation and simplifying the relations there.
The same is true for the beautiful presentation due to Matsumoto [143],
which is phrased in terms of Artin groups and which we do not discuss
here. Hirose gives a direct derivation of the Gervais presentation [94].

The Gervais presentation uses one new relation which we have not seen
before.

The star relation. Consider the torus S§ with three boundary components
di, do, and ds. Let c1, co, c3, and b be isotopy classes of simple closed
curves configured as in Figure 5.11. Note that S§ is homeomorphic to a
closed regular neighborhood of ¢; U ¢z U c3 U b (really the union of four
representatives).

()

Figure 5.11 The simple closed curves used in the star relation.

Gervais gives the following relation [71]. If ¢y, ¢a, ¢3, b, di, do, and d3
are the isotopy classes of simple closed curves in S3 given in Figure 5.11,
then we have

(T01 TC2 Tt:aTb)3 - Td1 sz Tds'
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As with the lantern relation, this relation can be checked with the Alexander
method. We call b the central curve of the star relation. For any embedding
S% — S into a surface S, the image of the star relation under the induced
homomorphism Mod(S3) — Mod(S) of course gives a relation (between
the images of the above curves) in Mod(.S).

Suppose that S is embedded in S in such a way that the isotopy classes
c1 and ¢4 are equal but distinct from c3. This happens when the image of d3
under the embedding is the trivial isotopy class and the images of d; and ds
are nontrivial. In this case, the star relation becomes

(Tc21 T03 Tb)3 = le sz .

We call this a degenerate star relation. We will not need to consider star
relations with ¢; = co = c3. We note that the degenerate star relation is the
same as one of the 3-chain relations given in Section 4.4.

Recall that we used the star relation in Section 4.4.4 to prove Corol-
lary 4.16.

The Gervais presentation. Let S be a compact surface of genus g with n
boundary components. We begin by giving the generating set for the Gervais
presentation of Mod(S). Each of the generators is a Dehn twist, and so it
suffices to list the corresponding simple closed curves. The curves are shown
in Figure 5.12, where we have drawn .S as a torus with g— 1 handles attached
and n disks removed.

We start at the top of the figure. There is one simple closed curve b which
will form the central curve for all of our star relations. There are 2(g —
1) + n simple closed curves {¢;} with i(b,c;) = 1. There are 2(g — 1)
simple closed curves corresponding to the latitudes and longitudes of the
g — 1 handles attached to the central torus. We also include the n boundary
components. Finally, for each ordered pair of distinct curves (c;, ¢;), there
is a simple closed curve c; ; that lies in a neighborhood of ¢; U ¢; U b and
that lies in the clockwise direction from ¢; along b (note that each ¢; ;41 has
already appeared on the list). The curves c; ; are depicted at the bottom of
Figure 5.12; there are (2g — 2 + n)(2g — 3 + n) of these curves.

THEOREM 5.4 (Gervais’ finite presentation) Let S be a surface of genus
g with n boundary components. The group Mod(S) has a presentation with
one Dehn twist generator for each simple closed curve shown in Figure 5.12
and with the following relations.

1. All disjointness relations between generators

2. All braid relations between generators
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G

Figure 5.12 The generators for the Gervais presentation.

3. All star relations between generators, including the degenerate ones,
where b is the central curve.

From Theorem 5.4 it is straightforward to write down the presentation
explicitly by listing the generators and relations. For the first two kinds of
relations, one needs to find all pairs of generators that are disjoint or that
have intersection number 1. The degenerate star relations are given by triples
{ci, ¢, cj}, where ¢; # c;, and the other star relations are given by triples of
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distinct ¢;-curves.

By Proposition 3.19, one can get a presentation for the case of a sur-
face with punctures by setting each generator corresponding to a Dehn twist
about a boundary curve to be trivial.

5.3 PROOF OF FINITE PRESENTABILITY

We now give a proof that Mod(S) is finitely presented. While it is possible
to give a proof analogous to our proof of finite generation, we instead choose
to introduce a new technique. As a result, we obtain a new proof of finite
generation.

The strategy, suggested by Andrew Putman, is to show that the arc com-
plex A(S) is contractible and use the action of Mod(S) on .A(S) to build a
K (Mod(S), 1) with finite 2-skeleton. It immediately follows that Mod(S)
is finitely presented. While this is a simple proof of finite presentability, we
do not know what explicit finite presentation comes out of this approach.

5.3.1 THE ARC COMPLEX

Let S be a compact surface that either has nonempty boundary or has at least
one marked point. We define the arc complex .4(S) as the abstract simplicial
flag complex described by the following data (cf. Section 4.1).

Vertices. There is one vertex for each free isotopy class of es-
sential simple proper arcs in S.

Edges. Vertices are connected by an edge if the corresponding
free isotopy classes have disjoint representatives.

If we take a surface S with nonempty boundary and cap one or more
boundary components with a once-marked disk, then A(.S) is naturally iso-
morphic to the arc complex for the capped surface. So in this sense there is
no difference between marked points and boundary components in defining
the arc complex. When we consider the action of the mapping class group
on the arc complex, marked points are more natural than boundary compo-
nents since Dehn twists about boundary components act trivially on the arc
complex.

As a first example, the arc complex of the torus with one boundary com-
ponent is the Farey complex (see Section 4.1).

The most fundamental fact about the arc complex is the following theo-
rem due to Harer [83].

THEOREM 5.5 Let S be any compact surface with finitely many marked
points. If A(S) is nonempty, then it is contractible.
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The elegant proof we present is due to Hatcher [90]. A number of
other mathematicians made various contributions to the circle of ideas sur-
rounding this theorem, including Thurston, Bowditch—Epstein, Mumford,
Mosher, and Penner.

For the proof, recall that the simplicial star of a vertex v in a simplicial
complex is the union of closed simplices containing v. The simplicial star
of a vertex is contractible.

Proof. We choose some base vertex v of A(S). To prove that .A(S) is con-
tractible, we will define a flow of A(S) onto the simplicial star of v.

An arbitrary point p in the simplex of A(S) spanned by vertices
v1,..., Uy is given by barycentric coordinates, that is, a formal sum > ¢;v;
where Y " ¢; = 1 and ¢; > 0 for all 7. Let « be a fixed representative of v. We
can realize p in S as follows: first realize the v; as disjoint arcs in .S, each
in minimal position with ¢, and then thicken each v;-arc to a band which is
declared to have width ¢;.

By an isotopy, we make the intersection of the arc representing v with
the union of these bands equal to a closed interval disjoint from 05, as on
the left-hand side of Figure 5.13. (In the figure we have shown « with its
endpoint at a boundary component. If instead its endpoint is at a marked
point/puncture, then the boundary component, depicted as a horizontal line
at the bottom of the figure, is not in the picture.) Let = > ¢;i(v;, v) denote
the thickness of this union of bands.

W
)

oS
Figure 5.13 The Hatcher flow on A(.S).

The flow is defined as follows. At time ¢, we push a total band width of
t0 in some prechosen direction along the arc « (see the right-hand side of
Figure 5.13). The picture gives barycentric coordinates for some new point
in A(S). At time 1, all of the bands are disjoint from the arc o, and we are
in the star of v.
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It is not difficult to check that the flow is continuous and well defined on
the intersections of simplices. This completes the proof of the theorem. O

5.3.2 FINITE PRESENTABILITY VIA GROUP ACTIONS ON COMPLEXES

The group Mod(\S) acts by simplicial automorphisms on the contractible
simplicial complex A(S). In order to use this action to analyze Mod(S),
we need to apply some geometric group theory.

The following theorem is adapted from Scott—Wall [191]. In the statement
of the theorem, we say that a group G acts on a CW-complex X without
rotations if, whenever an element g € G fixes a cell 0 C X, then g fixes
o pointwise. Any action of a group on a CW-complex can be turned into
an action without rotations by barycentrically subdividing the complex. The
benefit of an action without rotations is that the quotient has a natural CW-
complex structure coming from the structure of the original complex.

Proposition 5.6 Let G be a group acting on a contractible CW-complex X
without rotations. Suppose that each of the following conditions holds.

1. The quotient X /G is finite.
2. Each vertex stabilizer is finitely presented.
3. Each edge stabilizer is finitely generated.

Then G is finitely presented.

Proof. Let U be any K (G, 1)-complex. Consider the contractible complex
U x X. Since the action of G on U is free, the diagonal action of G on
U x X is free. Therefore, as U x X is contractible, ((7 x X)/G is another
K (G, 1)-complex. This construction of a K (G, 1) from a group action on a
complex is called the Borel construction.

We will show that (U x X)/G has the homotopy type of a complex with
finite 2-skeleton. Consider the projection

(U x X)/G — X/G.

If v is a vertex of X with stabilizer G, in G, then (U x v)/G, is a
K(G,,1)-complex. Moreover, this space maps injectively to (U x X) /G
and is the preimage of [v] € X/G. In other words, over each vertex of X/G
there is in (U x X)/G a K(m,1) corresponding to that vertex stabilizer.
Similarly, lying over each higher-dimensional open cell is the product of a
K (m,1)-complex for that cell stabilizer with that open cell.
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As a result, we see that ([7 x X)/G has the structure of a complex
of spaces, with each vertex space a K(G,,1) for a vertex stabilizer G,
and each edge space a K(G,,1) for an edge stabilizer G.. That is, the
space ([7 x X)/G is obtained inductively as follows: we start with the
disjoint union of the K (G,, 1)-spaces; then, we take the K (G, 1)-spaces,
cross them with intervals, and glue them to the K(G,, 1)-spaces via any
map in the unique homotopy class of maps determined by the inclusion
G. — G,. This process is repeated inductively (and analogously) on
higher-dimensional skeletons.

We make the following observation: if each space in the complex of
spaces is replaced with another space to which it is homotopy-equivalent
(i.e., another K (7, 1)-space), the homotopy type of the resulting complex
does not change. In other words, the homotopy colimit is well defined [91,
Proposition 4G.1].

Since the stabilizer (G, of each vertex v is assumed to be finitely pre-
sented, each K (G, 1)-space can be chosen to have a finite 2-skeleton.
Since the stabilizer of each edge e is assumed to be finitely generated, each
K(G.,1)-space can be chosen to have a finite 1-skeleton. For the stabi-
lizer Gy of each 2-cell f, the K (Gf)-space can be chosen to have a finite
0-skeleton, since for any group H, there is a K (H, 1) with a single vertex).

There are three ways that 2-cells arise in the complex of spaces (ﬁ X
X)/G: via 2-cells of K (G, 1)-spaces, 1-cells of K (G, 1)-spaces, and 0-
cells of K(Gy,1)-spaces. As discussed above, each of these spaces can
be chosen to have finite 2-skeleton, 1-skeleton and 0-skeleton, respectively.
Since the quotient X /G is finite, the resulting complex of spaces has finitely
many 2-cells. Thus we have created a K (G, 1) with a finite 2-skeleton, and
so G is finitely presented. 0

We remark that the proof of Proposition 5.6 can be slightly modified to
work in the case where X is assumed only to be simply connected as op-
posed to contractible. Actually, the complex of curves C(S) is simply con-
nected (but not contractible) for most S; see [87, Theorem 3.5] and [108,
Theorem 1.3]. The reason we use the arc complex in our application of
Proposition 5.6 is simply because it is easier to prove that A(S) is con-
tractible than it is to prove that C(.S) is simply connected.

5.3.3 PROOF THAT THE MAPPING CLASS GROUP IS FINITELY PRESENTED

We are now ready to prove the following theorem.

THEOREM 5.7 If S is a compact surface with finitely many marked points,
then the group Mod(S) is finitely presented.
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Proof. We first reduce the problem to the case of S ,, with n > 0 marked
points. Suppose we can prove the theorem in this case. We now explain how
to deduce the theorem in the case that S has nonempty boundary and then
in the case where S is closed.

Let S be a compact surface with n > 0 boundary components and assume
that S is not the disk D?. Also assume by induction that, for any compact
surface with n — 1 boundary components, the mapping class group is finitely
presented. We recall Proposition 3.19, which states that if S* is the surface
obtained from a surface S by capping a boundary component 3 with a once-
marked disk, then the following sequence is exact:

Cap "/ ok
1— <T5> — Mod(S) = Mod*(S*) — 1,
where Mod*(S*) is the subgroup of Mod(S*) consisting of elements that
fix the marked point coming from the capping operation. By the inductive
hypothesis, we have that Mod(S*) is finitely presented. Since Mod*(S*)
has finite index in Mod(S*), it is also finitely presented. Since the extension
of a finitely presented group by a finitely presented group is finitely pre-
sented, it follows from Proposition 3.19 that Mod(.S) is finitely presented.

A similar argument to the above, using the Birman exact sequence, shows
that Mod(.S,,0) is finitely presented if Mod (.S, 1) is since the quotient of a
finitely presented group by a finitely generated group is finitely presented.

We have thus reduced the proof to showing that Mod(Sy.,,) is finitely
presented when n > 0. We may assume that (g,n) # (0,1) because we
already know Mod(Sp 1) = 1. Since a group is finitely presented if and only
if any of its finite-index subgroups are finitely presented, it suffices to prove
that PMod(Sy,,) is finitely presented. We make the inductive hypothesis
that PMod(Sy ,) is finitely presented when ¢' < g or when ¢’ = g and
n' < n.

We would like to apply Proposition 5.6. By Theorem 5.5, the arc com-
plex A(S,, ) is contractible. Therefore its barycentric subdivision A’(Sy ),
on which PMod(Sy,,) acts without rotations, is also contractible. Note
that vertices of A’(S,,,) correspond to simplices of A(Sy ). It follows
from the change of coordinates principle that the quotient of A’(S,,,) by
PMod(Sy,») is finite.

Now let v be a vertex of A’'(S;,) and let G, be its stabilizer in
PMod(Sy,r,). In order to apply Proposition 5.6, we need to show that G,
is finitely presented.

As above, v corresponds to a simplex of A(S ), that is, the isotopy class
of a collection of disjoint simple proper arcs «; in Sy ,,. If we cut Sy ,, along
the «;, we obtain a (possibly disconnected) compact surface with boundary
S, possibly with marked points in its interior. We may pass from the cut
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surface S, to a surface with marked points but no boundary by collapsing
each boundary component to a marked point (or, what will have the same
effect, capping each boundary component with a once-marked disk). De-
note the connected components of the resulting surface by R;. Each R; has
marked points coming from the marked points of Sy ,, and/or marked points
coming from Ucq;. Note that each PMod(R;) falls under the inductive hy-
pothesis.

Let GY denote the subgroup of G, consisting of elements that fix each
isotopy class [o;] with orientation. Note that these elements necessarily fix
the R; as well. Since G has finite index in G, it suffices to show that G
is finitely presented. There is a map

n: Gy — [[PMod(R)).

To see that n is a well-defined homomorphism, one needs the fact that if
two homeomorphisms of S ,, fixing Ua; are homotopic, then they are ho-
motopic through homeomorphisms that fix Ua; (cf. Section 3.6).

The map 7 is also surjective. Indeed, given any element of [ | PMod(R;),
one can choose a representative homeomorphism that is the identity in a
neighborhood of the marked points, and then one can lift this to a repre-
sentative of an element of G that is the identity on a neighborhood of the
union of the marked point with the ;. It follows from Proposition 3.19 that
the kernel of 7 is generated by the Dehn twists about the components of the
boundary of the cut surface S,,. Since each PMod(R;) is finitely presented,
their product is as well. As the kernel of 7 is finitely generated and its co-
kernel is finitely presented, it follows that G is finitely presented, which is
what we wanted to show.

Two vertices of A'(Sy,) are connected by an edge if and only if the
corresponding simplices of LA(S, ,,) share a containment relation (i.e., one
is contained in the other). It follows that the stabilizer of an edge in A’ (S, ,,)
is a finite-index subgroup of the larger of the two stabilizers of its vertices.
Thus edge stabilizers are finitely presented, and in particular they are finitely
generated.

We thus have that Mod (.S, ,,) acts on the contractible simplicial complex
A(S) without rotations, with finitely presented vertex stabilizers and finitely
generated edge stabilizers. Applying Proposition 5.6 to this action gives that
Mod(Sy,,) is finitely presented. O
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5.4 HOPF’S FORMULA AND H,(Mod(S); Z)

In Section 5.1.2 we computed H;(Mod(.S); Z). In this section we compute
Hy(Mod(S);Z). As with first homology, the second homology is a basic
invariant of a group G. For example, if Hy(G;Z) is infinitely generated,
then G has no finite presentation. The precise connection between Hy (G Z)
and presentations for G is made explicit by Hopf’s formula below. Later we
will see that Ho(G; Z) is related to H2(G; Z), which in turn classifies cyclic
central extensions of G.

THEOREM 5.8 (Harer) Let g > 4. Let S; denote a compact surface of
genus g with one boundary component. Then we have the following isomor-
phisms:
(i) Hy(Mod(Sy);Z) Z
(ii)  Hy(Mod(Sy);Z) Z
(iii) Ho(Mod(S,1);Z) =~ 72

)

Q

Q

In general, if S is a surface of genus g > 4 with b boundary components
and p punctures, then Ho(Mod(S);Z) ~ ZP*!; see [83, 126]. Harer also
proved that H3(Mod(S,); Q) = 0 for g > 3 [85] and H4(Mod(Sy); Q) ~
Q? for g > 10 [82]. The groups Hy(Mod(S,)) have not been computed for
k > 5, although it is known that Hy(Mod(Sy)) does not depend on g for g
large [86].

Harer proved Theorem 5.8 by reducing to the case where S has boundary
and using the action of Mod(,S) on the arc complex associated to S. Pitsch
gave a completely different proof of the upper bound in Theorem 5.8. That
is, he showed that Hg(Mod(S;); Z) is a quotient of Z. He realized that
one can actually apply Hopf’s formula to Wajnryb’s explicit presentation of
Mod(S). In this section we present what is essentially Pitsch’s proof from
[179], together with the variations on his argument that are required for the
cases of Sy and Sy 1.

5.4.1 THE HOPF FORMULA

Let G be any group with a finite presentation G = (F'|R). The group G can
also be thought of as F'/ K, where K is the normal subgroup generated by
the relators, namely, the elements of R. The classical Hopf formula states
that

KN|[F,F)

Hy(G;Z) ~ K. F]
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So elements of Hy(G;Z) are cosets represented by relators in G—that is,
elements of K —that are products of commutators in F'. Given a relator k,
we think of any conjugate relator fkf ' as being redundant, and that is why
we take the quotient by [K, F/|. See Brown’s book [38, Theorem 5.3] for a
proof of Hopf’s formula.

The group (K N [F,F])/[K,F] is a subgroup of the abelian group
K/[K, F]. Therefore, as K is normally generated by the finitely many ele-
ments of R, the group K/[K, F] is an abelian group generated by the cosets
represented by the finitely many elements of R. Hopf’s formula thus implies
that any element of Ho(G};Z) can be represented (nonuniquely) as a product
[Ir;", where R = {ry,...ry}and n; € Z.

5.4.2 THE HOPF FORMULA APPLIED TO THE WAJNRYB PRESENTATION

We start with the case of S; with g > 4. We will use Wajnryb’s presentation
for Mod(S;), in particular, using the notation from Theorem 5.3. Pitsch’s
idea is to plug this presentation into Hopf’s formula.

We can rewrite each relation from Theorem 5.3 so that we get a word
in the generators for Mod(S;) that is equal to the identity element of
Mod(S;), that is, a relator. We do this by moving all generators to the
left-hand side of each relation. We will use the following notation for the
relators:

(i) Disjointness relators [a;, a;] denoted D; ;
(ii) Braid relators aiajai(ajaiaj)_l denoted B; ;
(iii)  3-chain relator (arasaz)*(agby)™"  denoted C
(iv) Lantern relator (agbobr)(a1asasbs) ™  denoted L

In the first two relators, only certain pairs (i, j) are allowed, as governed
by the statement of Theorem 5.3. We will not need the precise forms of the
relators here—that is, we will not write out the b; in terms of the a;—but
rather we will only need the number of times, with sign, each a; appears in
each relator. We will give these numbers as needed, though the reader can
easily read them off from Theorem 5.3.

Let F' be the free group generated by the a; and let K denote the subgroup
of F' normally generated by the above relators. As in the above discussion,
any element = of the abelian group K/[K, F| is a coset represented by an
element of the form

2g9—1
e (H DZ}’J) (H BZ§+1> ByoCreLtr, (5.1)
=1
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where the exponents are integers. In the remainder of the proof, we will ig-
nore the distinction between the coset given by such an element of K/[K, F
and the actual element of K/[K, F].

According to Hopf’s formula, Ha(Mod(S}); Z) is isomorphic to the sub-
group (K N [F, F])/[K, F] of K/[K, F]. So which elements of K/[K, F
given by (5.1) are also elements of [F, F'|/[K, F']? One obvious condition is
that the exponent sum of each a; must be zero. Actually, we will show that,
up to multiples, there is at most one element of the form (5.1) that satisfies
this condition.

5.4.3 COMMUTING RELATORS

We begin by analyzing the simplest relators, namely, the commuting re-
lators D; ;. We will show that each represents the trivial element of
Hy (Mod(Sgl); Z), and hence these terms can be ignored in (5.1). Choose
some particular D; ; = [a;, a;]. As an element of F' = (a;), this word cer-
tainly lives in K N [F, F|, where K is the normal subgroup of F' generated
by the relators. Our goal is to show that it also lies in [F, K].

In general, if g and h are two commuting elements of Mod(Sgl), then
[g,h] is an element of K N [F, F]. Let {g,h} denote the corresponding
element (coset) in Hy(Mod(S}); Z).

If g is an element of Mod(S;) that commutes with the elements A and &
of Mod(S;), then

{9, hk} = {g,h} +{g,k} (5.2)

in Hy(Mod(S ;); Z). This follows from the fact that, for any three elements
x, Y, and z in the free group F’, we have

[z, y2] = [2,y][z, 2]".

We have also used the fact that conjugation “does nothing” in the quotient
(K N[F,F])/[K, F]. It is also easy to check that

{g9,h~"} = —{g,h}. (5.3)

Lemma 5.9 Let g > 4. If a and b are disjoint nonseparating simple closed
curves in S,, then {T,, Ty} = 0 in Hy(Mod(S,); Z).

Proof. We cut S; along a and obtain a compact surface S’ of genus g — 1
with three boundary components. The simple closed curve b can be thought
of as a simple closed curve on S’, and so the Dehn twist 7}, can be thought
of as an element of Mod(S’). Since g > 4, we have g — 1 > 3, so by
Theorem 5.2 Mod(S’) has trivial abelianization; that is, it is perfect. We
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can thus write T} as a product of commutators T, = [[[z;, y;], where each
x; and y; is an element of Mod(.S”) and so commutes with 7T,.
Using (5.2) and (5.3), we then obtain

{10, T}y = {Tu, [z, v}

= Z{Tm [z, vil }

= Z[{Ta,xi} + {Ta,yi} - {Tavwi} - {Tavyi}]

)

d

Lemma 5.9 has a topological interpretation. Let [T?] € Hy(T*Z) ~
Hy(Z?;7Z) ~ 7 denote the fundamental class. Two commuting Dehn twists
g,h € Mod(S) determine an inclusion Z? — Mod(S). This homomor-
phism determines (up to homotopy) a based map n from the classifying
space K(Z? 1) ~ T? to the classifying space K(Mod(S),1). Let i, :
Ho(Z?;7Z) — Hy(Mod(S); Z) be the induced homomorphism. Lemma 5.9
says precisely that i, is the zero map.

It follows immediately from Lemma 5.9 that each D; ; represents the
trivial element of Hg(Mod(S;); Z). From this fact and (5.1), we now have
that any element x of (K N [F, F'])/[K, F| has the form

2g—1
T = (H Bgf;> ByyCreL". (5.4)
i=1

5.4.4 COMPLETING THE PROOF

Let x € (K N [F, F])/[K, F|. We have shown that = has the form given in
(5.4). We will now use the exponent sum condition for elements of [F, F'] to
reduce the possibilities for x further.

Each relator on the right-hand side of (5.4) is a product of the generators
{a; : 1 < i < 2g} of F. In order that x lie in [F, F] it must be that the
exponent sum of each a; occurring in x is 0. The only relator involving as,
is Bog—1.24, in which as, has exponent sum 1. Thus in the word B, 921’1712 g
the total exponent sum of ag, is mo4_1. Since no other relator contains asg
and since the exponent sum of ao, in x is 0, it follows that ng,_1 is 0. We
can thus delete the relator By, 1 2, from the expression (5.4) for x.
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Now note that the only relator left on the right-hand side of (5.4) involv-
ing agy—1 18 Bag_224—1. By the same argument as above we conclude that
nog—2 = 0. Continuing in this way, we obtain that n; = 0 for each 7 > 6;
we stop at Bj ¢ because both a5 and ag appear in other (nonbraid) relators.

Since ag appears in B5 g with a total exponent of —1 and since the only
other relator in which ag appears is L, where it has an exponent sum of 0, it
follows that n5 ¢ = 0.

At this point we have shown that any element = € (K N [F, F])/[K, F]
has the form

_ PN RPN RN2 RPN3 RPN4 NG TR
95—Bo,4B1,2Bz,3B3,4B4,5C L.

The power of the preceding arguments is that, for arbitrary g > 4, we have
reduced the problem to understanding just seven relators and that these re-

lators involve only the generators ag, . . . , as.
Again, in order to get an element of (K N [F, F])/[K, F], the exponent
sums of each of the six generators ag, ..., as must be zero. Since, for ex-

ample, a5 occurs in B4 5 with exponent sum —1, and in L with exponent
sum —1, the fact that the total exponent of a5 must be 0 gives the equation
—ny4 — ny, = 0. Continuing in this way, setting each of the exponent sums

of ag, ..., as equal to 0, we obtain the following system of equations.
1 0 0 0 0 -2 2 10 0
0 1 0 0 0 4 -1 1 0
0 -1 1 0 0 4 0 "o
0 0 -1 1 0 4 -1 "=
-1 0 0 -1 1 0 0 S 0
0O 0 0 0 -1 0 -1 no 0
np

An elementary calculation gives that the above matrix has rank 6, and
so the linear mapping Z’ — Z5 has a 1-dimensional kernel. So there is at
most one element (up to multiples) that satisfies the given linear equations.
A quick check gives that all solutions are simply integral multiples of the
vector (—18,6,2,8, —10, 1, 10). It follows that the only possibilities for the
arbitrary element © € K N [F, F]/[F, K] ~ Hy(Mod(S}); Z) are integral
powers of the element

_ p-18p6 p2 p8 p-10,710
2o = Bg 4 BipB53B5 4B, 5 CL™.

In other words, xo generates Hy(Mod(S;); Z). Note that we still do not

know whether or not z is trivial in Ho(Mod(S ;); Z). We will prove below,
by a completely different line of argument, that xg has infinite order.



PRESENTATIONS AND LOW-DIMENSIONAL HOMOLOGY 145

5.4.5 PITSCH’S PROOF FOR CLOSED SURFACES

To extend Pitsch’s proof to the case of a closed surface S, (g > 4), we only
need to show that the hyperelliptic relation from Wajnryb’s presentation
does not contribute to Hy(Mod(Sy); Z). The argument, due to Korkmaz—
Stipcisz [126] is similar to the proof that the disjointness relations do not
contribute.

Recall that the hyperelliptic relation is

[agg - aray - - agg, d] = 1.

One would like to directly apply the proof of Lemma 5.9. However,
if we cut S, along a representative of d, the hyperelliptic involution
agq -+ -aiay - - - agy does not induce an element of the pure mapping class
group of the cut surface (it switches the two sides of d). Therefore, we can-
not write d as a product of commutators of elements that commute with
d.

We must therefore proceed with a different argument. Our first claim
is that if a and b are isotopy classes of simple closed curves in S, with
i(a,b) = 1, then {T,, (T,TpT,)?} = 0 in Ho(Mod(S,); Z). We proceed in
three steps. Throughout, we apply the formula (5.2) without mention.

Step 1. The classes {T,, (T,TyT,)*} and {Ty, (T, TyT,)*} are equal.
Let r be an element of Mod(Sy) that interchanges @ and b. We have

{T,, (T, TyT,)?*} = {rTor= L, r(T,T,T,)*r 1}
= {1y, (T, T.T3)*}

= {Ty, (T, TyT,)?}.

Step 2. The class 2{T,, (T, TyT)*} is trivial.

The braid relation gives that (7, 737,)* = (7,T3), and the 2-chain re-
lation gives that this product is equal to the Dehn twist about the simple
closed curve ¢ which is the boundary of a regular neighborhood of minimal
position representatives of a and b. We then have

€T, (T,TyT0)?} = {Tu, (T.T,To)*} = {14, T.} = 0,

where in the last step we have applied Lemma 5.9.

Step 3. The class 3{T,, (T, TyT,)?} is trivial.
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To prove this equality, we apply step 1, which gives

3T, (TaToT0)?*} = {Tu, (TaTyT0)?} + {Tu, (TuToT0)?} + {Tu, (T TyT,)*}
={T0o, (T TyT.)*} + {Th, (T TyT0)*} + (T, (T T T0)%}
={T.T,T,, (T, T,T,)*}
=0.

Steps 2 and 3 immediately imply the claim. We can now show that the
hyperelliptic relator contributes zero to Ha(Mod(Sy); Z). In the calculation,
we use the identity {x,y} = {x, 27y2"*}, which follows from formula (5.2)
and the fact that {x,2} = 0. Denote the product agy—1 - aia; - azg—1
by A. If ag, represents the Dehn twist Tt , one can check that A(coy) =
d? (c24), and so Aang_l = anggd_Q. We therefore have

{d,a2g -~ ara1---asg} ={d,azgAas,}
= {d, aggAaggA_l}
= {d, agyd*azyd=2}
= {d, da29d2a29d}
= {d. (dazgd)’}
=0.

Here the last equality follows from the claim. This completes the proof.

5.5 THE EULER CLASS

In Section 5.4 we proved two of the upper bounds for Theorem 5.8. That is,
we showed that Ha(Mod(S); Z) is cyclic when S = S; or S = S;. In Sec-
tion 5.6.3 we will use homological algebra to show that H2(Mod(Sg1);Z)
is generated by at most two elements.

In this section we explicitly construct an infinite-order element of
H?(S,.1;Z) called the Euler class. This will be used, together with the uni-
versal coefficients theorem, to provide one of the lower bounds for Theo-
rem 5.8.

The Euler class is not just some element of a cohomology group; it is the
most basic and fundamental invariant of surface bundles.
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5.5.1 COCYCLES FROM CENTRAL EXTENSIONS

We first recall how central extensions of a group give rise to 2-dimensional
cohomology classes. For a more detailed explanation, see, for example, [38,
Section IV.3]. Let

1-A—-F—>G—1 (5.5

be a central extension of the group G; in other words, A is central in £ and
the sequence (5.5) is exact. Note that A is abelian since it lies in the center
of E.

If the extension (5.5) is split, then since A is central, it follows that F =
A x G. Even if E does not split, we still have a (noncanonical) bijection
¢ : A x G — E obtained by simply picking any set-theoretic section 1 of
the map £ — G. Moreover, there exists a function f : G x G — A, called
a factor set, so that

#(a1,g1)9(az, g2) = d(araz f(91,92), 9192).

The factor set f measures the failure of the section v to be a homomorphism,
or equivalently, the failure of ¢ to be an isomorphism.

While ¢, and hence f, depended on the choice of section ), one can
check that f does represent a well-defined element & of H?(G; A). That is,
the element & depends only on the extension (5.5) and not on any of the
choices. The sequence (5.5) splits precisely when the cohomology class € is
trivial.

5.5.2 THE CLASSICAL EULER CLASS

Before we construct the Euler class in H*(Mod(S,,1);Z), we recall the
classical Euler class, which is an element of H?(Homeo™ (S'); Z).
Consider the covering R — S given by the quotient of R by the group Z
generated by the translation ¢(x) = x + 1. The set of all lifts of an element
¢ € Homeo™ (S') to Homeo™ (R) is precisely the set of elements of the

~ ~ —~ +
form 1 o t™ for m € Z, where 1 is any fixed lift of 1. Let Homeo (S%)
denote the group of all lifts of all elements of Homeo™ (S!). In other words,

—~— +

Homeo (S%) is the subgroup of Homeo™ (R) consisting of those homeo-
morphisms that commute with ¢, that is, the group of periodic homeomor-
phisms of period 1. We thus have an exact sequence

1 — Z — Homeo (S*) — Homeo™ (S") — 1, (5.6)

where Z is generated by ¢ and is thus central. We know that the sequence
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(5.6) does not split since Homeo™ (S*) has torsion while I-Br\n/eoJr(S 1), be-
ing a subgroup of Homeo™ (R), is torsion-free. As explained above, it fol-
lows that the short exact sequence (5.6) gives rise to a nontrivial element
of H?(Homeo™ (S');Z). This element is called the Euler class. This Euler
class is the most important invariant in the study of circle bundles.

5.5.3 THE EULER CLASS FOR THE MAPPING CLASS GROUP

Let g > 2. We will show that there is a torsion-free group M(Sg,l) and a
central extension

1 — Z — Mod(Sy1) — Mod(Sy1) — 1. (5.7)

Since Mod(Sy,1) contains torsion, it follows that the short exact se-
quence (5.7) does not split, and so we thus obtain a nontrivial element of
H?(Mod(S,,1); Z) called the Euler class.

We now give two different constructions of the Euler class; that is, we
give two derivations of the short exact sequence (5.7) defining the Euler
class. The first comes directly from the classical Euler class.

5.5.4 THE EULER CLASS VIA LIFTED MAPPING CLASSES

In Section 8.2 (cf. Theorem 8.7) we will prove that an element of Mod (S, 1)
gives rise to a homeomorphism of the circle at infinity in hyperbolic space
as follows. Assume that g > 2 and regard the puncture of S, ; as a marked
point p. If we choose a hyperbolic metric on the closed surface S, its uni-
versal cover is isometric to H?. Let p be some distinguished lift of p to H?.

We can represent any f € Mod(Sg 1) by a homeomorphism ¢ : S, —
Sy such that ¢(p) = p. There is a unique lift of ¢ to a homeomorphlsm

gg H? — H? such that qb(@ = p. In Section 8.2, we will prove that gb is

a m1(Sy)-equivariant quasi-isometry of H? and that qb can be extended in a
unique way to a homeomorphism

dU G : H2UOH2 — H2 U oH2

of the closed unit disk. Restricting to OH? ~ S!, we obtain an element
d¢ € Homeo ™ (S1). Since S, is compact, homotopies of S, move points
by a uniformly bounded amount, and so 85 does not depend on the choice
of representative ¢.

We thus have a well-defined map

Mod(S,,1) < Homeo™ (S*).
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This map is clearly a homomorphism. It is injective because if 85 fixes each
£l € OH? (using the notation from Section 8.2), it follows that ¢, fixes
each v € m1(Sy), and then, since S, is a K (G, 1)-space, it follows that ¢
is homotopic (hence isotopic) to the identity. The construction of the map
Mod(S,1) — Homeo™ (S!) is due to Nielsen; he used this as a starting
point for his analysis and classification of mapping classes.

We finally define the group h//f()fi(Sg71) as the pullback of Mod(S,,1) to
— +
Homeo (S%):
1 — Z — Mod(S,1) — Mod(S,1) — 1. (5.8)
+
(

Thus h//f()fi(Sg71) is the subgroup of elements of Homeo S1) that project

—_—~— +
into Mod(S,,1). Because the kernel Z is central in Homeo (S%), it is cen-

tral in 1\71\0?1(5%1). As above, the central extension (5.8) has an associated
cocycle, giving an element e € H?(Mod(S,,1); Z). The element e is called
the Euler class for Mod(.Sy,1).

The group 1\//1\(;1(5971) is torsion-free because it is a subgroup of
HomeoJr(S 1), which we already noted was torsion-free. On the other hand,
Mod(Sy,1) has nontrivial torsion (e.g., take any rotation fixing the marked
point). As above, it follows that (5.8) does not split, so e is nontrivial. We
will later see that e has infinite order in H?(Mod(Sy 1);Z).

Note that the Euler class for Mod (S, 1) is the pullback of the classi-
cal Euler class under the map on cohomology induced by the inclusion
Mod(Sy,1) — Homeo™ (S1).

5.5.5 THE RESTRICTION OF THE EULER CLASS TO THE POINT-PUSHING
SUBGROUP

We will next evaluate the Euler class e € H?(Mod (S, 1); Z) on a concrete
2-cycle, namely, the one coming from the point-pushing subgroup. We will
do this by constructing an easy-to-evaluate cohomology class and by prov-
ing that this class equals the Euler class.

Let g > 2. Recall from Section 4.2 that the point-pushing map is an in-
jective homomorphism Push : m(Sy) — Mod(Sy,1). We can thus pull
back the Euler class e € H?*(Mod(S,,1);Z) to an element Push*(e) €

s

H?(m1(Sy);Z) ~ Z. Let m(S,) denote the pullback of the subgroup

—_~— +
m1(Sy) < Homeo™ (S') to Homeo (S!). We have that Push*(e) is the
cocycle associated to the following central extension:

1 =7 — m(Sy) — m(Sy) — 1.
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Another way to obtain an element of H?(m1(S,); Z) is by considering the
unit tangent bundle S — UT(S,) — S,. Since S, is aspherical, the long
exact sequence associated to this fiber bundle gives a short exact sequence

1 =7 —m(UT(Sy)) — m1(Sy) — 1.

This is a central extension, and so it has an associated cocycle ¢ €
H?(S,;7Z). We claim that ¢’ is nontrivial. If e were trivial, then there would
be a splitting 71 (Sy) — m1(UT'(Sy)) and hence a section of UT(S;) — S,.
The latter would give a nonvanishing vector field on S, which is prohibited
by the Poincaré—Bendixon theorem (for g > 2). We thus have that ¢’ is non-
trivial. In fact, this argument gives that €’ has infinite order in H 2(Sg; Z).
Indeed, the extension given by ke’ is

1= kZ — m(UT(S,)) — m1(Sq) — 1.

If this extension were trivial for some k # 0, we would again have a nonva-
nishing vector field on 5.

Proposition 5.10 The elements Push*(e) and ¢ of H?(m1(Sy);Z) are
equal.

Proposition 5.10 implies that the evaluation of the pullback via Push*
of the Euler class for Mod(Sy 1) on the fundamental class of 7 (.S,) is the
Euler number of the unit tangent bundle, which is equal to 2 — 2g (the Euler
number of the tangent bundle to a Riemannian manifold is always equal to
the Euler characteristic of the manifold). In particular, we have that the Euler
class for Mod(Sg,1) is nontrivial even when restricted to the point-pushing
subgroup.

Proof. By the five lemma it suffices to exhibit a homomorphism
m(UT(Sg)) — m1(Sy) that makes the following diagram commutative:

1 ——=2Z——m(UT(Sy)) —m(Sy) —1

_— |

The key is the following claim.

Claim: The image of 71 (S,) in Homeo™ (S1) given by the com-
position m1(S,) — Mod(S,1) — Homeo™(S') coincides
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with the image of the composition m(S,) — Isom™ (H?) —
Homeo™ (S) obtained by identifying 7y (S,) with the group of
deck transformations of the covering H? — Sy.

Proof of claim. For o € m1(Sy, p), we have that Push(a) acts
by conjugation on 71 (S, p), and so the lift of any represen-
tative of Push(a) fixing p sends 7 - p to (aya™t) - p for all
v € m1(Sg,p). On the other hand, the deck transformation cor-
responding to « sends v - p to (ary) - p. We can modify this deck
transformation by pushing each point (a-y) - p along the unique
lift of o~ starting at that point. This induces an isotopy of H?
moving points a uniformly bounded amount and hence does not
change the corresponding element of Homeo™ (S'). At the end
of this isotopy, each point (ary) - p gets sent to (aya™1t) - p.
Since the lift of Push(a) and the (modified) deck transforma-
tion corresponding to « agree on the orbit of p, they induce the
same element of Homeo™ (S1). O

Now let & be an element of w1 (UT'(Sy)). In order to construct the asso-

—~ —~— +
ciated element ¢» € Homeo (S'), we need two ingredients:
1. a homeomorphism ¢ € Homeo™ (S!), and
2. apath 7 in S! from some basepoint 2o € S! to ¥(wg).

Indeed, if 7 is some fixed lift of x( to R, and 7 is the unique lift of the path

T starting at xg, then we can take 12 to be the unique element of Homeo™ (R)
that lifts ¢) and takes Z to the endpoint of 7.
After constructing 1, we will then need to check that it actually lies in

m1(Sy).

As in Section 4.2, the element & € 71 (UT'(Sy)) gives an element f5 €
Mod(Sy, (p,v)), the group of isotopy classes of diffeomorphisms of S fix-
ing the point-vector pair (p, v). The mapping class f5 is the class of a diffeo-
morphism ¢35 obtained at the end of a smooth isotopy of S, pushing (p,v)
along @. By taking the unique lift ¢z of ¢ to Homeo™ (H2) that fixes the
point p, we obtain a well-defined homeomorphism f; € Homeo™t (S!) as
before. For example, in the case that & is the central element of 71 (UT'(Sy)),
the lift of ¢4 simply rotates a neighborhood of each lift of p, and the induced
element of Homeo™ (S') is trivial.

The homeomorphism f is the desired element of Homeo™(S!). It re-
mains to construct the path 7 in S' from some fixed basepoint g to fz ().
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If we forget the datum of the vector v and remember only the point p, then
fa also represents Push(a), where o € m1(Sy) is the image of & under the
forgetful map w1 (UT'(S,)) — m1(Sy). Thus it follows from the claim that
as an element of Homeo™ (S1) the mapping class f5 agrees with the deck
transformation corresponding to .

Let (p, ) be a fixed lift of (p, v) to UT(H?). Let g be the point of OH? ~
S to which (p, ) points. Because f5 agrees with the deck transformation
and since deck transformations are isometries, the lifted map gga takes (p, V)
to an element of UT'(H?) that points to fz(zo).

Recall that ¢5 is a diffeomorphism obtained at the end of a smooth iso-
topy of S,. Thus $a is a diffeomorphism obtained at the end of a smooth
isotopy of H2. At each point in time during the isotopy of H?, the pair (p, )
has a well-defined image, which in turn points to some point on OH?. Thus
the isotopy of H? coming from & determines a path 7 in OH? ~ S'. Again,
at the end of the isotopy, the image of (p, v) points to the image of xg, and
so 75 satisfies the desired properties.

We have thus obtained the desired element of Homeo+(51). Since the
claim implies that f5; agrees with a deck transformation, we have in fact

constructed an element of 71(Sy). It follows easily from the above discus-

sion that the resulting map 1 (UT'(S,)) — m1(S,) is well defined and that
it satisfies the desired commutativity, and we are done. O

5.5.6 THE EULER CLASS VIA CAPPING THE BOUNDARY

We now give a different construction of the group 1\//[\071(5971) and hence a
different derivation of the Euler class for Mod(Sy,1). Let S ; be the genus
g surface with one boundary component. Recall from Proposition 3.19 that
there is a short exact sequence

1 — Z — Mod(S,) — Mod(S,1) — 1 (5.9)

where the kernel Z is generated by the Dehn twist about the boundary of
Sgl and is thus central. Since the extension is central, it gives an element
e € H*(Mod(S,,1); Z). Corollary 7.3 gives that Mod(S,) is torsion-free,
and so ¢” is nontrivial.

We will show below that H?(Mod (S, 1);Z) ~ Z*. And we will show
that this group is generated by the Euler class and the Meyer signature co-
cycle. We will also show that the Meyer signature cocycle evaluates trivially
on the subgroup 71 (S,) of Mod(Sg,1). Thus, to show that e” is the Euler
class, it suffices to check that these two classes agree on the point pushing
subgroup 71 (Sy). As in Section 4.2, the central extension (5.9) restricts to
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the central extension:
1 =7 —m(UT(Sy)) — m(Sy) — 1.

We thus deduce from Proposition 5.10 that ¢” is again the Euler class.

5.5.7 THE BIRMAN EXACT SEQUENCE DOES NOT SPLIT

Let g > 2. The Birman exact sequence (Theorem 4.6) is
1 — m1(Sg) — Mod(Sy,1) — Mod(S,) — 1.

Above, we described an embedding Mod(S, 1) — Homeo™(S'). Since
finite subgroups of Homeo™t (S1) are cyclic, it follows that the same is true
for Mod(Sg,1). It is easy to find finite subgroups of Mod(.S,) that are not
cyclic (e.g., the dihedral group of order 2¢), and so we have the following.

Corollary 5.11 Let g > 2. The Birman exact sequence
1 — m1(Sg) — Mod(Sy,1) — Mod(Sy) — 1

does not split.

5.6 SURFACE BUNDLES AND THE MEYER SIGNATURE COCYCLE

Our next goal is to construct a nontrivial element o of H?(Mod(Sy);Z).
We will prove in Section 5.6.3 that o pulls back to an element of
H?*(Mod(Sy,1); Z) that is not a power of the Euler class e. The cocycle
o, called the Meyer signature cocycle, is defined using the theory of surface
bundles over surfaces.

We will use some homological algebra to show that the Meyer signature
cocycle gives rise to nontrivial elements of Hy(Mod(Sy)), Ha(Mod(Sy)),
and Hy(Mod(Sg,1)), and to then complete the proof of Theorem 5.8.

In order to define the Meyer signature cocycle properly, we must clarify
the connection between the mapping class group and the theory of surface
bundles, so this is where we start.

5.6.1 SURFACE BUNDLES

The basic problem in the theory of surface bundles is to classify, for fixed
(Hausdorff, paracompact) base space B, all isomorphism classes of bundles

Sy — FE — B.
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Recall that a bundle isomorphism is a fiberwise homeomorphism of total
spaces covering the identity map. Below, we will explain how to reduce the
Sy-bundle classification problem to a problem about Mod(S,), at least for
g > 2. Before doing this, we first recall some general facts about classifying
spaces.

Classifying spaces. Suppose that GG is a topological group acting freely,
continuously, and properly on a contractible space X. The quotient space
X /G is called a classifying space for G, and is denoted by BG. Any such
space X is denoted by EG. When G is discrete, BG is just a K(G,1)-
space. For any G, there exists an EG [159]. The space BG is unique up to
homotopy equivalence. In fact, any homomorphism of groups G — H that
is a homotopy equivalence induces a homotopy equivalence BG — BH.
We will see below the usefulness of BG in the classification of G-bundles
and related bundles.

Surface bundles and homeomorphisms. We claim that there is a bijective
COI’I‘CSpOIldCIlCCZ

Isomorphism classes of . Homotopy classes of
oriented S,-bundles over B maps B — BHomeo ™ (S,)

This bijection is realized concretely in the following way. The group
Homeo*(Sg) acts freely and properly discontinuously on the product
EHomeo™ (S,) x S, via the diagonal action. Let E denote the quotient. The
projection EHomeo™ (S,) x S; — EHomeo™ (S,) induces a fiber bundle

¢:
S, — E — BHomeo™ (S,).

The bundle ¢ has the universal property that any S,-bundle over any
space B is the pullback of { via a continuous map (the classifying map)
f : B — BHomeo™ (S,). Homotopic classifying maps give isomorphic
bundles. Conversely, any bundle induces such a map f. Hence our claim.

Because of this correspondence, the bundle ( is called the universal S,-
bundle. We thus see that BHomeo™ (S,) plays the same role for surface
bundles as the (infinite) Grassmann manifolds BSO(n) play for vector bun-
dles.

Surface bundles and the mapping class group. Consider the fiber bundle

Homeog(S,) — Homeo™ (S,) = Mod(S,).
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By Theorem 1.14, the fiber is contractible. By the long exact sequence
in homotopy, 7w induces an isomorphism of all homotopy groups. White-
head’s theorem implies that the homomorphism 7 is a homotopy equiva-
lence, where Mod(.S,) has the discrete topology. The theory of classifying
spaces implies that 7 induces a homotopy equivalence of classifying spaces
BHomeo™t(S;) — BMod(S,). In particular, we have the following key
fact.

Proposition 5.12 Suppose g > 2. The classifying space BHomeo ™ (Sy) is
a K(Mod(Sy), 1)-space.

A continuous map f : B — K(Mod(S,), 1) induces a representation f, :
m(B) — Mod(S,). Two such representations p1, po are called conjugate
if there exists an h € Mod(Sy) so that

p1(7) = hpa(7)h!

for all v € m1(B). Basic algebraic topology gives that the map f is de-
termined up to free homotopy by the conjugacy class of the representa-
tion f, and that every representation is induced by some continuous map.
In other words, there is a bijection between free homotopy classes of
maps f : B — K(Mod(S,),1) and conjugacy classes of representations
71 (B) — Mod(S,). This bijection, together with Proposition 5.12, gives
the following bijective correspondence.

Isomorphism classes Conjugacy classes
of oriented S,-bundles p «— of representations
over B p:mi(B) — Mod(Sy)

The simplest (but already interesting) instance of this fact is that isomor-
phism classes of S,-bundles over S 1 are in bijection with conjugacy classes
of elements in Mod(S,). A more remarkable consequence is that, given any
group extension

1—-m(Sg) -G—-Q—1, (5.10)

there exist topological spaces (indeed closed manifolds) £ and B and a fi-
bration S; — E — B inducing the given group extension (apply the Dehn—
Nielsen—Baer theorem from Chapter 8). Why is this surprising? Well, if we
are given a representation p : m1(B) — Homeo™(S,), it is easy to see
how to build a bundle S, — E — B with monodromy 7 o p : m(B) —
Mod(Sy): just take the quotient of S, x B by the obvious 7 (B)-action.
However, the data specified by the group extension (5.10) determines only a
representation p : 71 (B) — Mod(Sy). That is, elements of the monodromy
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are specified only up to isotopy, so it is not at all clear how to use this data
to build a well-defined S;-bundle. In fact, Morita has constructed examples
where the monodromy p : 1 (B) — Mod(S,) does not lift to a representa-
tion p : m1(B) — Homeo™ (S,) [160]. Yet the bijection above gives a fiber
bundle S, — F — B with B and F closed manifolds that has monodromy
p-

The above discussion should clarify why the problem of classifying con-
jugacy classes of representations of various groups into Mod(.S,) is an im-
portant problem.

Cohomology. Another corollary of Proposition 5.12 is that
H*(BHomeo ™ (S,); Z) ~ H*(Mod(S,); Z).

This isomorphism is one of the main reasons that we care about the
cohomology of Mod(Sy). It is the reason we think of elements of
H*(Mod(Sy);Z) as characteristic classes of surface bundles, as we now
explain.

Suppose one wants to associate to every S,-bundle a (say integral) coho-
mology class on the base of that bundle so that this association is natural,
that is, it is preserved under pullbacks. By applying this to the universal S,-
bundle ¢, we see that each such cohomology class must be the pullback of
some element of H*(BHomeo™ (S,); Z) ~ H*(Mod(S,); Z). In this sense
the classes in H*(Mod(Sy); Z) are universal. This is why they are called
characteristic classes of surface bundles.

We have already seen that H1(Mod(Sy);Z) = 0if g > 3 (Theorem 5.2).
It follows from the universal coefficients theorem that H'(Mod(S,); Z) =
0. Thus there are no natural 1-dimensional cohomology invariants for these
Sg-bundles. In Section 5.4 we proved for g > 4 that Ho(Mod(Sy);Z) is
cyclic, so that there is at most one natural 2-dimensional invariant. This is
the Meyer signature cocycle constructed below.

Remark on the smooth case. Every aspect of the discussion above holds
with the smooth category replacing the topological category. Here we re-
place BHomeo™ (S,) with BDiff " (S,), and so on. The key fact is the theo-
rem of Earle-Eells [53] (see also [73]) that the topological group Diffy(.Sy)
is contractible for ¢ > 2. Following the exact lines of the discussion
above, this gives a bijective correspondence between isomorphism classes
of smooth S,-bundles over a fixed base space BB and conjugacy classes of
representations p : 71 (53) — Mod(S,).
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5.6.2 DEFINITION OF THE MEYER SIGNATURE COCYCLE

We are now ready to describe the construction of a nonzero element
o € H*(Mod(S,);Z): the Meyer signature cocycle. Below we will prove
that o pulls back to a nontrivial class both in H?(Mod(S,,1);Z) and in
H2(Mod(S;);Z).

For any closed 4-manifold M, there is a skew-symmetric pairing

H?*(M;Z) ® H?*(M;Z) — Z
a ® b —  {aUb, [M])

given by taking the cup product of two classes and evaluating the result on
the fundamental class of M. The signature of the resulting quadratic form
is called the signature of M, denoted by sig(M ).

We can use signature to give a 2-cochain

o € C*(BHomeo™ (S,); Z) ~ Hom(Ca(BHomeo " (S,); Z), Z)

as follows. Suppose we are given a chain ¢ € Cy(BHomeo™ (S,);Z). It
follows from general facts about 2-chains in topological spaces that ¢ can
be represented by a map f : S, — BHomeo™ (S,), where S}, is a closed
surface of genus h > 0. We then let o € C*(BHomeo™ (S,); Z) be defined
by

o(f) = sig(f*¢),

where, as above, ¢ denotes the universal S,-bundle over BHomeo™ (S,).

It follows from the work of Meyer that o is a well-defined 2-cocycle
[156]. One key ingredient in this is the fact that the signature of a fiber
bundle depends only on the action of the fundamental group of the base on
the homology of the fiber; another is the Novikov additivity of signature.

It is not easy to prove that the cocycle o is a nonzero element of
H?(BHomeo (S,); Z). The hard part is finding a good way to compute sig-
nature in terms of the monodromy data. Kodaira, and later Atiyah (see [7]),
found a surface bundle over a surface with nonzero signature. This construc-
tion can be used to give such a bundle with fiber S, for any g > 4. It follows
that the signature cocycle o € H?(BHomeo™ (S,); Z) ~ H?(Mod(S,); Z)
is nonzero. Indeed, this kind of argument can be used to prove that o has
infinite order in H2(Mod(Sy); Z).

5.6.3 MATCHING UPPER AND LOWER BOUNDS ON H2(Mod(S); Z)

In Section 5.4 we used Hopf’s formula to give an upper bound on the num-
ber of generators of the group Hy(Mod(S); Z), where S is either S, or S
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and where g > 4. So far we have constructed two nontrivial elements of
H?(Mod(S);Z), the Euler class and the Meyer signature cocycle. We will
now use homological algebra to complete the proof of Theorem 5.8.

The universal coefficients theorem and H2(Mod(S);Z). Let S be a
surface of genus at least 3. In what follows we assume that all homology and
cohomology groups have Z-coefficients. The universal coefficients theorem
gives the following short exact sequence:

1 — Ext(H;(Mod(S)),Z) — H*(Mod(S))

— Hom(H2(Mod(S)),Z) — 1. G

Since H1(Mod(S);Z) = 0 (Theorem 5.2), the Ext term in (5.11) is trivial.
Thus

H?*(Mod(S);Z) ~ Hom(H(Mod(S); Z), Z).
In other words, we have

H?(Mod(S);Z) ~ Hy(Mod(S);Z)/torsion.

Proof that H>(Mod(Sg);Z) ~ Z. In Section 5.4, we proved that the
group Hy(Mod(Sy);Z) is cyclic. Since the Meyer signature cocycle is an
infinite-order element of H?(Mod(S,);Z) and since H?(Mod(S,);Z) ~
Hy(Mod(Sy); Z) /torsion, we have that

Hy(Mod(Sy);Z) = Z,

as stated in Theorem 5.8. Thus we see that, up to multiples, signature is the
only 2-dimensional isomorphism invariant for S,-bundles.

A five-term exact sequence for homology groups. We now introduce a
tool that will help us compute Hy (Mod(S;)) and Ha(Mod(Sy,1)).
Given any short exact sequence of groups

1-K—-G—-Q—1,
there is a five-term exact sequence of homology groups
Hy(G) — Hy(Q) — Hi(K)g — Hi(G) — Hi(Q) — 0

where all coefficient groups are Z and H;(K)q is the set of coinvariants
of the action of ) by conjugation on H;(K;Z), that is, the quotient of
Hy(K;Z) by all elements © — ¢q - x, where x € Hi(K;Z) and ¢ € Q.
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The existence of this five-term exact sequence is a consequence of the Hopf
formula (see [38, p. 47]).

Proof that H. Q(Mod(S’;); Z) = Z. We saw in Section 5.4 that the group
H,(Mod(Sy); Z) is cyclic. Our aim is to prove that it is isomorphic to Z.

If we apply the five-term exact sequence for homology groups to the short
exact sequence

1 — 1 (UT(Sg)) — Mod(S,) — Mod(S,) — 1,
we obtain the sequence

Hy(Mod(S,)) — Hz(Mod(S)) — Hi(m1(UT(Sg)))Mod(s,)

— Hi(Mod(S,)) — Hi(Mod(S,)) — 0,
or, by Theorem 5.2,
Hy(Mod(S;)) — Z — Hi(m1(UT(S¢)))Mod(s,) — 0 — 0 — 0.
We now determine the set of coinvariants in this sequence.
Claim: Hy(m1(UT(Sg)))Mod(s,) = Z/(29 — 2)Z.

Proof of claim. We start with the presentation
g
m(UT(Sy)) = (a1,b1,...,ag,bg, 2| [ [las, bi] = 27, z central ),
i=1

where 2 is the generator of the S'-fiber; see [190, p. 435]. It follows that
Hy(UT(S,);Z) =~ 7?9 © Z)(2g — 2)Z ~ H1(Sy; Z) © 7./ (29 — 2)Z.

What is more, the action of Mod(S,) on Hi(UT(S,);Z) is given by the
standard action of Mod(S,) on H;(Sy;Z) together with the trivial action
on Z/(2g — 2)Z. Thus we have

Hy(m1(UT(Sg)))Mod(s,) = H1(Sg; Z)modcs,) D Z/(29 — 2)Z,

and so it now remains to show that the set of coinvariants H(.S; Z)Mod( Sy)
is trivial.

By the change of coordinates principle and Proposition 6.2, Mod(.Sy)
identifies all primitive elements of H1(Sy;Z). In particular, each primitive
element is identified with its inverse. Thus H1(Sy; Z)nod(s,) i @ quotient of
Z./27. On the other hand, one can find in H1(.S,; Z) three primitive elements
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that sum to zero. It follows that H1(Sg; Z)od(s,) 1S trivial. 0

Our five-term sequence is now reduced to
Hy(Mod(S})) — Z — Z/(2g — 2)Z — 0.

It follows that the kernel of the map Z — H1(m1(UT'(Sg)))Mod(s,) 8 is0-

morphic to Z. By exactness of the sequence, we see that Hy(Mod(S}); Z)
contains an infinite cyclic subgroup. On the other hand, we already
showed that Ha(Mod(S]);Z) is a quotient of Z, and so it follows that
H,(Mod(S5); Z) ~ Z, as desired.

Actually, we have proven a little more. We have shown that there is an
exact sequence

H3(Mod(Sy)) —— Hz(Mod(Sy)) —— Hi(m1(UT(Sg)))mod(s,) — 0
X X %
Z Z 7/(2g —2)Z.

So we see that the map from Ha(Mod(S})) &~ Z to Ha(Mod(Sy)) ~ Z is
multiplication by 2g — 2.

Proof that H2(Mod(Sy,1);Z) = Z2. We start by showing that the
group Ho(Mod(Sy 1);Z) is generated by at most two elements. Recall from
Proposition 3.19 that we have a short exact sequence

1 — (T,) — Mod(S;) — Mod(S,1) — 1,

where a is the isotopy class of the boundary component of .S, ;. The associ-
ated five-term exact sequence of homology groups is

HQ(Mod(S;)) — H2(MOd(Sg71)) — H1(<Ta>)Mod(Sg,1)

— Hy(Mod(S,)) — Hi(Mod(Sy,1)) — 0.

We just proved that Hg(Mod(S;)) ~ Z. Also by Theorem 5.2, the groups
H, (Mod(S;)) and H;(Mod(Sy,1)) are trivial. Finally, since (77,) is central
in Mod(Sy), the set of coinvariants H1((T4))nod(s,.,) 1S isomorphic to Z.
We can thus rewrite the five-term exact sequence as

7 — Hy(Mod(Sg,1)) = Z — 0 — 0 — 0.
It follows that Ho(Mod(S, 1);Z) is a quotient of Z?, as desired.
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We obtain one element e* of Hy (.S, 1;7Z) by passing the Euler class e €
H?(Mod(S,,1); Z) through the universal coefficients theorem as above.

We obtain another element of Hy(S 1;Z) from the Meyer signature co-
cycle o € H?(Mod(Sy);Z) as follows. The universal coefficients theorem
identifies o with an element o* of Hy(Mod(Sy); Z). Then, we consider the
Birman exact sequence

1 — m1(Sg) — Mod(Sy,1) — Mod(S,) — 1.
The associated five-term exact sequence in homology is

Hy(Mod(Sg,1)) — Ha2(Mod(Sg)) — H1(Sg)Mod(s,)

— Hl(MOd(SgJ)) — Hl(MOd(Sg)) — 0.

We showed above that H1(Sg)nodcs,) is trivial, and so the map
Hy(Mod(Sg,1)) — Ha(Mod(Sy)) is surjective. Thus (abusing notation)
there is an element o* € Hy(Mod(Sy 1)) mapping to o* € Ha(Mod(Sy)).
Applying the universal coefficients theorem one more time, we obtain an
element o € H%(Mod(S,1)).

We now show that e* and o* are distinct elements of Ho(Mod(Sy 1);Z),
even up to multiples. By the universal coefficients theorem, it suffices to
show that e and o are distinct elements of H*(Mod (S, 1);Z).

By Proposition 5.10, the Euler class e evaluates nontrivially on the 2-
cycle given by the fundamental class of the point-pushing subgroup 71(S).
On the other hand, since m;(Sy) is the kernel of the map Mod(Sy 1) —
Mod(Sy) (Theorem 4.6), we have that the fundamental class of 7 (S,)
pushes forward to zero in Hy(Mod(Sy)). As the signature cocycle o €
H?(Mod(Sy,1)) is the pullback of ¢ € H?(Mod(S,);Z), it follows that
o € H?(Mod(S,,1)) evaluates trivially on the fundamental class of 71 (S,).
We thus have that H*(Mod(S,,1); Z) ~ Z* and hence

Hy(Mod(Sy1); Z) ~ Z2.

This completes the proof of Theorem 5.8.



Chapter Six

The Symplectic Representation and the Torelli

Group

One of the fundamental aspects of Mod(S,) is its action on H(Sg;Z).
The representation ¥ : Mod(Sy) — Aut(H;(S,;Z)) is like a first linear
approximation to Mod(Sy), and we can try to transfer our knowledge of the
linear group Aut(H;(Sy;Z)) to the group Mod(Sy).

As we show in Section 6.1, the algebraic intersection number on
H/(S4;R) gives this vector space a symplectic structure. This symplectic
structure is preserved by the image of W, and so ¥ can be thought of as a
representation

U : Mod(S,) — Sp(2¢,Z)

into the integral symplectic group. The homomorphism WV is called the sym-
plectic representation of Mod(Sy). The bulk of this chapter is an exposition
of the basic properties and applications of W. A sample application is that
Mod(Sy) has a torsion-free subgroup of finite index (Theorem 6.9).

The representation W has a large kernel, called the Torelli group Z(S,),
which can be thought of as the “nonlinear” part of Mod(.S,). We conclude
this chapter with an introduction to the study of Z(.S,), which is an important
topic in its own right.

6.1 ALGEBRAIC INTERSECTION NUMBER AS A SYMPLECTIC FORM

In order to understand the symplectic representation ¥ : Mod(S,) —
Sp(2g,7Z), one of course needs to know the basic facts about symplectic lin-
ear transformations. After describing these, we show how H;(Sy; R) comes
equipped with a natural symplectic structure. This structure relates in a nat-
ural way to simple closed curves in S,.

6.1.1 SYMPLECTIC VECTOR SPACES AND SYMPLECTIC MATRICES

Let g > 1 be an integer and let {x1, y1, ..., x4, Yy} be a basis for the vector
space R?9. Denote the dual vector space of R?9 by (R29)*. The standard
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symplectic form on R?9 is the 2-form

g
w= Zd%’ A dy;.

i=1
Given two vectors v = (v, w1, ..., Vg, wy) and v = (v}, wy, ..., vy, wy)
in R?9, we compute
g
/ / /
w(v,v') = E (v;w; — v;w;).
i=1

The 2-form w is a nondegenerate, alternating bilinear form on R?9. In fact,
it is the unique such form up to change of basis of R?9. The vector space
R?9 equipped with such a form is called a real symplectic vector space.

The linear symplectic group Sp(2g, R) is defined to be the group of linear
transformations of R?9 that preserve the standard symplectic form w. In
terms of matrices:

Sp(2¢9,R) = {A € GL(2¢,R) : A*w = w},
or in other words,
Sp(2¢g,R) = {A € GL(2g,R) : ATJA = J},

where J is the 2g x 2g matrix

01 00 0 0
-1 0 00 0 0
00 01 00

Jg=| 00 -1 0 0 0
00 00 -~ 01
00 00 - —10

The integral symplectic group Sp(2g,7Z) is defined as
Sp(29,Z) = Sp(2¢,R) N GL(2g, Z).

It is straightforward to check the following facts using basic linear algebra
(see, e.g., [148], Lemmas 1.14, 2.19, and 2.20):

1. det(A) = 1 for each A € Sp(2¢g,R).

2. Sp(29,R) N O(2¢g,R) = U(g).



164 CHAPTER 6

3. Misaneigenvalue of A € Sp(2g, R) if and only if A1 is. This follows
from the fact that A~! and A” are similar (i.e., conjugate).

We also remark that in the case g = 1 we have

Sp(2,R) = SL(2,R) and Sp(2,Z) = SL(2,Z).

Elementary symplectic matrices. There are symplectic analogues of the
elementary matrices for SL(n,Z). Let o be the permutation of {1,...,2¢g}
that transposes 2¢ and 27 — 1 for each 1 < ¢ < g. The elementary symplectic
matrices are the (finitely many) matrices of the form

SE; = 4 Too T iy it i = o(j),
Y Iog +eij — (—1)Z+]60(j)g(i) otherwise,

where i # j and e;; is the matrix with a 1 in the (4, j)-entry and Os else-
where. The following result is classical [154, Hilfssatz 2.1].

THEOREM 6.1 Sp(2g,7Z) is generated by elementary symplectic matrices.

The Burkhardt generators. In 1890 Burkhardt [40] gave the following
generating set for Sp(4,Z). Below, when we refer to a factor, we mean a
subgroup of Z29 spanned by some pair {z;,y;}.

Transvection:
(1,91, 22,Y2) — (1 + Y1, Y1, 22, y2)

Factor rotation:

(1, y1,T2,Y2) — (Y1, —21, T2, Y2)

Factor mix:

($17y1,3€27y2) — (1 — Y2, Y1, T2 — Y1, Y2)

Factor swap:

(Sﬂlayl,xzam) — ($2,y2,$1,y1)~

For g > 2, if one adds for each 1 < ¢ < g the factor swap exchang-
ing the adjacent factors {z;,y;} < {x;t1,yi+1}, one can derive the finite
generating set given in Theorem 6.1. Thus Burkhardt’s elements give a gen-
erating set for Sp(2g, Z). Below we will consider an infinite generating set
for Sp(2g, Z), namely, the set of all transvections.
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6.1.2 H,(Sg4;Z) AS A SYMPLECTIC VECTOR SPACE

In what follows we will use [c] to denote the homology class corresponding
to an oriented simple closed curve c. Consider the ordered basis

{[a1], [ba); - - [ag], [bg]}

for H1(S¢;R) ~ R?9 shown in Figure 6.1. The algebraic intersection num-
ber

it Hi(Sy;Z) N Hy(Sy;Z) — 7
extends uniquely to a nondegenerate, alternating bilinear map
it Hi(Sy;R) A Hy(Sy;R) — R.

If [a;]* and [b;]* denote the vectors in Hy(S,;R)* dual to [a,] and [b;], re-
spectively, then

Z‘:

[ai]* A [bi]* € A? (H1(Sg; R)*) -
1

g9
1=

With this structure the pair (H1(S4;R), ) is a symplectic vector space.

Figure 6.1 The standard geometric symplectic basis for H1(Sg; Z).

It is an important observation that there is a collection of oriented simple
closed curves {ci,...,ca4} in Sy so that the homology classes {[c;|} form
a symplectic basis for H1(Sy;Z) and i(c;,c;) = i([c], [c;]) for all 4, .
Such a collection of curves will be called a geometric symplectic basis for
H1 (Sg; Z) .
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6.2 THE EUCLIDEAN ALGORITHM FOR SIMPLE CLOSED CURVES

In order to effectively make use of the symplectic structure on H(Sy; Z),
we will need to strengthen the dictionary between the algebraic and topo-
logical aspects of H;(Sy;7Z). As a start, we answer the question: when can
an element of v € H;(Sy;Z) be represented by an oriented simple closed
curve? Of course, if v # 0, then such a curve must be nonseparating.

Recall that v € H1(Sy;Z) ~ Z*9 is primitive if v # nw for any w €
H/(S4;Z) and any integer n > 2.

Proposition 6.2 Let g > 1. A nonzero element of H1(Sgy;Z) is represented
by an oriented simple closed curve if and only if it is primitive.

Our proof of Proposition 6.2, adapted from Meeks—Patrusky [153], is a
topological incarnation of the Euclidean algorithm. We recall the classical
Euclidean algorithm for finding the greatest common divisor of two nonneg-
ative integers. Given a pair of nonnegative integers {p, ¢} with 0 < p < ¢,
we subtract p from ¢ to obtain a new set {p,q — p} with ged(p,q — q) =
ged(p, q). If we start with the two natural numbers m and n and repeat this
process iteratively, then the theorem is that we will eventually arrive at the
pair {gcd(m,n),0}.

Proof of Proposition 6.2. Let {a;,b;} be a geometric symplectic basis
shown in Figure 6.1, as well as the corresponding basis {[a], [b;]} for
H 1 (S g3 Z) .

The statement of the proposition for the torus is exactly that of Proposi-
tion 1.5. Thus we can assume that g > 2.

One direction of the proposition is simple. By the change of coordinates
principle, for any nonseparating oriented simple closed curve «y in .S, there
exists ¢ € Homeo™ (S) with ¢(y) = a;. Thus the homology class [y] €
H/(Sy; Z) is part of some basis for 729 and is therefore primitive.

The interesting direction of the proposition is to start with a primitive
homology class € H1(Sy;Z) and to show that x is represented by a simple
closed curve.

Say that with respect to the above basis we have

x = (vi, w1, ...,V W)

Without loss of generality we may assume that each v; and w; is nonnega-
tive, for if not, we can simply switch the orientations of some a; and b; so
that this condition holds.

Foreach 1 <4 < g, take a closed regular neighborhood N; of a; U b;. We
can take the V; to be disjoint. Each /V; is homeomorphic to a torus with one
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boundary component. Note that since the proposition is true for the torus, it
is also true for a torus with one boundary component. Thus for each 7 there
is an oriented nonseparating simple closed curve ~; in N; so that

ng(Ui, wl)[%] = ; [CLZ] + w; [bz] S Hl(Sg; Z)

We can thus represent x by > ged(v;, w;) pairwise disjoint oriented simple
closed curves contained in UN;. Our goal is to combine these together to
form a single curve.

The following key observation is a consequence of the change of coordi-
nates principle.

Observation: Given any two disjoint, oriented, nonhomologous, nonsepa-
rating simple closed curves « and (3 in S, there is an arc joining the left
side of « to the left side of [.

Using this observation, we can perform a topological Euclidean algo-
rithm on the > ged(v;, w;) curves above. By this we mean the following.
Let Ny 2 be a closed subsurface of S, that contains /N7 and N2 and is dis-
joint from the other /N;. We can take N7 2 to be a surface of genus 2 with
one boundary component. As above, we have ged (v, w;) parallel copies
of 1 and ged(ve, we) parallel copies of v, in N; o that together represent
(v1, w1, v2,w2,0,...,0) € Hi(Sg;Z).

By the observation, we can surger the leftmost curve copy of ; with the
leftmost curve in s as in Figure 6.2. Since the surgery adds two parallel arcs
with opposite orientations, the homology class of the collection of curves is
unchanged. We can repeat this process until we run out of copies of v; or
~2. We then again have two collections of parallel curves. If ged (v, w1) >
ged(ve, we), then the two collections have ged (v, w1) — ged(ve, we) and
ged(vg, wo) oriented curves, respectively. If we repeat this process in Ny 2,
we will end up, as in the Euclidean algorithm, with

ged(ged(vy, wy), ged(ve, we)) = ged(v1, wi, v, we)

parallel oriented simple closed curves in Ny o that together represent the
element (vq, w1, v, w2,0,...,0) of Hi(Sy; Z). Moreover, by our choice of
N1 2, these curves are disjoint from the v; with ¢ > 3.

We continue the process inductively. Let Ny 23 be a closed surface of
genus 3 that contains N1, No, and N3 and is disjoint from the other V;.
We can apply the above process to the ged(vq, wi, v2, we) curves obtained
in the previous step and ged(vs, ws) parallel copies of 3 in Ns. If we do
this, we will find ged (v1, w1, va, wa, v3, w3) parallel oriented simple closed
curves in the class (v, wi,v2, wa, v3,ws,0,...,0) € Hi(Sy;Z).

By induction on genus we find, at the end, ged (v, wy, . .., vg, wgy) paral-
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Figure 6.2 Surgering two oriented simple closed curves along an arc.

lel oriented simple closed curves in S, representing x. Since x is primitive,
we have that ged(v1,wy, ..., vy, wg) = 1, and so we actually have a single
oriented simple closed curve in .S, as desired. O

Note that since the inclusion maps Sy 1 — Sy and S; — S induce
isomorphisms H1(Sy1;Z) — Hi(Sg;Z) and Hi(Sy;Z) — Hi(Sg; Z),
Proposition 6.2 implies the analogous statement for surfaces with either one
puncture or one boundary component.

6.3 MAPPING CLASSES AS SYMPLECTIC AUTOMORPHISMS

Any ¢ € Homeo™(S,) induces an automorphism ¢, : Hq(Sy;Z) —
H/(Sy;Z). As homotopic homeomorphisms ¢ ~ 1) induce the same map
¢« = 14, there is a representation

T : Mod(S,) — Aut(H;(S,;7Z)) =~ Aut(Z*) ~ GL(2g, Z).

The rightmost isomorphism comes from choosing a basis for Hi(Sg;Z).
Our goal in this section is to understand the basic properties of ¥, and in
particular to compute its image.

Since each element of Mod(S,) is represented by an orientation-
preserving homeomorphism of .S, it follows that the image of W lies in
SL(2g,R). Since each f € Mod(S,) preserves the lattice H1(.S,; Z) inside
Hi(Sg;R), it follows that Wo(Mod(S,)) € SL(2¢,Z). Since Mod(Sy)
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preserves the nondegenerate, alternating bilinear form 4, it follows that
Uo(Mod(S,)) C Sp(2g,R). Together these observations give that

Wo(Mod(S,)) C Sp(29, Z).
Thus ¥y is better regarded as a representation
U : Mod(S,) — Sp(2¢,Z).

The representation W is called the symplectic representation of Mod(S).

As we already said, the inclusions S,1 — S, and Sg1 — S, induce
isomorphisms H1(Sg1;Z) — Hi(Sg;Z) and Hy(Sy;7Z) — Hi(Sg;Z).
Therefore, the above discussion applies to give representations

U : Mod(Sy,1) — Sp(29,Z) and W : Mod(S;) — Sp(2¢,7).

6.3.1 THE ACTION OF A DEHN TWIST ON HOMOLOGY

A first step in understanding W is to compute what it does to Dehn twists.
We have the following formula.

Proposition 6.3 Let a and b be isotopy classes of oriented simple closed
curves in Sy. For any k > 0, we have

¥(Ty)([a]) = [a] + k- i(a, b)[b].

Proof. First we treat the case where b is separating. By the change of
coordinates principle there is a geometric symplectic basis {a;,b;} with
i(ai,b) = i(b;,b) = 0 for all 7. The proposition follows immediately in
this case.

Now assume that b is nonseparating. By change of coordinates there is a
geometric symplectic basis {a;, b;} for H1(Sg; Z) with by = b. It is straight-
forward to check that the action of Tlf on Hi(Sy; Z), written with respect to
the basis {a;, b; } is given by

[al] + kj[bl] c=a,
[C] (XS {bl,CLQ,bQ,...,CLg,bg}.

V(Ty)([c]) = [Ty (c)] = {

Now let a be the isotopy class of an arbitrary oriented simple closed curve
in S;. The [a;]-coefficient of [a] in the basis {[a;], [b;]} is i(a,b). By the
linearity of W(7}), the proposition follows. m

We caution the reader that if [c] = [a] + [b] € H1(S;Z), then
U(Te) # W(TaTh)
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in general. It is true, though, that

as can be seen from Proposition 6.3. Another consequence of Proposi-
tion 6.3 is that if [a] = 0, then W(T},) is trivial.

6.3.2 SURJECTIVITY OF THE SYMPLECTIC REPRESENTATION: THREE
PROOFS

It is natural to ask whether every automorphism of H;(Sy;Z) preserving
algebraic intersection number can be realized by some homeomorphism.
In other words, is ¥ : Mod(S,;) — Sp(2g,Z) surjective? The first proof
one might think of would be to realize each elementary symplectic matrix
as the action of some element of Mod(S,); since these matrices generate
Sp(2g,7Z), surjectivity of ¥ would follow. While some elementary sym-
plectic matrices are the images of a Dehn twist, others are not, and it is not
obvious how to prove these lie in the image of W. Nevertheless, U is indeed
surjective.

Theorem 6.4 The representation ¥ : Mod(S,) — Sp(2g,7Z) is surjective
forg > 1.

We give three conceptually distinct proofs of Theorem 6.4 as each demon-
strates a different useful concept. The first proof presupposes the Burkhardt
generating set for Sp(2g, Z) and finds particular elements of Mod(S,) map-
ping to those elementary matrices. The second and third proofs offer a more
“bare hands” approach, for example, using the Euclidean algorithm from
Proposition 6.2.

When S is either S, 1 or S;, there is a commutative diagram

Mod(S) —— Sp(2¢,Z)

| -

Mod(Sy) — Sp(2¢, Z)

and so Mod(Sg,1) and Mod(S;) both surject onto Sp(2g, Z) as well.

Theorem 6.4 follows immediately in the case ¢ = 1 from the isomor-
phism Mod(7T?) ~ SL(2,Z) = Sp(2,Z) given in Theorem 2.5. Hence in
what follows we can assume g > 2.

First proof of Theorem 6.4. The finite generating set for Sp(2g, Z) given by
Burkhardt has four types of generators: one transvection, one factor rotation,



THE SYMPLECTIC REPRESENTATION AND THE TORELLI GROUP 171
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Figure 6.3 Realizing the Burkhardt generators geometrically. From top to bottom: a
transvection, a factor rotation, a factor swap, and a factor mix.

one factor mix, and g — 1 factor swaps. Let {a;, b;}/_, be oriented simple
closed curves in S, forming a geometric symplectic basis for H;(Sy;Z)
(see Figure 6.1). We show that each of Burkhardt’s generators, hence all of
Sp(2g,Z), lies in W (Mod(Sy)). Figure 6.3 illustrates the proof that follows.

By Proposition 6.3, ¥ (T}, ) is the transvection generator.

We obtain Burkhardt’s factor rotation generator as follows. Let N be a
closed regular neighborhood of a; U by in §,. The subsurface N is homeo-
morphic to a torus with one boundary component. Think of /N as a square
with sides identified and an open disk removed from the center. Consider
the homeomorphism of N obtained by rotating the boundary of the square
by 7/2 and leaving the boundary of N fixed. Extending by the identity
map gives a homeomorphism of Sy, hence a mapping class h € Mod(S,)
called a handle rotation. This handle rotation represents a mapping class
which equals the product of Dehn twists: T3, T3, Ty, . A direct check gives
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that W(h) is Burkhardt’s factor rotation generator.

We next realize Burkhardt’s factor mix generator by a mapping class.
Consider a closed annular neighborhood of b; and push the left-hand bound-
ary component of this annulus along a path in the surface that intersects
ag once (from the left of ag) and misses the other curves in the geometric
symplectic basis; see the third diagram in Figure 6.3. The resulting map-
ping class h is called a handle mix. We can also describe h as the mapping
class obtained by cutting S, along by, pushing one of the new boundary
components through the (ay, b2)-handle as in Figure 6.3, and then regluing.
Alternatively, h is a product of three commuting Dehn twists:

—1p—1
h=T,'T, 'T,

where c is a simple closed curve in the homology class [b2] — [b1]. Compare
the handle mix & with our push map description of the lantern relation in
Section 5.1. Another direct check gives that ¥(h) is Burkhardt’s factor mix
generator.

Finally, we have Burkhardt’s g — 1 factor swaps. These are obtained as
the W-images of handle swaps. The ith handle swap h; for 1 <i < g—1
is easily visualized (see Figure 6.3), but we can also write it as a product of
Dehn twists:

hi = (Ta¢+1Tb Tdi Taini)ga

i+1

where d; is a simple closed curve in the homology class [a;+1] + [b;]. O

We point out that all of the symplectic elementary matrices SFE;; are,
up to change of basis, equivalent to Burkhardt’s transvection generators and
factor mix generators for Sp(2g, Z). Therefore, up to change of coordinates,
the proof of Theorem 6.4 shows how to realize the symplectic elementary
matrices as Dehn twists and handle mixes.

In the first proof of Theorem 6.4 it was not essential for us to write down
explicit products of Dehn twists realizing each Burkhardt generator. In fact,
it was not even necessary to say which particular mapping classes descend
to those generators. The next proof exploits this idea.

Second proof of Theorem 6.4. Say that {a;,b;} are oriented simple closed
curves in S, that form a geometric symplectic basis. Let A € Sp(2g,Z)
and say that we can find a geometric symplectic basis representing
{A([a;]), A([b;])}. That is, suppose we can find a geometric symplectic ba-
sis {a}, b} so that [af] = A([a]). [6)] = A(b]).

If we cut S, along the union of the a; and b;, we get a sphere with g
“square” boundary components. Of course each boundary component is a
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topological circle, but each circle is divided into four segments according to
which points came from the left side of a1, the right side of a4, the left side
of by, and the right side of b;. Similarly, if we cut S, along the a; and b;, we
also get a sphere with g square boundary components.

Choose any homeomorphism ¢ from the first sphere to the second. We
can choose ¢ so that it not only takes the ¢th square to the ith square but
also takes the a; sides to the a; sides (with orientation) and the b; sides to
the b} sides. Since ¢ respects the required identifications, it follows that ¢
extends to a homeomorphism S, — S,. By construction, the action of ¢ on
H/(S4;Z) is exactly given by A.

Thus to prove the theorem it suffices to show that the image of {[a;], [b;]}
under each of the Burkhardt generators can be realized by a geometric sym-
plectic basis. For the transvection this is easy, and for the permutation gen-
erators, namely, the factor rotation and the factor swap, this is essentially
obvious. It remains to consider the factor mix

([a], [b1]; [a2], [b2]) — (la1] — [ba], [b1], [a2] — [b1], [b2]).

But it is easy to realize this basis geometrically (see Figure 6.3 for the solu-
tion), and so we are done. O

We can use the idea from the second proof of Theorem 6.4 to give a proof
that does not presuppose that we already know an explicit generating set for

Sp(29,Z).

Third proof of Theorem 6.4. Let A € Sp(2g,7Z) be given. Let {a;,b;} be
oriented simple closed curves in S, that form a geometric symplectic basis.
Since A € GL(2g,Z), the image vector A([a1]) € H1(Sy;Z) is primitive.
By Proposition 6.2 there is an oriented simple closed curve a) representing
the homology class A([a4]).

Since the vector A([b;]) is primitive, we can represent it by an oriented
simple closed curve. Since Sp(2g, Z) preserves algebraic intersection num-
ber, this simple closed curve will necessarily have algebraic intersection +1
with a}. But we want something better: we want to find a simple closed
curve b} that represents A([b1]) and has geometric intersection number 1
with a].

We proceed as follows. Choose any geometric symplectic basis {a!, b7

for H1(Sy;Z), where af = a}. The curve b/ is the only curve in {ai’ , bi’

that intersects aj = af, and it intersects it once. We can write A([b1])
uniquely in terms of the basis {[a?],[b”]}. Since i(A([a1]), A([b1])) =
i([a1], [b1]) = 1, it follows that the coefficient of b/ in this sum is exactly
+1. This sum gives a nonsimple (and not necessarily connected) represen-

tative (3 of A([b1]). The good news is that (3 intersects a) exactly once.
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The strategy now is to convert 3 into a connected simple closed curve
without changing its homology class or its geometric intersection number
with a}. By “resolving” intersections, we immediately turn /3 into a disjoint
union 3" of simple closed curves such that [3'] = A([bi]) € Hi(Sy,Z).
Note that (3’ has exactly one component simple closed curve that intersects
a) since the intersection of 3 with a} is 1.

To change 3’ into a connected simple closed curve without changing its
homology class, we apply a slight variation of the Euclidean algorithm for
curves from Proposition 6.2. One just needs to notice that, given any two
oriented simple closed curves in S, that are disjoint from a) or perhaps
an oriented simple closed curve disjoint from a) and one that intersects a
once, there is an arc that connects the left side of the first curve/arc to the
left side of the second and that is disjoint from a}. (The reader might prefer
to translate this statement into the context of the surface with two boundary
components obtained by cutting Sy along a).) Given this fact, we can pro-
ceed exactly as in the proof of Proposition 6.2 in order to obtain an oriented
simple closed curve b) that represents A([b1]) and that intersects a) once.

At this point, one can repeat the process to obtain a geometric symplec-
tic basis {a;, b} for H1(Sy;Z) that represents {A([a;]), A([b;])}. As in the
second proof of Theorem 6.4, the result follows. O

6.3.3 MINIMALITY OF THE HUMPHRIES GENERATING SET

The surjectivity of the symplectic representation ¥ : Mod(S,) —
Sp(2g,7Z) can be applied to prove that Mod(S,) cannot be generated by
fewer than 2g + 1 Dehn twists. Before proving this, we need a bit of setup.

A transvection in Sp(2g,7Z) is an element of Sp(2g,7Z) whose fixed set
in R?9 has codimension 1. We claim that each transvection in Sp(2g, Z) is
the image under ¥ of some power of a Dehn twist in Mod(S,). Indeed, let
v € Z29 be any primitive vector that is not fixed by a given transvection A
and choose some symplectic basis {v, w, T, Y2, . . . , Ty, Y4} for Z29. Since
A preserves the symplectic form restricted to Z29, it follows that A(v) =
v + kw for some k € Z. By Proposition 6.3, we have A = U(T}), where b
is any oriented simple closed curve in Sy with [b] = w € H1(Sy; Z).

It follows from the fact that Mod(Sy) is generated by Dehn twists (The-
orem 4.1) that Theorem 6.4 is equivalent to the fact that Sp(2g, Z) is gener-
ated by transvections. That is, we can give another proof of Theorem 6.4 by
showing that transvections generate Sp(2g, 7). Or we can use Theorem 6.4
to deduce the fact that transvections generate Sp(2g, Z).

If v is a primitive vector in Z?9, we denote by 7, the corresponding
transvection in Sp(2g,Z), by which we mean that 7, = ¥(T,), where
[c] = fv. We call an element of Sp(2g,Z/mZ) a transvection if it is the
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image of a transvection under the reduction Sp(2g,Z) — Sp(2g,Z/mZ).
The following proposition (and its proof) are due to Humphries [101].

Proposition 6.5 Let g > 2. The group Sp(2g,7Z/2Z) cannot be generated
by fewer than 2g + 1 transvections.

Note that since Sp(2,Z) = SL(2,Z), the conclusion of Proposition 6.5
does not hold for g = 1.

Proof. First note that the fixed set of a nontrivial transvection in
Sp(2g,7/27) has codimension 1 in (Z/27)?9. Given a set of transvec-
tions, the intersection of their fixed sets is the fixed set for the entire group
that they generate. Clearly, there is no nontrivial element of (Z/27)29 fixed
by the whole group Sp(2g,7Z/2Z). It follows that any generating set for
Sp(2g,7/27) consisting entirely of transvections must have at least 2¢ ele-
ments, corresponding to linearly independent vectors.

It remains to show that Sp(2g,Z/2Z) cannot be generated by transvec-
tions corresponding to 2g linearly independent elements of (Z/27)%9.

Let vy, ..., v, be linearly independent elements of (Z/2Z)9. Note that
each nontrivial element of (Z/27)%9 is primitive, and in particular that the
v; form a basis for (Z/27)29 (this basis is not necessarily symplectic). We
would like to show that the 7,,, do not generate Sp(2g,Z/27Z).

We construct a graph GG with one vertex for each v; and an edge between
each pair of vertices {v;,v;} that pair nontrivially (mod 2) under the sym-
plectic form on (Z/27)29 induced by that on Z29.

To any vector w € (7Z/27)9, we associate a subgraph G(w) of G as
follows: if w = > ¢;v;, where ¢; € Z /27, then G(w) is defined to be the
full subgraph of G spanned by the vertices of (G corresponding to those v;
with ¢; ?é 0.

We now argue that, for any transvection 7,, and any w € (Z/27)?9, the
mod 2 Euler characteristics of G(w) and of G(7,, (w)) are the same. If the
symplectic pairing of v; with w is 0, then 7, (w) = w, and there is nothing
to show. If the symplectic pairing of v; with w is 1, then by Proposition 6.3
G(1y, (w)) is obtained from G(w) as follows: first we “add modulo 2” the
v;-vertex of G (i.e., add it if it is not there, delete it if it is); then, so as to
preserve the property of being a full subgraph, we add modulo 2 the edges
connecting the v;-vertex to the other vertices of G(w). The first operation
changes the Euler characteristic by 1. Since the symplectic pairing of v; with
w is 1 (modulo 2), the second operation changes the Euler characteristic by
1. Thus the mod 2 Euler characteristics of G(w) and G(r,,(w)) are the
same.

Since Sp(2g,Z/27) acts transitively on the nontrivial vectors of
(Z/27)%, it now suffices to show that there exist nontrivial vectors in
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(Z./27.)9 whose associated subgraphs have different mod 2 Euler character-
istics. Observe that G(vy) is a single vertex and so has Euler characteristic
equal to 1. If G is not a complete graph, then we can find two vertices, v;
and v;, that are not connected by an edge in G, and so G(v; + v;) is the
union of two vertices, which has mod 2 Euler characteristic equal to 0, and
we are done in this case. If GG is a complete graph, then (since g > 2) the
graph G(v1 + vg + v3) is a triangle, which also has Euler characteristic 0.
This completes the proof. a

Since the symplectic representation ¥ : Mod(Sy) — Sp(2g,Z) is sur-
jective (Theorem 6.4), Proposition 6.5 implies the following.

Corollary 6.6 Let g > 2. Any generating set for Mod(S,) consisting en-
tirely of Dehn twists must have cardinality at least 2g + 1. In particular, the
Humphries generating set for Mod(Sy) is minimal among such generating
sets.

6.4 CONGRUENCE SUBGROUPS, TORSION-FREE SUBGROUPS, AND
RESIDUAL FINITENESS

In this section we define the congruence subgroups Mod(Sy)[m| of
Mod(Sy) for m > 2. We will then use these groups to prove two important
algebraic properties of the group Mod (S, ): it has a torsion-free subgroup of
finite index, and it is residually finite. We will approach these results via the
corresponding theorems in the classical, linear case of Sp(2¢g,Z) by using
the symplectic representation.

6.4.1 CONGRUENCE SUBGROUPS OF Sp(2g,7Z)

Let m > 2. The level m congruence subgroup Sp(2g,7Z)[m] of Sp(2g,Z)
is defined to be the kernel of the reduction homomorphism:

Sp(2g, Z)[m] = ker (Sp(29, Z) — Sp(2g,Z/mZ)) .

When studying the topology of a space with infinite fundamental group I,
it is quite useful to have a torsion-free subgroup of I' of finite index. For
example, if an orbifold X has orbifold fundamental group I' and I' has a
torsion-free subgroup of finite index, then we can sometimes conclude that
X is finitely covered by a manifold; indeed, we will apply this principle
later in this book (Section 12.3).

Proposition 6.7 Let g > 1. The congruence subgroup Sp(2g,7Z)[m] is
torsion-free for m > 3.
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Note that Sp(2g, Z)[2] is not torsion-free; consider, for example, the ele-
ment —[o.

Proof. Since Sp(2g,Z)[m] C Sp(2g,Z)[n] whenever n is a divisor of m,
we can assume that m = p®, where either p = 2 and @ > 1 or p is an odd
prime and a = 1.

Let h € Sp(2g, Z)[m] be nontrivial and let k£ > 1 be any positive integer.
We must show that h* # I5,. Since h € Sp(2g, Z)[m], we can write

h = Iyg + T,

where d > a and where 7' is a 2g x 2¢g matrix with the property that at least
one of its entries is not divisible by p. Replacing h by a positive power of
h if necessary, we can assume that k is prime. Consider the following two
cases.

Case 1: p = k. By the binomial theorem,
hE = (Iog 4 pT)* = Iy + k(p*T) = Iy + p*™'T # I, mod p?+2.
Note that the first congruence uses m # 2.
Case 2: p # k. Note that
(pT)* = p*7? = 0 mod p?**.

Using this fact, the binomial theorem, and the assumption that % is prime
(so p t k), it follows that

hE = (Ioy + pT)* = Ly + k(pT) # I, mod p?tt,
as desired. O

Replacing Sp(2g, Z)[m| by SL(n,Z)[m] in the proof of Proposition 6.7
gives that the stronger result that the congruence subgroup SL(n,Z)[m] is
torsion-free.

6.4.2 CONGRUENCE SUBGROUPS OF Mod(S,)

Let g > 1 and let m > 2. The level m congruence subgroup Mod(Sy)[m]
of Mod(S,) is defined to be the preimage ¥~ (Sp(2g, Z)[m]) of the level
m congruence subgroup Sp(2g, Z)[m] under the symplectic representation
U : Mod(Sy) — Sp(2g,Z). That is, Mod(.S,)[m] is the kernel of the com-
position

Mod(S,) % Sp(2¢,Z) — Sp(2g, Z/mZ).
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Since Sp(2g, Z/mZ) is finite, Mod(S,)[m] has finite index in Mod(S).
In order to convert our knowledge about torsion in Sp(2g, Z) into infor-
mation about torsion in Mod(Sy), we will need the following.

THEOREM 6.8 Let g > 1. If f € Mod(Sy) has finite order and is nontriv-
ial, then VU ( f) is nontrivial.

We will prove Theorem 6.8 in Section 7.1.2 as an application of the Lef-
schetz fixed point theorem. With this theorem in hand, we can now prove
the following theorem, first observed by Serre [194].

THEOREM 6.9 Let g > 1. The group Mod(Sy)[m] is torsion-free for m >
3.

The hyperelliptic involutions of S, are finite-order elements of
Mod(Sy)[2] (there are no others!). Thus the assumption m > 3 in Theo-
rem 6.9 is necessary.

Proof. Suppose f € Mod(S)[m] has finite order. Since Sp(2g,Z)[m] is
torsion-free (Proposition 6.7), it follows that W(f) is the identity. In other
words, f induces the trivial action on H;(Sg;Z). By Theorem 6.8, f is the
identity. O

6.4.3 RESIDUAL FINITENESS

Residual finiteness is one of the most commonly studied concepts in com-
binatorial group theory. A group G is residually finite if it satisfies any one
of the following equivalent properties.

1. Foreach nontrivial g € G, there exists a finite-index subgroup H < GG
withg ¢ H.

2. For each nontrivial g € G, there exists a finite-index normal subgroup
N <G withg ¢ N.

3. For each nontrivial g € G, there is a finite quotient ¢ : G — F' with

P(g) # 1.

4. The intersection of all finite-index subgroups in G is trivial.
5. The intersection of all finite-index normal subgroups in G is trivial.

6. G injects into its profinite completion

~

G =1limG/H,

where H ranges over all finite-index normal subgroups of G.
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It is elementary to check that these six properties are indeed equivalent. A
group is thus residually finite if it is well approximated by its finite quotients.
Correspondingly, spaces with residually finite fundamental groups can be
understood via their finite covers.

Linear groups. By a linear group we mean a group that is isomorphic to
a subgroup of GL(n, C) for some n. It is a famous theorem of Malcev that
every finitely generated linear group is residually finite. This is easy to see
for Sp(2g, Z) since the intersection

() SL(n, Z)[m]

m>3

is trivial. Indeed, if A € SL(n,Z) is any matrix lying in the intersection,
then all of its off-diagonal entries must be congruent to 0 (mod m) for all
m > 3. Thus all off-diagonal entries of A must be 0, and so A = I. Since
subgroups of residually finite groups are residually finite, we have the fol-
lowing.

Proposition 6.10 For each n > 2, the group SL(n,Z) is residually finite.
In particular, for g > 1, the group Sp(2g,7Z) is residually finite.

Mapping class groups. In analogy with linear groups we have the follow-
ing.

THEOREM 6.11 Let S be a compact surface. The group Mod(S) is resid-
ually finite.

Theorem 6.11 was originally proven by Grossman [74]. The idea of her
proof is to first show that 71 (S) is conjugacy separable: given two noncon-
jugate elements x,y € m1(S), there is a homomorphism ¢ : m1(S) — F to
a finite group F' such that ¢(z) and ¢(y) are not conjugate in F'. She then
proves that any automorphism of 71 (.S) that preserves conjugacy classes is
inner. The outer automorphism group of any finitely generated group with
these two properties is residually finite. Theorem 6.11 then follows from the
Dehn—-Nielsen—-Baer theorem (Theorem 8.1 below) and the fact that residual
finiteness is inherited by subgroups. See also [11].

Ivanov outlines the following more direct proof in [105, Section 11.1].
The general idea is to derive residual finiteness of Mod(S) from residual
finiteness properties of finitely generated subrings of R.

Proof of Theorem 6.11. First note that Mod(S) is a subgroup of Mod(S’)
where S’ is the surface obtained from S by gluing a genus 1 surface with
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boundary onto each boundary component of S (see Theorem 3.18). Since
any subgroup of a residually finite group is clearly residually finite, it suf-
fices to prove the theorem when 9S = (), which we now assume.

We assume that S = S, is hyperbolic; for S? the theorem is trivial and
for T? it is easy.

Let f € Mod(S,) be any nontrivial element. We need to find a homo-
morphism ¢ : Mod(Sy) — F to a finite group F' so that ¢(f) # 1. By
Theorem 6.8 it is enough to consider two cases: either f acts nontrivially on
H{(S4;Z) or f has infinite order.

In the first case, this says precisely that the image W(f) under the sym-
plectic representation ¥ : Mod(S,) — Sp(2g¢,Z) is nontrivial. Since
Sp(2g,7Z) is residually finite (Proposition 6.10), there is a finite quotient
Sp(2g,7Z) — F to which ¥(f) projects nontrivially, and so we are clearly
done.

Now assume that f € Mod(S,) has infinite order. Choose any hyperbolic
metric on S,. This gives a faithful representation

p: m1(S,) — PSL(2,R) ~ Isom(H?).

Since 71 (Sy) is finitely generated, p(71(.Sy)) is a subgroup of PSL(2, A) for
some finitely generated subring A of R. Such a ring A is residually finite:
for each nontrivial a € A there is a ring homomorphism ¢ : A — R to a
finite ring R with ¢(A) # 0. See [211, Section 4.1] for a proof of this fact.

Now, f acts on the set of oriented isotopy classes of simple closed curves
in S,. Since S, is compact, each free homotopy class v of curves on S,
contains a unique geodesic, and the isometry p(7) is of hyperbolic type.
To each such isotopy class v we associate the hyperbolic length ¢(y) of
this unique geodesic. Denote by | tr |(+y) the absolute value of the trace of
p(a) for any a € m1(S,) freely homotopic to ~; this is well defined since
geodesics in free homotopy classes are unique. Since p(y) is an isometry
of H? of hyperbolic type, it can be diagonalized, from which we see that
| tr [(7) = 2 cosh(((y)/2).

Since f has infinite order, the action of f on the simple closed curves in .S,
must change the hyperbolic length of some conjugacy class -y (this follows,
for example, from Lemma 12.4 and the Alexander method). It follows that

[ tr](y) 7 [t |(f(7)-

Since the ring A is residually finite, we can find a finite-index subring U of
Asothat | tr|() and | tr |(f(y)) are not equal in A/U. It follows that v and
f () are not equal in PSL(2, A/U).

The action of Mod(S,) on 71(S,) gives rise to a homomorphism o :
Mod(Sy) — Out(m (S )) (see Chapter 8). We can thus interpret the action
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of f on free homotopy classes of oriented closed curves in S, as an action
of o(f) on conjugacy classes in 7 (.Sy).
As PSL(2, A/U) is finite, the composition

m1(Sy) — PSL(2, A) — PSL(2,A/U)

has a finite-index kernel H'. Since 71(Sy) is finitely generated, H' con-
tains a finite-index characteristic subgroup H; that is, H is preserved by
every automorphism of 7 (Sg). Such an H can be constructed by taking the
common intersection of the all subgroups in the (finite) Aut(7(Sy))-orbit
of H'. Since H is characteristic, the quotient homomorphism 7 (Sy) —
m1(Sg)/H gives rise to a homomorphism

Y : Out(m1(Sg)) — Out(mi(Sy)/H).

By construction, v # o(f)(7) in m1(Sy)/H. It follows that ) o o(f) # 1.
Since 71(Sy)/H is finite, so is Out(m1(Sy)/H ), and we are done. 0

When S is allowed to have finitely many punctures, it is still true that
Mod(S) is residually finite. While the proof of Theorem 6.11 given above
does not work verbatim in this case, since there are finitely many free homo-
topy classes (one for each puncture) that do not contain geodesics, a slight
variation of the proof can still be used to give the result in this case.

6.5 THE TORELLI GROUP

In this section we give a brief introduction to the Torelli subgroup Z(.S)
of Mod(S). In addition to the beauty of the topic, the study of Z(.S) has
important connections and applications to 3-manifold theory and algebraic
geometry.

There is another good reason to study Z(.S). One recurring theme in the
area is that questions about Mod(.S) can often be answered in two steps: first
for the elements that act nontrivially on H1(S;Z), and then for the elements
that act trivially on H;(S;7Z). Since we understand matrix groups compar-
atively well, the first type of element is usually vastly easier to analyze. We
have already seen several instances of this phenomenon:

1. When we computed in Proposition 2.3 that Mod(Sp3) ~ X3, all
of the work was in showing that an element that acts trivially on
H,(S0,3;Z), that is an element that fixes the three punctures, is the
trivial mapping class.

2. When we proved in Proposition 3.1 that Dehn twists are nontrivial
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elements of Mod(S), we easily dispensed with the case of Dehn
twists about nonseparating simple closed curves, using their action
on H;(S;Z). For the case of separating curves, we needed a more
subtle argument.

3. When we proved in Theorem 6.11 that Mod(.S) is residually finite,
we quickly dealt with the case of elements that act nontrivially on
H,(S;Z); the other elements of Mod(S) required a much more in-
volved argument.

It is therefore important for us to understand the elements of Mod(.S,)
that act trivially on H;(Sg;Z). These elements form a normal subgroup
Z(Sq) of Mod(Sy) called the Torelli group. We have an exact sequence

1 — Z(S4) — Mod(Sy) 2 Sp(29,Z) — 1.

The Torelli group Z(7?) of the torus is trivial; this is simply a restatement of
Theorem 2.5. In general, we think of Z(.S,) as encoding the more mysterious
structure of Mod(.S,)—it is the part that cannot be seen via the symplectic
representation W. The study of Z(.S) is also of central importance in under-
standing the structure of congruence subgroups of Mod(S); for example,
see the recent work of Putman [183].

Torelli groups for other surfaces. When S is a surface of genus g with
either one puncture or one boundary component, we also have a naturally
defined Torelli group Mod(SS), which is again the kernel of the symplec-
tic representation. For other surfaces .S, one can still consider the subgroup
of Mod(S) consisting of elements that act trivially on H(S;Z). However,
there are other natural choices for the Torelli group in these cases; see Put-
man’s paper [184] for an in-depth discussion.

Homology 3-spheres. One purely topological motivation for studying
Z(Sy) is the following connection with integral homology 3-spheres, which
are 3-manifolds that have the same integral homology as S3. A standard
handlebody H is a 3-manifold homeomorphic to a closed regular neighbor-
hood of a graph embedded in a plane in S3. The complement in S of the
interior of H is another handlebody H’. Thus we can think of S3 as the
union of two handlebodies glued along their boundaries by a homeomor-
phism ¢ : 9H — OH’, that is,

53 %HU(bH/.

Note that 9H and OH' are homeomorphic closed surfaces. If 1) is a self-



THE SYMPLECTIC REPRESENTATION AND THE TORELLI GROUP 183

homeomorphism of 9H, we obtain a new 3-manifold
Md’ =H U o H'.

The manifold M, depends only on the isotopy class of . The homology
of M, depends only on W([¢)]) € Sp(2g,Z). In particular, if [¢] lies in the
Torelli subgroup of Mod(0H), then M, is a homology 3-sphere. What is
more, every homology 3-sphere arises in this way [161, Section 2].

The symplectic action. By Theorem 6.4, each matrix A € Sp(2g, Z) is the
action of some element A € Mod(S,). The element A acts by conjugation
on the normal subgroup Z(.S,) in Mod(Sy). A different choice of A gives an
automorphism of Z(.S,) that differs by conjugation by an element of Z(S).
We therefore have a representation

p:Sp(29,Z) — Out(Z(Sy)).

This representation is quite useful; it pervades the study of Z(.S,). For ex-
ample, the abelian group H*(Z(S,);Z) is an Sp(2g, Z)-module. One can
then use the representation theory of symplectic groups to greatly constrain
the possibilities for H*(Z(Sy); Z); see [112]. The representation p turns out
to be an isomorphism; see [33, 34, 59].

6.5.1 TORELLI GROUPS ARE TORSION-FREE

Theorem 6.8 can be rephrased as a theorem about Torelli groups, giving the
following basic fact about Z(.S,).

THEOREM 6.12 For g > 1, the group Z(S) is torsion-free.

Similarly, we have that Z(S, 1) is torsion-free. We could also say that
7 (S;) is torsion-free, where S; is a surface of genus g with one boundary
component, but the entire group Mod(S;) is already torsion-free (Corol-
lary 7.3).

6.5.2 EXAMPLES OF ELEMENTS
We can write down several explicit examples of elements of Z(.S).

1. Dehn twists about separating curves. Each Dehn twist about a separating
simple closed curve 7y in S, is an element of Z (.S, ). This is because there ex-
ists a basis for H1(Sy; Z) where each element is represented by an oriented
simple closed curve disjoint from . Since T’, fixes each of these curves,
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it in particular fixes the corresponding homology classes and is hence an
element of Z(.Sy).

Another way to see that 77, is an element of Z(.S,) is to apply Proposi-
tion 6.3, which gives that

Ty (x) = z +i([y), 2) 1]

for any © € Hy(Sq4;Z). Since v is separating, we have [y] = 0, and so
T, (x) ==z

The group generated by Dehn twists about separating simple closed
curves is denoted £C(.Sy). In the 1970s Birman asked whether K(.S,) is equal
to all of Z(S,) or at least has finite index in Z(S,). To prove that this is not
the case, one has to find some invariant to tell that an element of Z(.S,)
does not lie in K(S,). We explain below Johnson’s construction of such an
invariant.

2. Bounding pair maps. A bounding pair in a surface is a pair of disjoint,
homologous, nonseparating simple closed curves. A bounding pair map is
a mapping class of the form

T.T, ',

where a and b form a bounding pair. Since a and b are homologous, Propo-
sition 6.3 gives that the images of T}, and T} in Sp(2g, Z) are equal. Thus
any bounding pair map is an element of Z(.S;).

We have seen bounding pair maps once before: the kernel of the forgetful
map Mod (S, 1) — Mod(Sy) is generated by bounding pair maps. This
follows from Theorem 4.6 together with Fact 4.7 and the fact that 7 (.S,) is
generated by simple nonseparating loops.

3. Fake bounding pair maps. In verifying that a bounding pair map acts triv-
ially on homology, we never used the fact that the curves in the bounding
pair were disjoint—just that they were homologous. Thus 7,7}~ s an ele-
ment of Z(S,) whenever a and b are homologous. A special case of this is
the mapping class [T}, T,], where i(a, ¢) = 0. Indeed,

T, 1.1, ' = TaTT_c%a),

and, by Proposition 6.3, the simple closed curves a and T.(a) are homolo-
gous.

4. Point pushes and handle pushes. The Birman exact sequence gives us the
point-pushing homomorphism

Push : m1(Sg) — Mod(Sy1).



THE SYMPLECTIC REPRESENTATION AND THE TORELLI GROUP 185

Since m(Sy) is generated by simple loops, and these elements map to
bounding pair maps in Mod(Sy 1) (Fact 4.7), we have that the entire im-
age Push(m(Sy)) lies in Z(Sy.1).

We would like to make an analogous statement for Z (S gl) Since the map
S; — Sy, induces a canonical isomorphism Hy(S};Z) — Hi(Sy1;7Z),
the boundary-capping homomorphism Mod(S;) — Mod(Sy,1) induces a
surjective homomorphism 7 (Sgl) — Z(S4,1). By Proposition 3.19 and the
fact that Dehn twists about separating curves lie in the Torelli group, we
obtain a short exact sequence

1—-Z —>I(S;) — I(Sg1) — 1,

where the kernel Z is generated by the Dehn twist about the boundary of S ;.
Recall from from Section 4.2 that we also have a homomorphism
m(UT(Sy)) — Mod(S;) that makes the following diagram commute:

T (UT(S,)) — Mod(S})

| |

71(Sg) —— Mod(Sg.1)

By the commutativity of the diagram, the fact that the image of 7 (Sy)
in Mod(Sy1) lies in Z(Sg 1), the fact that the kernel of the map
m(UT(Sy)) — m1(Sy) maps to Z(S,), and the fact that Z(Sj) surjects
onto Z(Sg,1), we obtain that the image of 71 (UT'(Sy)) in Mod(S;) lies in
Z(Sy).

The natural inclusion S; —  Sg41 induces an injective homomor-
phism Mod(S}) — Mod(Sg41) that restricts to an injective homo-
morphism Z (S;) — I(Sg+1). Precomposing with the homomorphism
m(UT(Sy)) — I(S;) we obtain an inclusion

1 (UT(S,)) = Z(Sy41)-
We think of the elements in the image of this map as handle pushes, obtained
by pushing the (g + 1)st handle around the surface S,.
6.5.3 A BIRMAN EXACT SEQUENCE FOR THE TORELLI GROUP

The above discussion about point pushes and handle pushes gives the fol-
lowing result, which allows us to translate results back and forth between
the three groups Z(.S;), Z(Sy,1), and Z(S,)):
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Proposition 6.13 Let g > 2. The forgetful map Sy1 — Sy induces a short
exact sequence

1 —m(Sg) = Z(Sg1) — Z(Sg) — 1,
and the boundary-capping map S; — Sy gives a short exact sequence

1— ﬂl(UT(Sg)) — I(S;) — I(Sg) — 1.

6.5.4 THE ACTION ON SIMPLE CLOSED CURVES

Similar to Section 1.3, we can classify the orbits of simple closed curves in
Sy up to the action of Z(S,;). While the statement is perhaps not so surpris-
ing, the proof is more subtle than the usual change of coordinates principle.

To state the result we need the fact that a separating simple closed curve
in Sy (or its isotopy class) induces a splitting of H1(Sy; Z). By a splitting of
H/(S4;Z) we mean a decomposition as a direct product of subgroups that
are orthogonal with respect to skew-symmetric bilinear pairing given by al-
gebraic intersection number 7 on H 1(S¢;Z). A simple closed curve ~y that
separates S, into two subsurfaces S’ and S” gives a splitting of H;(S,; Z)
into the product of the two subgroups H;(S’;Z) and H,(S";7Z), each sub-
group consisting of those homology classes supported on one side of v or
the other. We say that two isotopy classes of simple closed curves are Z(Sy)-
equivalent if there is an element of Z(S,) taking one to the other.

The following theorem, observed by Johnson [110, Section 6], gives that
the obvious necessary condition for two simple closed curves on S, to be
Z(S4)-equivalent is also sufficient.

Proposition 6.14 Let c and ¢ be two isotopy classes of simple closed curves
in Sy. If c and ¢ are separating, then they are I(S,)-equivalent if and only
if they induce the same splitting of H1(Sg; Z). If c and ¢’ are nonseparating,
then they are Z(S,)-equivalent if and only if, up to sign, they represent the
same element of H1(Sy; Z).

Proof. For both cases, one direction is obvious, and so we only need to
prove that the obvious necessary condition for Z(S,) equivalence is suffi-
cient. Let v and +/ be representative curves for the isotopy classes ¢ and
c.

Suppose that ¢ and ¢’ are separating. Let S and Sy be the two embed-
ded subsurfaces of S; bounded by + and let S and S5 be the two embed-
ded subsurfaces bounded by +/. Up to renumbering, our hypothesis tells us
that H;(S1;Z) and H;(S};Z) are equal as subsets of H;(Sg;Z). There-

fore, S7 and S have the same genus and hence are homeomorphic. Fix a
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homeomorphic identification of v with " and choose any homeomorphism
é1 : (S1,7v) — (S],7) respecting this identification. By Theorem 6.4 and
by the hypothesis, there is a homeomorphism 1), € Homeo™ (S, ) so that
1 o ¢1 is the identity automorphism of H(S1;Z) = H1(S];Z). Here we
are invoking our claim that all of the results in Section 6.3 work for surfaces
with one boundary component. We similarly choose 3 o ¢9 : So — 5.
Together, the maps 11 o ¢1 and 1) o ¢ induce a homeomorphism of S, that
takes 7 to 4/ and acts trivially on H;(S,; Z).

Now suppose that ¢ and ¢’ are nonseparating. We would like to proceed
similarly to the previous case. One difficulty is that we do not have a sur-
jectivity statement for the action of the stabilizer of ¢ in Mod(S,) on the
homology of the surface obtained by cutting along c. Instead, we proceed as
follows.

Let 3 be any simple closed curve in S, that intersects v once. By the
argument in the third proof of Theorem 6.4, there is a simple closed curve
(' that intersects 7/ once and is homologous to 3. Let ¢ be the boundary
of a regular neighborhood of 5 U v and let §’ be the boundary of a regular
neighborhood of 3’ U +'. Applying the present proposition to the case of
separating simple closed curves, there is an element of Z(.S,) taking 0 to ¢'.
Since Z(S1,1) is trivial (Theorem 2.5), it follows that this element of Z(S)
takes c to ¢/, and we are done. O

The statement of Proposition 6.14 can be sharpened in the case of isotopy
classes of oriented simple closed curves. Two isotopy classes of oriented
nonseparating simple closed curves are Z(S,)-equivalent if and only if they
represent the same element of H1(Sy;Z). Two isotopy classes of oriented
separating simple closed curves are Z(Sg)-equivalent if and only if they
induce the same ordered splitting of H1(Sq;Z), where the ordering of the
factors comes from the fact that the curve has well-defined left and right
sides.

The statement of Proposition 6.14 (and its proof) apply to the cases of
surfaces with either one boundary or one puncture.

6.5.5 GENERATORS FOR THE TORELLI GROUP

Birman and Powell proved that Z(.S,) is generated by the infinite collection
of all Dehn twists about separating simple closed curves and all bounding
pair maps [23, 180]. The general method they used is as follows.

From relations to generators. Let

1—>K—>E£>Q—>1
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be a short exact sequence of groups. Suppose that E is generated by
{e1,...,er} and that @ has a presentation with generators p(e1), ..., p(ex)
and relations {r; = 1}, where each r; is a word in the {p(e;)}. For each i,
let 7; be the corresponding word in the e;. As an element of F, each 7; lies
in K. It is easy to check that the {7;} is a normal generating set for K, that
is, the set of all conjugates of all r; by elements of F' generate K.

An infinite generating set for Z(S,;). Birman’s idea was to apply the
above general fact to the short exact sequence

1 — ZI(S4) — Mod(Sy) — Sp(2¢9,Z) — 1.

Birman determined a finite presentation for Sp(2¢, Z) and made the remark
that the relators for Sp(2g; Z) give rise to generators for Z(S,). Then her
student Powell interpreted each of these generators as products of Dehn
twists about separating curves and bounding pair maps, thus proving that
Z(Sy) is generated by (infinitely many) such maps.

Putman has recently shown that the same generating set for Z(.S,) can be
derived from methods similar to the ones that we used to show that Mod(Sy)
is generated by Dehn twists; see [184].

Whittling down the infinite generating set. Johnson showed that, for g >
3, the Dehn twists about separating simple closed curves are not needed
to generate Z(S,). In other words, he proved that any such Dehn twist is
a product of bounding pair maps. This can be deduced from the lantern
relation as shown in Figure 6.4. In the figure, the pairs of simple closed
curves (x,bs), (y,b1), and (2, bs) are all bounding pairs, and so, using the
fact that the T}, commute with the Dehn twists about all seven simple closed
curves in the picture, the lantern relation T, T, T, = Ty, Ty, Ty, T}, can be
written as the desired relation in Z(S,):

(T Ty WL, Ty N TT, ) = T,

The genus of a bounding pair map Tabel is the minimum of the genera of
the two components of S, — {aUb}. It is easy to see that a genus &k bounding
pair map is a product of £ genus 1 bounding pair maps, and so Z(.S,) is
generated by genus 1 bounding pair maps. This implies, by the change of
coordinates principle, that Z(S,) is normally generated in Mod(S,) by a
single genus 1 bounding pair map.

Finite generation. In his clever and beautiful paper [111] Johnson proved
the following.
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Figure 6.4 A lantern showing how to write the twist about the separating simple closed curve
a as a product of bounding pair maps.

THEOREM 6.15 For g > 3, the Torelli group Z(S,) is generated by a finite
number of bounding pair maps.

While Mod(S,) can be generated by 2g+ 1 Dehn twists that can easily be
displayed in one figure, we will see below that any generating set for Z(.S,)
must have at least O(g>) generators (Theorem 6.19). Thus any such generat-
ing set for Z(.S,) is not so easy to write in a single figure. This indicates the
combinatorial complexity needed to prove Theorem 6.15. What is particu-
larly remarkable is that for g > 3, Johnson finds a generating set for Z(.S;)
with O(29) elements (for g = 20, he gives over one trillion generators);
even naming that many elements in a coherent way is not so trivial!

Johnson’s strategy for Theorem 6.15 is as follows. He first produces an
explicit list of bounding pair maps in Z(.S,), some of which are genus 1,
and shows that the group generated by these is normal in Mod(Sy). To
check normality, it suffices to check that the conjugate of each bounding
pair map on the list by each Humphries generator for Mod(S,) is a product
of bounding pair maps on the list. Since any single genus 1 bounding pair
map normally generates Z(Sy) (in Mod(Sy)), this proves the theorem. Of
course, the hard part is coming up with the explicit list. The proof of The-
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orem 6.15 would take us too far afield, but we encourage the reader to read
the proof in [111].

While Theorem 6.15 settles the question of finite generation of Z(.S,), we
do not have an analogue of the Humphries generating set. In fact, Johnson
has conjectured that Z(S,) has a generating set with O(g®) elements, as the
rank of H1(Z(S,); Q) has this order. If this conjecture is true, Johnson’s
generating set with O(29) elements is far from minimal. In the case g = 3,
Johnson was able to whittle down the cardinality of his generating set for
Z(S3) to 35, which is exactly the rank of H;(Z(S3); Q). Johnson conjec-
tures that this should persist in higher genus. However, it is still an open
question even to find a generating set for Z(.S;) whose number of elements
is polynomial in g.

Two related open questions are: is Z(.S,) finitely presented for g > 37 is
IC(S,) finitely generated for g > 3?

Genus 2. In genus 2 the story is quite different. McCullough—Miller showed
that Z(S2) is not finitely generated [146]. Mess sharpened this result by
showing that Z(S5) is an infinitely generated free group, with one Dehn
twist generator for each orbit of the action of Z(.S2) on the set of separating
simple closed curves in Sy [155]. Note that there are no bounding pairs in
Sa, and so Z(Ss) is generated by Dehn twists; that is, Z(S3) = K(S2).

Nonclosed surfaces. For the surfaces S;; and S gl, it follows from Theo-
rem 6.15 and the Birman exact sequences for Z(S,) that Z(.S, 1) is generated
by finitely many bounding pair maps and that 7 (S;) is generated by finitely
many bounding pair maps together with the Dehn twist about the boundary
curve of 5.

6.6 THE JOHNSON HOMOMORPHISM

In this section we explain the Johnson homomorphism and some of its ap-
plications.

6.6.1 CONSTRUCTION

We now describe another of Johnson’s fundamental contributions to our un-
derstanding of the Torelli group, the Johnson homomorphism [109]. This is
a surjective homomorphism

71 Z(Sy) — (A H1(Sy: Z)) /Hi(Sg; Z),
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where A3H1(Sy;Z) is the third exterior power of Hi(Sy;Z). The map T
exactly captures the torsion-free part of H1(Z(Sy);Z) (Theorem 6.19). It is
a useful invariant of elements of Z(.S;), as we shall see.

We begin by considering the case of Sgl, a surface of genus g > 2 with
one boundary component. We do this for simplicity since we can choose a
basepoint on BS; and so any element of Mod(S;) gives an automorphism
of m; (S;) as opposed to just an outer automorphism. Also the target of 7 in
this case is simply A>H1(Sy; Z).

Let I' = m1(S, ;), which is isomorphic to the free group of rank 2g. Let
I'" denote the commutator subgroup I, T'] of I. By definition, Z (.S, gl) is the
subgroup of Mod(S;) that acts trivially on I'/T”. Johnson’s key idea is to
look at the action of Z(S ;) on the quotient of I' by the next term in its lower
central series, namely, [[',T] = [T, [T, T]].

There is a short exact sequence

1-T'/[0, '] - T/[0,T'] = T/T — 1,
which we rewrite as
1-N—-F—H-—>1

by simply renaming the groups. The Johnson homomorphism is the homo-
morphism

7:I(S;) — Hom(H, N)
given by
7(f)(z) = fle)e™,

where e is any lift of z € H to E. It is straightforward to check that 7(f) is
a well-defined homomorphism and that 7 itself is a homomorphism.

In the literature and in applications, 7(f) is usually thought of as an ele-
ment of A3H. This involves a little bit of an algebraic juggle as follows.

1. There is a homomorphism ¢ : A?H — N defined as follows. For
a,b € H, we take lifts a and b in £ and let

(aAb) = [a,b] € N.

Now extend ) linearly. Note that Sp(2g,Z) acts on both the do-
main and the range of ), and it is not hard to prove that 7 is an
Sp(2g, Z)-module homomorphism. Using, for example, the classical
Witt formula to count dimensions, one can check that ¢ is an Sp-
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module isomorphism. Therefore, Hom(H, V) is naturally isomorphic
to Hom(H, A2H).

2. Hom(H, A2H) is canonically isomorphic to H* ® A?H. Using the
nondegenerate symplectic form given by algebraic intersection num-
ber, we can canonically identify H with its dual H*. This gives a
canonical isomorphism Hom (H, A\2H) ~ H @ A?H.

3. There is a natural inclusion of A2H into H ® A2H given by
aNbAc—a® (bAc)+b®(cANa)+c® (aNb),

and we will show below that the image of 7 is exactly A3H.

Naturality. The action of Mod(S;) on H = Hl(S;; Z) induces an ac-
tion of Mod (.S, gl) on ASH. A crucial and easily verified property of 7 is the
following naturality property: for any f € Z(S;) and h € Mod(S,), we
have

T(hfh™h) = ha(7(f)). (6.1)

Closed and once-punctured surfaces. We will compute below that for the
isotopy class ¢ of 35, 7(T..) = 0. It then follows that 7 : Z(S;) — A*H
factors through a homomorphism 7 : Z(S, 1) — A3H.

For closed surfaces S, the Johnson homomorphism is a surjective homo-
morphism 7 : Z(S;) — A3H/H. The inclusion of H into A3H is given
by

a — <in/\yi) N a,

where z; and y; represent a symplectic basis for H = H;(Sg; 7). The reason
that we need to take the quotient A3 H /H is in order for 7 to be well defined
on Z(S,) comes from the fact that Z(S,) is the quotient of Z(Sy 1) by the
normal subgroup 71(Sy) (Proposition 6.13). In computing the image of a
bounding pair map in Z(.S,) under 7, we can think of the quotient by H as
accounting for the fact that there is no preferred side of a bounding pair in
a closed surface; in S; the two subsurfaces cut off by a bounding pair are
distinguished from each other by whether or not they contain 0.5, ;.

We can now deduce Corollary 6.17 for the closed surface S;. The
analogues of Theorems 6.18 and 6.19 also hold for closed surfaces; see
[111, 112,113, 114].
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An interpretation via mapping tori. The Johnson homomorphism 7 can
also be defined using topology. Let f € Z(.S, 1) and think of S 1 as S, with
a marked point. We wish to come up with an element of A3H. Let ¢ be a
representative of f and consider the mapping torus

B Sy x [0, 1]
M= @0 ~ (6@ 1)

Since f € I(Sy 1), it follows that Hy(My;Z) ~ Hy(Sy x S*;Z). The
projection map S, x S! — S, induces a projection H;(S, x S%;Z) —
Hi(Sy) =~ 7.9, Composing these maps and then precomposing with the
abelianization homomorphism 71 (M) — Hi(Mg;Z) gives a homomor-
phism

m(My) — 229,

Since T%9 is a K(Z29,1), it follows that this homomorphism is induced by
a continuous based map of spaces

My — T,

where 729 is the 2g-dimensional torus. This map is well defined up to
(based) homotopy, and it induces a homomorphism

¢ Hy(My; Z) — H3(T%; 7).

Since H3(T%9;Z) ~ A3(H), the image ([ My]) of the fundamental class of
M, in Hs(T?9;Z) specifies an element of A3(H ). This element is precisely
7(f). This can be proven by a straightforward algebraic topology argument;
see [47].

Another interpretation via mapping tori. There is a different way to use
mapping tori in order to obtain a description of 7(f). Specifically, we will
find a homomorphism Z(S,,1) — Hom(A3H,Z) ~ A3H that agrees with
T.

Letx € H. Represent x by an oriented multicurve z in Sy 1. The cylinder
C = 1 x[0,1] lies in Sy 1 x [0, 1] and hence maps to the mapping torus M,
where ¢ is a representative of f. The cylinder C' is in general not a closed
surface. However, since ¢(u) is homologous to p, there is an immersed
surface R in Sq1 x {0} ~ Sg1 with  — ¢(u) as its boundary. Since S
has a marked point, the choice of R is unique. The union C'U R is a surface
¥, and so it represents an element [¥,] € Ho(My;Z) ~ H'(My;Z), this
last isomorphism coming from Poincaré duality.
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Figure 6.5 The simple closed curves ¢ and d and the elements of 7y (S;) used to compute
7(T.) and 7(T4 TS ).

Givenany Ay A z € A3H, the cup product
S]UIS,] U IS € B (M 2)

can be paired with the fundamental class [My)] to give an element of Z.
Equivalently, one can take the triple (algebraic) intersection >, N X, N X,
to obtain this element of Z. We have thus constructed a map Z(S,,1) —
Hom(A3H,Z) ~ A3H that one can check is a homomorphism and that
agrees with 7; see [112].

6.6.2 COMPUTING THE IMAGE OF T

We now explain how to explicitly calculate 7 on certain elements of 7 (Sgl)
and compute its image.

The image of a Dehn twist. Let c be the standard separating simple closed
curve shown in Figure 6.5. We claim that 7(7¢) = 0.

To prove this claim we begin by taking the generators {c;, 3; } for m1 (S gl)
shown in Figure 6.5. Let k be the genus of the subsurface of S; cut off by ¢
and not containing 9S}; in Figure 6.5 this is the surface to the left of c. We
see that T, fixes a;; and 3; for k+1 < i < g. Let y be the element of (S;)
shown at the bottom right of Figure 6.5. For z € {aq, (1,. .., ax, Bk}, we
find that

T.(z) = yoy !,
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and so
T,(z)z~" = [y,2].

But ~ is a separating simple closed curve, and so v € I, so that [y, z] €
[T, T']. Thus we have [y,2] = 0 € A2H, and so 7(T.) = 0.

By the change of coordinates principle and the naturality property of 7
(formula (6.1)) it follows that 7(7,») = 0 for any separating simple closed
curve ¢ in 5. We thus have K(S;) < ker(7).

The image of a bounding pair map. As in the case of Dehn twists, in
order to understand the image of an arbitrary bounding pair map, it suffices
to compute 7(T,7, 1) for the standard bounding pair {d, e} shown in Fig-
ure 6.5.

Let f = T,T.! and suppose that the bounding pair {d, e} has genus k;
that is, the subsurface of S cut off by d U e and not containing S} has
genus k. It is straightforward to compute directly the induced action of f
on 771(5;) by computing the action on each generator «; and 3; of 771(53).
Doing this, we obtain

flaq) = b6 i<k f(Br1) = Bria
fB)=686"" i<k flog)=0a; i>k+1
flaks1) = de tagia f(Bi) =B i>k+1

where § and e are the elements of 7 (S ;) shown at the bottom left of Fig-
ure 6.5.

From here we can write down the product f(z)z~" for each € {oy, 3;}.
Recall that f(x)z~! lies in IV and that it corresponds to an element of A2H.
In the calculation we will use the fact that

k

5671 = H[O&Z‘, ﬁz]

i=1

and the fact that the homology classes [0] and [(x1] are equal. Denoting
by « the correspondence between elements of N and A2H via the isomor-
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phism described above, we have

flada;t =16,0i] < [Bepa] Aloy] i<k
fBIBT =168 < (Bl ABi i<k
k
f(akﬂ)a,;il = e ! - Z[a
=1
f(ﬁk+1)ﬁk_j1 =1 o 0
flai)a; ' =1 = 0 i>k+1
f(ﬁi)ﬁilzl - 0 i> k41

This gives that 7(f), as an element of H ® A?H, is

= Z([%’] @ ([Bi] A [Brw1]) + [Bi] @ ([Br1] A lewi])
+[Brt1] @ ([es] A [Bi]))

k
— (Z[ai] A [ﬁi]) A [Brs1]-

=1

In summary, we have shown that

TdT sz/\yz/\z

where z € H is the homology class [d] = [e] and z1,y1,..., %k, Yk, 2
form a (degenerate) symplectic basis for the homology of the component of
S, ; — (d U e) not containing the basepoint of wl(S;).

The image of Z (S;). Choosing k = 1 in the above computation gives that
the wedge product

[o] A [B1] A [B2]
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lies in the image of 7 : 7 (S;) — A3H. We will now use the naturality
property (6.1) together with the fact that Mod(S;) surjects onto Sp(2g, Z)
to show that 7 surjects onto A3 H.

Assume that g > 3. By Theorem 6.4, there is some f € Mod(S ;) so that

f« maps the pair ([a1], [a3]) to the pair ([aq] +[61] — [B5], [as] — [B1] + [B3])
and fixes all other basis elements of H. Then

Fellaa] A [Br] A [B2]) = [ea] A [B1] A [B2] = [Bi] A [B2] A [Bs]-

Since we have already shown that [o;] A [51] A [B2] lies in the image of
7, it follows from the naturality property of 7 that [31] A [B2] A [B3] does
as well. Applying factor swaps and factor rotations gives that every wedge
product x A y A z is in the image of 7, where z,y, z € {[ay], [5i]}. Since
such elements span A3 H, this completes the proof that 7 is surjective when
g > 3. We leave the case of g = 2 as an exercise.

We have therefore proved the following result of Johnson.

Proposition 6.16 If g > 2, then T(Z(S;)) = N*H.

There is another way to prove the slightly weaker fact that 7(Z (.S, ;)) ®

Q= A3H®Q.Let Hyp = H®Q. Then the vector space A> Hp decomposes
as a direct sum of irreducible Sp(2g, Q)-modules as follows:

NHg = N*Hg/Hg @ Hg.

Since these two summands are irreducible and since 7 satisfies the natu-
rality property (6.1), we could prove that 7 is a surjection onto A3 H (after
tensoring with Q) by finding one element with 7-image in the first sum-
mand and one element with 7-image in the second summand and then ap-
plying Schur’s lemma. Note that A®H is a small, nonobviously embedded
subspace of A>H ® H. How did Johnson know to prove that the image of 7
is contained in this subspace? Well, he knew that the image of 7 has to be a
direct sum of Sp-invariant subspaces, so after computing a few elements in
the image he might have guessed which subspaces would be needed.

6.6.3 SOME APPLICATIONS
The Johnson homomorphism 7 is the most important invariant in the study

of the Torelli group. Here we give two example applications.

The kernel of 7. As K(S;) is contained in the kernel of 7 and since the
image of 7 is infinite, and indeed the image of any bounding pair map is
infinite, we immediately deduce the following.
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Corollary 6.17 If g > 3, then IC(Sgl) has infinite index in I(S;). In fact, no
bounding pair map or any of its nontrivial powers lie in K (S; ).

Thus, by using a purely algebraically defined “invariant” 7, Johnson de-
duced a purely topological statement, namely, that no nontrivial power of
any bounding pair can be written as a product of Dehn twists of separat-
ing curves. Before Johnson’s work, Chillingworth had already shown that
KC(Sy) # Z(S,) [46]. Johnson actually proved the following much deeper
result [113].

THEOREM 6.18 If g > 3, then ker(1) = K(S,)).

In other words, the kernel of 7, which is defined purely algebraically, is
simply the group IC(S;), which is defined purely topologically.

The abelianization of the Torelli group. That fact that 7 : Z(S]) — A*H
is surjective immediately implies that the abelianization H;(Z (S ;); Z) must
contain an isomorphic copy of A3H. It turns out that 7 captures the entire
torsion-free part of Hy(Z(S gl); Z), but there is more to the story. Johnson
proved the following [114].

THEOREM 6.19 Let g > 2. Then

Hy(Z(S3):Z) = N*H x (Z/2Z)N,

29 29 29
N = .
(2)+ () + (%)
The A2H in the theorem is exactly what is detected by the Johnson ho-
momorphism. The torsion part is detected by the Birman—Craggs—Johnson
homomorphisms, which are defined using the Rochlin invariant, an invariant

coming from the theory of 3-manifolds. See Johnson’s lovely survey paper
[112] for a discussion.

where

A filtration of the mapping class group. Let S be either S, or S; and
let ' = m(S). The symplectic representation of Mod(S) describes the
action of Mod(S) on Hy(S;Z) = I'/T’, where I” = [I', T']. The kernel of
this representation is the Torelli group Z(.S). The Johnson homomorphism
describes the action of Z(.S) on the quotient I'/[I”, T']. By Theorem 6.18, the
kernel of this map is IC(.S). One would like to continue this line of analysis
to /C(S) and beyond.
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To this end, we consider the lower central series of I' = m1(S), which is
the sequence of groups

I'=TI1>Iy>---
defined inductively by
Pl =T and Pz = [P,Fz‘_l].

Since each I'; in the lower central series is characteristic, that is, fixed by
Aut(T"), there is a natural homomorphism Aut(I') — Aut(I'/T';) that de-
scends to a homomorphism

\Ifi : Out(F) — Out(F/FiH).

As explained in Chapter 8, the (outer) action of Mod(S) on 71(S) gives a
homomorphism Mod(S) — Out(m(S)). (The Dehn—Nielsen—Baer theo-
rem says that this map is an isomorphism when S is closed.)

We define the kth Torelli group Z¥(S) to be the kernel of W, restricted to
Mod(S). We have already seen the following.

7°(8) = Mod(S)  T'(S)=1Z(S) I%*(S)=K(S)

It is a theorem of Magnus that the intersection of the I'; is trivial [65, 137].
Using this fact, Bass and Lubotzky proved that the intersection of the Z%(.S)
is trivial and so the Z%(S) give a filtration of Z(S), that is, a descending
sequence of normal subgroups that intersect in the identity [12]. This filtra-
tion of Z(S) is called the Johnson filtration. In the same way that the Torelli
group captures some mysterious aspects of the mapping class group, we can
think of the Johnson filtration as probing even more deeply.



Chapter Seven

Torsion

In this chapter we investigate finite subgroups of the mapping class group.
After explaining the distinction between finite-order mapping classes and
finite-order homeomorphisms, we then turn to the problem of determining
what is the maximal order of a finite subgroup of Mod(S,). We will show
that, for ¢ > 2, finite subgroups have order at most 84(¢g — 1) and cyclic
subgroups have order at most 4g + 2. We will also see that there are finitely
many conjugacy classes of finite subgroups in Mod(S). At the end of the
chapter, we prove that Mod(S,) is generated by finitely many elements of
order 2.

7.1 FINITE-ORDER MAPPING CLASSES VERSUS FINITE-ORDER
HOMEOMORPHISMS

In this section we will see that problems about finite-order mapping classes
can be converted to (easier) problems about finite-order homeomorphisms.

7.1.1 NIELSEN REALIZATION

Assume g > 2 and suppose that G < Homeo*(Sg) is a finite subgroup.
It follows from Theorem 6.8 that the natural projection Homeo™ (S;) —
Mod(Sy) restricted to G is injective. That is, any finite subgroup of
Homeo™ (S) is isomorphic to a finite subgroup of Mod(S,).

What about the converse? Even the case of a single element is interesting.
Suppose f € Mod(S) has order k and suppose ¢ € Homeo™ (S) is any rep-
resentative of f. It follows from the definition of Mod(S) that ¢* is isotopic
to the identity. The question is whether or not ¢ can be chosen so that ¢ is
exactly the identity in Homeo™ (S). The following classical theorem, due to
Fenchel and Nielsen, answers this question in the affirmative.

THEOREM 7.1 Let S = Sy, and suppose x(S) < 0. If f € Mod(S) is
an element of finite order k, then there is a representative ¢ € Homeo™ (S)
so that ¢ has order k. Further, ¢ can be chosen to be an isometry of some
hyperbolic metric on S.
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Our proof of Theorem 7.1 relies on basic properties of Teichmiiller space,
and so we relegate it to Section 13.2. The following theorem of Kerckhoff is
a generalization of Theorem 7.1 from finite cyclic groups to arbitrary finite
groups [122]. Its proof is much harder than the proof of Theorem 7.1 and is
beyond the scope of this book.

THEOREM 7.2 (Nielsen realization theorem) Let S = S, ,, and suppose
X(S) < 0. Suppose G < Mod(S) is a finite group. Then there exists a finite
group G < Homeo" (S) so that the natural projection Homeo(S) —
Mod(S) restricts to an isomorphism G — G. Further, G can be chosen to
be a subgroup of isometries of some hyperbolic metric on S.

In other words, every finite subgroup of Mod(S) comes from a finite
subgroup of Homeo™ (S).

Mapping class groups of surfaces with boundary are torsion-free. Re-
call that a frame at a point x € S is a basis for the tangent space at x. If
0S # (), then any isometry that fixes S pointwise must clearly fix each
frame at each point of 0.5. Since an isometry of a surface is determined by
what it does to a point and a frame, any such isometry is equal to the identity.

When 95 # (), our proof of Theorem 7.1 applies to produce an isometry
¢ € Homeo™ (S) (not Homeo™ (S, 0S)) in the free homotopy class of f.
Using the fact that Dehn twists about components of .S have infinite order,
we obtain the following.

Corollary 7.3 If 0S # (), then Mod(S) is torsion-free.

Isometries of the torus. Since Mod(7?) =~ SL(2, Z), torsion in Mod(7"?)
is the same as torsion in SL(2, Z). The group SL(2,Z) has eight nontrivial
conjugacy classes of finite-order elements. There are elements of 2, 3, 4, and
6 given by the matrices

(o 2 (T3 0)m ()

and their inverses. Each of these matrices can be realized as an isometry of
either the square torus or the hexagonal torus; compare Section 12.2.

Isometries of punctured spheres. Let Sy, be a sphere with n > 3 punc-
tures and let f € Mod(Sp,,) be a finite-order element. By Theorem 7.1,
there is a hyperbolic metric on Sy ,, and a representative ¢ € Homeo™ (Son)
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of f so that ¢ acts by isometries. In particular, ¢ is a finite-order homeomor-
phism. What is more, we can fill in the punctures of S ,, and so regard ¢ as
a finite-order homeomorphism of the 2-sphere S2.

Now, any finite-order homeomorphism f of S? is topologically conjugate
to an isometry of S2 in the standard round metric; see, for example, [128,
Section 2.2]. When f is a diffeomorphism, one can see this by averaging a
metric to obtain an f-invariant metric and then pulling back this f-invariant
metric to the round metric, which one can do by the uniformization theorem.
The conjugation of f by the uniformizing map will then act by isometries
on the round metric on S2.

Any orientation-preserving isometry of the round metric on S? is a ro-
tation. Therefore, up to taking powers, there are exactly three conjugacy
classes of finite-order elements of Mod(Sp,,) when n > 4, since there are
0, 1, or 2 punctures on the axis of rotation. When n = 3, there are only two
nontrivial conjugacy classes since any element of Mod(Sp 3) that fixes two
punctures must also fix the third.

7.1.2 DETECTING TORSION WITH THE SYMPLECTIC REPRESENTATION

Using Theorem 7.1, we can now prove Theorem 6.8, which states that if f €
Mod(Sy) has finite order, then its image under ¥ : Mod(S,) — Sp(2g,Z)
is nontrivial.

Proof of Theorem 6.8. For g = 1, the theorem follows immediately from
Theorem 2.5, so assume g > 2. By Theorem 7.1, the mapping class f is
represented by an element ¢ € Diff " (S,) of order n, where 1 < n < oo.
Choose any Riemannian metric & on S;. Average h by taking h + ¢*h +

+ (¢~ 1)*h, which is a ¢-invariant Riemannian metric on Sy. Thus ¢
acts as an isometry in this metric.

Consider any fixed point x € S, of ¢ if one exists. Since ¢ is an isometry,
it is determined by its derivative D¢, at x, which is a 2 X 2 orthogonal
matrix. Since ¢ is orientation-preserving, the matrix D¢ has determinant 1.
Since ¢ is nontrivial, D¢, is a nontrivial rotation, and so z is an isolated
fixed point of ¢ of index 1.

Since ¢ is a continuous map with isolated fixed points, we can apply the
Lefschetz fixed point theorem, which says in this case that the sum M (¢)
of the indices of the fixed points of ¢ is equal to the Lefschetz number L(¢),
which is defined as

2
:Z 1)"Trace(¢s : Hi(Sy; Z) — Hi(Sy; 7))

=1- Trace(qb* : Hl(Sg;Z) — Hl(Sg,Z)) +1
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Since each fixed point of ¢ has index 1, it follows that M (¢) > 0, so that
L(¢) > 0. But since g > 2, the matrix ¢, cannot be the identity, for then its
trace would be at least 4, giving L(¢) < 0, a contradiction. Thus ¥(f) = ¢.
is nontrivial, as desired. O

7.2 ORBIFOLDS, THE 84(g — 1) THEOREM, AND THE 4g + 2 THEO-
REM

By rotating a flat torus X in one circle factor by 27 /n, one obtains an isom-
etry of X of any order n. In contrast, the possible isometries of hyperbolic
surfaces are highly constrained. In this section we will prove two theorems
along these lines. The first result was proved in 1893 by Hurwitz. It bounds
the order of any finite group of hyperbolic isometries of a genus g > 2
surface.

THEOREM 7.4 (84(g — 1) theorem) If X is a closed hyperbolic surface
of genus g > 2, then

| Isom ™ (X)| < 84(g — 1).

One remarkable aspect of Theorem 7.4 is that the number 84 appears
(why 847?) and yet the given bound is sharp in the sense that the 84(g — 1)
bound is realized for infinitely many g; see the discussion below.

The following theorem was proved in 1895 by Wiman [214].

THEOREM 7.5 (4g + 2 theorem) Let X be a closed hyperbolic surface of
genus g > 2. Then any element of Isom™ (X)) has order at most 4g + 2.

The upper bound of Theorem 7.5 is attained for every g > 2: we simply
realize Sy as a regular hyperbolic (4g + 2)-gon with angle sum 27 and with
opposite sides identified, and we consider the rotation by one click.

Combining Theorems 7.2, 7.4, and 7.5 gives the following.

Corollary 7.6 Let g > 2. The order of any finite subgroup of Mod(S) is
at most 84(g — 1), and the order of any finite cyclic subgroup of Mod(Sy)
is at most 4g + 2.

Since Theorem 7.1 is proved in Section 13.2, this book contains a com-
plete proof of the second statement of Corollary 7.6.
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7.2.1 THE ISOMETRY GROUP OF A CLOSED HYPERBOLIC SURFACE IS FI-
NITE

A first step toward obtaining upper bounds on the orders of finite subgroups
of isometry groups of surfaces is to show that these groups are finite to begin
with.

Proposition 7.7 Let X be a hyperbolic surface homeomorphic to S, with
g > 2. Then Isom(X) is finite in any hyperbolic metric.

Proof. The isometry group of any compact Riemannian manifold is a com-
pact topological group.! This follows easily from the Arzela—Ascoli the-
orem. It therefore suffices to prove that Isom(X) is discrete or, what is
the same thing, that the connected component in Isom(X) of the identity
is trivial. Since the topology on Isom(X) agrees with the subspace topol-
ogy inherited from Homeo™ (S,), it is enough to prove that Isom(X) N
Homeoy(S,) = {1}.

Suppose that ¢ € Isom(X) N Homeoy(S,). This says precisely that ¢ €
Isom(X) is isotopic to the identity. Then ¢ has a lift to Isom(H?) that is
a bounded distance from the identity map of H?. By the classification of
hyperbolic isometries, any such isometry is equal to the identity. Thus ¢ is
the identity, as desired. a

Proposition 7.7 is simply not true for the torus: the standard square torus
has infinitely many isometries. Indeed, the isometry group contains a copy
of S x S! a T2. On the other hand, these isometries all represent the trivial
element of Mod(7?). In general, if X is any flat torus, then we still have
that Isom(X') is compact. From this it follows that the projection

Isom™(X) — Mod(X) = Mod(7?)

has finite image.

7.2.2 ORBIFOLDS

As the hypothesis of Theorem 7.4, we are given a closed hyperbolic surface
X of genus g > 2. The basic strategy of the proof of Theorem 7.4 is to study
the quotient space

Y = X/Isom™ (X).

When Isom™ (X) acts freely on X, the quotient Y is itself a hyperbolic
surface. However, elements of Isom™(X) can have fixed points in X, so

'Tt is a theorem of Myers—Steenrod that the isometry group of a compact Riemannian
manifold is in fact a Lie group, but we will not need this.
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that it is not even clear that Y is a manifold (we will prove below that it is).
Since Isom™ (X)) is a finite group for g > 2 (Proposition 7.7), the space Y’
has a well-defined area given by

Area(Y) = Area(X)/|Isom™ (X)|.

By the Gauss—Bonnet theorem we have Area(X) = 27(2g — 2). Thus if we
find a universal lower bound on Area(Y"), we obtain a universal upper bound
on the order of Isom™ (X). Theorem 7.10 gives that Area(Y) > 7/21, and
we will use this to easily prove Theorem 7.4.

In order to prove that Area(Y') > 7 /21, we will need to better understand
the geometry of quotients of hyperbolic surfaces by (possibly nonfree) ac-
tions of finite groups. This is best accomplished via the theory of hyperbolic
orbifolds.

A 2-dimensional (orientable) hyperbolic orbifold® is a quotient X /G,
where X is an orientable surface with a hyperbolic metric and G is a sub-
group of the finite group Isom™ (X). Our main goal is to find an Euler char-
acteristic for orbifolds, to prove a Gauss—Bonnet theorem for orbifolds, and
to use these results to show that there is a universal lower bound of 7 /21 for
the area of any 2-dimensional orientable hyperbolic orbifold. As explained
above, applying this lower bound to the orbifold Y = X/Isom™ (X) gives
the 84(g — 1) theorem.

Orbifold fundamental group. By the orbifold fundamental group of an
orbifold X, we mean the deck transformation group of the universal cover
X ~ H2. Elements of the orbifold fundamental group of X can be repre-
sented by loops in X.

Cone points and signature. Let Y be any 2-dimensional hyperbolic orb-
ifold. Any point y € Y has a neighborhood isometric to the quotient of an
open ball in H? by a finite group of rotations F, of H2. Under this isometry,
the point y is mapped to the fixed point of F},. This follows from the fact
that any finite subgroup of Isom™ (H?) is a finite group of rotations fixing
some point. If Fy, is trivial, then y is called a regular point of Y'; if Fy, is not
trivial, then y is called a cone point of order |F,|. There are finitely many
cone points on a 2-dimensional hyperbolic orbifold.

If X is a 2-dimensional hyperbolic orbifold where the underlying topo-
logical surface (the surface obtained by forgetting the extra structure of the
cone points) is homeomorphic to S, and where the cone points have orders

“What we are referring to as an orbifold is sometimes called a “good orbifold”; see [206,
Chapter 13].
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D1,D2, - -+, Pm, then we define the signature of X to be the (m + 1)-tuple
(9:p1,P2,- - - s Pm)-

Orbifolds from hyperbolic triangle groups. We can use triangles in H?
to build examples of 2-dimensional orientable hyperbolic orbifolds as fol-
lows. Consider a triangle 7" in H? with angles 7/p, 7/q, and 7/r, where
p,q,7 € Nand 1/p + 1/q + 1/r < 1. Each side of T" can be extended to a
unique geodesic line in H?. Let I' < Isom(H?) denote the group generated
by the reflections in these three geodesic lines. The elements of I' that are
orientation-preserving form a subgroup I'g of index 2. Note that I'y contains
rotations about the vertices of 1" of orders p, ¢ and r. By the Selberg lemma
[193] (or by a direct argument), I'y contains a normal, torsion-free subgroup
I'; of finite index. Note that I'; acts properly discontinuously and cocom-
pactly on H? since I does. Since Iy is torsion-free, it also acts freely, so that
H?2 /Ty is a closed hyperbolic surface. By basic covering space theory this
surface admits an isometric action by the finite group I'g/T"; with quotient
H?2/T. Thus H2/T is a 2-dimensional (orientable) hyperbolic orbifold. It
has signature (0; p, ¢, 7).

We will see that the combinatorial data of signature is enough to deter-
mine the hyperbolic area of a 2-dimensional hyperbolic orbifold. This is es-
sentially the content of the Gauss—Bonnet theorem for orbifolds explained
below.

In order to get to that point, we will first need to find an Euler charac-
teristic for orbifolds. This invariant should agree with the classical Euler
characteristic when evaluated on surfaces and should be multiplicative with
respect to coverings. Of course, the key issue here is to find such a defini-
tion that gives a well-defined number; this is not trivial to do since there are
many coverings of and many finite group actions on hyperbolic surfaces. In
order to give the definition we will use the notion of orbifold covering maps.

Orbifold covering maps. By an isometry of a 2-dimensional hyperbolic
orbifold X, we mean an isometry of the metric space X. Such an isometry
necessarily is an isometry of X — {cone points} thought of as a Riemannian
manifold, and it takes cone points to other cone points of the same order.

A map X — Y between 2-dimensional hyperbolic orbifolds is a regular
d-fold orbifold covering map if it is a quotient map by an order d group of
orientation-preserving isometries of X.

For example, if Z is a hyperbolic surface and H <1 G' < Isom™(Z), then
the orbifold X = Z/H covers the orbifold Y = Z/G since Y is the quotient
of X by G/H:
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X=2/H
Z/
\
Y = 2/G

Consider a d-fold orbifold covering m : X — Y. The degree of 7 at a
point x is the order of the cone point 7(x) divided by the order of the cone
point x. The sum of the degrees of 7 at the preimages of a given pointy € Y
is always equal to d. In other words, if the preimage of a cone point of order
p is a collection of cone points in X of orders q1, ..., qx, then

k
i=1

One way to see that this equality holds is to notice that 7 is a true covering
map away from the cone points and to consider a regular point close to .

By summing over all cone points in Y, we have that if X has signature
(h;qq,...,qn) and Y has signature (g, p1,...,pmn) and X — Y is a d-fold
cover, then

|~

- =d.

1

)

jZi:dZﬁ. (7.1)

The Riemann—Hurwitz formula. We want to find an orbifold Euler char-
acteristic, that is, a function of the signature of an orbifold that is multiplica-
tive under orbifold covers.

Consider the 2-dimensional hyperbolic orbifold Y with signature
(9;p01,D2, - - -, Dm). We think of constructing Y by starting with a closed
surface of genus g, removing m open disks, and gluing in “fractions of
disks.” This leads to the Riemann—Hurwitz formula, an Euler characteris-
tic for 2-dimensional orientable hyperbolic orbifolds. We define

m
1
xY)=(2-29) —m+ E — (Riemann—-Hurwitz formula).
Di
=1

First note that x(Y") clearly agrees with the classical Euler characteristic
when Y has no singular points.
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Proposition 7.8 (Multiplicativity of orbifold Euler characteristic) If 7 :
X — Y is a d-fold orbifold cover, then we have

X(X) = dx(Y).

Proof. Denote the signatures of the orbifolds X and Y by (h;q1,...,qn)
and (g;p1,p2,---,Pm), respectively. Let Y° be the complement in Y of
disjoint open neighborhoods of the cone points of Y and let X° = 7~ 1(Y°).
Note that X — X° is an open neighborhood of the cone points in X and that
7| xo : X° — Y is a d-fold covering map of surfaces. We now compute:

X(X):(2—2h)—n+2é

= x(X7) + Z %
= dx(Y°) + dZ%
i=14"
= d((2 - 2g) —m)—i—dZ%
i=1 1"
= dx(Y)

The first and fifth equalities follow from the Riemann—Hurwitz formula.
The third equality follows from (7.1) and the multiplicativity of the Euler
characteristic for surfaces. The second and fourth equalities follow from the
fact that deleting an open disk from a surface reduces the Euler characteristic
by 1. This completes the proof. O

The orbifold Gauss-Bonnet formula. The classical Gauss-Bonnet for-
mula for closed hyperbolic surfaces X gives that Area(X) = —2my(X).
For an orbifold Y that is the quotient of a hyperbolic surface X by a group
G of isometries, the area Area(Y') is Area(X)/|G| (this agrees with the
area of Y — {cone points}, thought of as a Riemannian manifold). With this
generalized notion of area and the generalized notion of Euler characteristic
x for orbifolds, the Gauss—Bonnet formula extends to hyperbolic orbifolds.

Proposition 7.9 (Orbifold Gauss—Bonnet formula)  Suppose Y is a 2-
dimensional hyperbolic orbifold. If the signature of Y is (g;p1,D2, - - - , Dm)s
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then

Area(Y)=—2mx(Y)

_ o ((2—2@—2(1‘%))'

Proof. Verifying this formula is easy, given the Gauss—Bonnet theorem for
surfaces and the multiplicativity of the orbifold Euler characteristic (Propo-
sition 7.8). Indeed, if Y = X/G, we have

_ Area(X)

Area(Y) = XX

_ ) _
T = —QWW = 2mx(Y).

The smallest 2-dimensional hyperbolic orbifold. Armed with the orbifold
Gauss-Bonnet formula, we are now able to find a lower bound on the area of
any 2-dimensional hyperbolic orbifold. As noted at the start of this section,
this will give the desired upper bound on the order of Isom™ (X).

Theorem 7.10 If'Y is any compact 2-dimensional (orientable) hyperbolic
orbifold, then x(Y') < —1/42. Equivalently, Area(Y') > m/21. Further, the
orbifold with signature (0;2,3,7) is the unique 2-dimensional hyperbolic
orbifold with Euler characteristic —1/42.

The fact that x(Y) < —1/42 is equivalent to Area(Y’) > 7/21 follows
immediately from the orbifold Gauss-Bonnet formula (Proposition 7.9). To
construct the orbifold with signature (0;2, 3, 7), simply choose any triangle
in H? with angles 7/2, 7/3, and 7/7, consider the group I' generated by
the reflections in the unique lines containing its sides, and take the quotient
of H? by the index 2 subgroup of I' consisting of orientation-preserving
isometries.

Proof. We begin with a simple but useful observation. Any cone point has
order at least 2. Thus for each cone point of order p, the corresponding term
1 — L from the Riemann—Hurwitz formula is at least 1/2.

Assume that X is a 2-dimensional orientable hyperbolic orbifold with
x(X) > —1/42. We will rule out all possibilities for X except the hyper-
bolic orbifold with signature (0;2, 3, 7). We accomplish this with a case-by-
case analysis, applying the Riemann—-Hurwitz formula repeatedly.

We can immediately rule out that X has no cone points since in this case
x(X) is a negative integer and so is less than —1/42. We can also dispense
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with all orbifolds X of genus greater than 1, since in this case x(X) < —2.
Similarly, any orbifold X of genus 1 must have at least one cone point in
order to be hyperbolic, and hence x(X) < —1/2. The case that X has
genus 0 and more than four cone points can be eliminated since in this case
x(X)<2-5-1/2=-1/2.

Consider the case when X is genus 0 with four cone points. If X has
signature (0;2,2,2,2), then x(X) = 0, contradicting the fact that X is
hyperbolic. If any of the four cone points of X has order greater than 2, then

X(X)<2-3-1/2-2/3=—-1/6 < —1/42.

We are now reduced to checking orbifolds X with genus O and three cone
points. If 3 is the smallest order of a cone point of X, then either x(X) =
2 —3-2/3 =0, contradicting the fact that X is hyperbolic, or

X(X)<2-2.2/3-3/4=—1/12 < —1/42.

Thus we can assume that X has at least one cone point of order 2. We know
that X cannot have two cone points of order 2, for otherwise x(X) > 0. If
X has no cone point of order 3, then x(X) >2—-1/2-2-3/4 =0 (a
contradiction) or

X(X)<2-1/2-3/4—4/5=-1/20 < —1/42.

It now remains to check orbifolds X of signature (0;2,3,p). It is easy to
check that the smallest p for which x(X) < Oisp = 7. If p > 7, then
X(X) < —1/42. Combining all of the observations above, we see that
X(X) < —1/42 for every hyperbolic orbifold except for the hyperbolic
orbifold of signature (0;2, 3, 7), which has Euler characteristic —1/42. O

7.2.3 PROOF OF THE 84(g — 1) THEOREM

As explained above, the 84(g — 1) theorem follows rather directly from the
inequality of Theorem 7.10.

Proof of the 84(g — 1) theorem. Let G = Isom™ (X). By Proposition 7.7,
the group G is finite. Thus X/G is a 2-dimensional orientable hyperbolic
orbifold. By Theorem 7.10, we have

Area(X/G) > 1

i 217
and by the orbifold Gauss—Bonnet formula, this becomes
27(2g9 — 2) > s 7

G] 21
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which gives the result. a

7.2.4 PROOF OF THE 4g + 2 THEOREM

Let X be a closed hyperbolic surface of genus g. In this subsection we prove
Wiman'’s theorem (Theorem 7.5) that every element of Isom™ (X) has order
at most 4g+ 2. As explained above, this bound is attained for every g > 1 by
considering the rotations of the (4g+2)-gon about its center. The quotient of
X by this cyclic group of rotations is a 2-dimensional orientable hyperbolic
orbifold of signature (0;2,2g + 1,49 + 2).

Let G be a cyclic subgroup of Isom™ (X). To prove that |G| < 4g + 2
we will apply a case-by-case analysis similar to the proof of the 84(g — 1)
theorem. In order to get a better upper bound than 84(g — 1) for |G|, we will
of course have to exploit the fact that the orbifold covering map X — Y =
X/G is cyclic.

Lemma 7.11 Let X — Y be an orbifold covering with cyclic covering
group G < Isom™ (X). Suppose that the signature of Y is (0;p1,...,Pm).
Then for any 1 <1 <'m,

1CHl(p1, ey Di—15Pi+15 - - - apTYL) = |G|

That is, the least common multiple of the orders of any m — 1 cone points is
equal to |G)|.

Proof. The covering group over any 2-dimensional hyperbolic orbifold of
genus 0 with m cone points is generated by simple loops that go around any
m — 1 of the cone points. This is analogous to the fact that fundamental
groups of punctured spheres are generated by such loops. A simple loop
going around a cone point of order p; represents an element of order p; in
the covering group. The lemma now follows from the fact that the order
of a cyclic group is the least common multiple of the orders of any set of
generators. O

Proof of the 4g + 2 theorem. Let X be a closed hyperbolic surface of genus
g > 2, let G < Isom™(X) be a cyclic subgroup, and let X — Y = X/G
be the induced orbifold covering map. Say that the orbifold signature of Y

is (h;p1,...,pm). Since the orbifold Euler characteristic is multiplicative
(Proposition 7.8), we have x(X)/|G| = x(Y), which we write as
2g —2
—— = —x(Y). (7.2)
|G|

The proof proceeds as follows. We systematically go through all possibili-
ties for the signature of Y. For each signature that is not (0; 2,2g+1, 4g+2),
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we will either show that the signature cannot possibly be the signature of a
quotient of X or show that |G| < 4g + 2. Sometimes the latter will be ac-
complished by showing that —x(Y) = (29 — 2)/|G]| is at least 1/2 (note
that (29 — 2)/(4g + 2) < 1/2).

First suppose that i > 1. By the Riemann—Hurwitz formula, we have

= 1 = 1
—xY)=2h-2+ 1—— | > 1——1.
=223 (1-5) =3 (1)
i=1 i=1
If h = 1, then m > 0 (otherwise Y is not hyperbolic), and so —x(Y") > 1/2.
If h > 2, then 29 — 2 > 2, and so —x(Y") > 2 > 1/2. Thus it remains to
consider orbifolds of signature (0; p1, ..., pn), and so we can write

" 1
—MY):—2+§:<1—;>. (7.3)
i=1 t

Suppose that m > 5. Again, since (1 — 1/p;) > 1/2 for each i, we have
—x(Y) > 1/2. It follows easily from the Riemann—Hurwitz formula that a
2-dimensional hyperbolic orbifold of genus O must have at least three cone
points. Thus we may assume that m = 3 or m = 4.

First we treat the case m = 4. In this case, (7.2) and (7.3) give

29 — 2 1 1 1 1
=24+ —4+—+=).
|G| p1 P2 p3s pa

Say that p; < p2 < p3 < pg. If p3 > 4, then py > 4, and we again find
—x(Y) > 1/2.1f p3 = 3, then p; < 3 and po < 3, and so lem(p1, p2, p3)
is equal to 3 or 6. Applying Lemma 7.11 then gives that |G| is equal to 3
or 6. In either case, |G| < 4g + 2 since g > 2. Finally, if p3 = 2, then
p1 = p2 = p3 = 2, and Lemma 7.11 gives that |G| = 2.

It remains to consider orbifolds of signature (0; p1, p2, p3). Now (7.2) and

(7.3) give
2 — 2 1 1 1
=t ——+ ). (7.4)
G| b1 P2 P3

As above, we assume p; < p2 < p3. We deal with two subcases, according
to whether or not p; divides ps.

If p; divides po, then lem(p1, p2) = p2, and Lemma 7.11 gives po = |G].
Lemma 7.11 also gives lem(pg, p3) = po. Since p3 > po, we have po =
ps = |G|. Substituting |G| for p2 and p3 in (7.4) and simplifying, we obtain

29:101(1—i>.
P
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Since 1/2 <1 —1/p; < 1, it follows that 2g < |G| < 4g.

Finally, we treat orbifolds of signature (0;p1, p2, p3) where p; does not
divide po. If p; > 6, then (7.4) gives —x(Y") > 1/2, and so we may assume
p1 < b5; in particular, p; is either 2, 3, 4, or 5. An elementary case-by-case
argument using Lemma 7.11 then gives that |G| = lem(py,p2) is equal
to p3 (this means that GG has a fixed point at the cone point of order p3).
Substituting |G| for ps in (7.4) and simplifying, we obtain

29—1—\G\<1—i—i>. (7.5)
b1 P2

If p; > 4, then the right-hand side of (7.5) is at least |G| /2, and so |G| <
4g — 2. If p; = 3, then Lemma 7.11 gives that po = |G|/3. Plugging into
(7.5) then gives |G| = 3¢ + 3, which is strictly less than 4g + 2 for g > 2.
Finally, if p; = 2, then Lemma 7.11 implies that p, = |G|/2, and we find
that |G| = 4¢ + 2. This is exactly the case where the quotient orbifold has
signature (0;2,2g + 1,49 + 2), as desired. O

Combined with the results of Section 10.5, our proof of the 4g+-2 theorem
really proves a stronger result, namely, that (up to isometry) there is only one
hyperbolic structure X on S, that admits a symmetry of order 4g + 2, and
moreover the corresponding element of Mod(S,) is unique up to conjugacy
(ctf. Theorem 7.14 below).

7.3 REALIZING FINITE GROUPS AS ISOMETRY GROUPS

The 84(g — 1) theorem gives a restriction on those finite groups that can act
effectively by isometries on some hyperbolic surface of genus g > 2. One
can ask for a sort of converse: can any given group be realized as a group
of isometries of some closed hyperbolic surface? If so, what is the smallest
genus of such a surface?

THEOREM 7.12 Let G be any finite group. Then G can be realized as a
subgroup of Mod(S,) for some g > 2. In fact, G is a subgroup of Isom™ (X))
for some hyperbolic surface X ~ 9.

We give two proofs of Theorem 7.12, one using geometric group theory
and one using covering spaces.

First proof of Theorem 7.12. Let G be a nontrivial finite group and let I be
the Cayley graph of G' with respect to any generating set. Let S, be the
surface obtained as follows. We start by taking one torus for each vertex of
I". Then, for each edge of I', we perform a connect sum operation on the



214 CHAPTER 7

corresponding tori. The result is a closed surface S,. Since G is nontrivial,
the graph I has at least two vertices, and so g > 2.

The action by G on I' on the left by automorphisms induces an action
of G on S, by orientation-preserving homeomorphisms. We prove in The-
orem 6.8 below that the natural projection Homeo™ (S,) — Mod(S,) is
faithful when restricted to any finite subgroup. (Alternatively, to see that the
action is faithful, we can notice that the action of G on H;(Sy; Z) is faithful
since there is a torus for each vertex of I" and each torus carries a nontrivial
subspace of H1(Sg;Z).)

As mentioned above, any finite group G of homeomorphisms of S,
where g > 2, preserves some hyperbolic metric on S,: one just averages
any metric to obtain a G-invariant metric, uniformizes that metric, and then
conjugates the G-action by this uniformizing map to obtain a GG-invariant
hyperbolic metric. O

We note that it is possible to perturb any G-invariant hyperbolic metric
within the space of hyperbolic metrics so that G = Isom™ (X) for some
hyperbolic metric X.

Second proof of Theorem 7.12. Let Sp 1 be a sphere with n+1 punctures,
where n is the size of some generating set for G. Since m1(Sp n+1) is a
free group on n letters, it surjects onto (G, and so there is a covering map
S" — So,n41 with covering group G. We can fill in the punctures of S’ to
get a closed surface S, on which G acts effectively by homeomorphisms.
(An alternative way to obtain that the action of G is effective is to modify
the surface S, by adding extra handles equivariantly; it is then clear that
each element of (¢ acts nontrivially on the first homology of the resulting
surface.) As in the previous proof, this proves the theorem. O

For a classical treatment of the problem of understanding finite-group
actions on surfaces, see [41, Chapter XII].

It is natural to ask how often the bound of 84(¢ — 1) in Theorem 7.4
is realized. It is a classical fact that it is realized for infinitely many ¢ and
not realized for infinitely many g. One can find infinitely many g > 2 for
which there is a closed genus g hyperbolic surface X with |Isom™ (X)| =
84(g — 1) as follows. Consider the quotient of H? by the congruence group
PSL(2,Z)[7] (see Chapter 6 below) and fill in the punctures of the result-
ing surface. This gives a closed surface admitting a hyperbolic metric. This
surface X is known as the Klein quartic surface. It has genus 3. A straight-
forward but detailed analysis gives that

| Isom™ (X)| = 168 = 84(3 — 1).
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The group PSL(2,Z)[7] acts on the Farey complex, and the resulting tri-
angulation on the Klein quartic surface is exactly the fundamental domain
for the action of the isometry group. Examples of surfaces in higher genus
realizing the 84(g — 1) bound are obtained by simply taking normal covers
of this one. Larsen proved the remarkable result that the frequency of g for
which the bound 84(g — 1) is attained is the same as the frequency of the
perfect cubes in the integers [129].

7.4 CONJUGACY CLASSES OF FINITE SUBGROUPS

We have seen above that a finite subgroup of Homeo™ (S,) gives rise to an
orbifold covering map X — Y, where X is a hyperbolic surface homeo-
morphic to S,. If we have two orbifold coverings X — Y and X’ — Y,
where X, X’ ~ S, then a necessary condition for the covering groups to be
conjugate in Homeo™ (S,) is that Y and Y’ have the same signature. How-
ever, this is not sufficient, even in the case where Y and Y’ have no cone
points. Indeed, we also need for the maps from the orbifold fundamental
groups of Y and Y to the deck group to be the same, up to precomposition
by an automorphism of the orbifold fundamental group.

By the Riemann—Hurwitz formula, there are finitely many orbifolds that
can be covered by a fixed ;. The fundamental group of each such orbifold
has finitely many homomorphisms onto some fixed finite group. Finally, by
the orbifold Gauss—Bonnet formula and the fact that area is multiplicative
under orbifold covers, the order of the deck transformation group of S, over
a fixed orbifold is completely determined. We thus deduce the following.

Theorem 7.13 Let g > 2. There are finitely many conjugacy classes of
finite subgroups in Homeo+(5g). In particular, there are finitely many con-
jugacy classes of finite-order elements in Homeo+(Sg).

If we then quote the Nielsen realization theorem (Theorem 7.2), we obtain
the following.

Theorem 7.14 Let g > 2. There are finitely many conjugacy classes of fi-
nite subgroups in Mod(Sy). In particular, there are finitely many conjugacy
classes of finite-order elements in Mod(S,).

Uniqueness of hyperelliptic involutions. In Chapter 2, we said that the
element of Mod(S,) obtained by reflecting a regular (4g + 2)-gon through
its center is called a hyperelliptic involution. A more sophisticated definition
of a hyperelliptic involution is that it is an order 2 element of Mod(S,) that



216 CHAPTER 7

acts by —I on H;(Sy;Z). In what follows we take this new definition of a
hyperelliptic involution.

As an illustration of the above criterion for distinguishing conjugacy
classes of finite subgroups, we have the following.

Proposition 7.15 Let g > 1. Any two hyperelliptic involutions in Mod(S)
are conjugate.

Proof. First note that the quotient orbifold corresponding to a hyperelliptic
involution must have genus 0, otherwise the involution permutes handles of
Sy and hence does not act by —I on H;(Sy; Z). By the Riemann-Hurwitz
formula, the quotient has 2g+2 cone points of order 2. The involution is then
determined by the homomorphism from this orbifold fundamental group to
7./27. But each generator must map nontrivially to Z/2Z, for otherwise
the cover, which is supposed to be Sy, would have cone points. Therefore,
there is only one possible homomorphism and hence one conjugacy class of
hyperelliptic involutions. O

The element of Mod(S,) obtained by reflecting a (4g+2)-gon through its
center has order 2, and it acts by —I on H(Sg; Z). The element of Mod(Sy)
depicted in Figure 2.3 also has these properties, and so it, too, is a hyperel-
liptic involution. By Proposition 7.15, these mapping classes are conjugate.

Proposition 7.15 implies that we could alternatively define hyperelliptic
involutions as the (homotopy classes of) order 2 homeomorphisms with 2g+
2 fixed points.

Recall from the discussion after Theorem 3.10 that the hyperelliptic in-
volutions in Mod(72) and Mod(S3) are central. So in these cases the hy-
perelliptic involution is not only unique up to conjugacy but is completely
unique. For g > 3, there are infinitely many hyperelliptic involutions in
Mod(Sy).

7.5 GENERATING THE MAPPING CLASS GROUP WITH TORSION

We conclude this chapter with the following curious theorem of Feng Luo
[132]. By an involution in a group we simply mean any element of order 2.

THEOREM 7.16 For g > 3, the group Mod(Sy) is generated by finitely
many involutions.

Proof. Theorem 4.1 states that Mod (.S, ) is generated by finitely many Dehn
twists about nonseparating simple closed curves. So to prove the theorem
it suffices to show that every Dehn twist about a nonseparating curve is a
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product of involutions. By the change of coordinates principle and Fact 3.7,
any two twists about nonseparating curves are conjugate, so it suffices to
prove that any specific such twist is the product of involutions.

Recall from Section 5.1 that, since g > 3, we can find a lantern relation

T,T,T. = T,T,T.T;

where each of the seven simple closed curves in the relation is nonseparating
(cf. Figure 5.5). What is more, we can arrange that each of x U a, y U b, and
z U c is nonseparating.

To prove the theorem, we only need to show that Ty is a product of invo-
lutions. Using the fact that each of T, , T}, and 7, commutes with each of
T, Ty, and T’,, we can rewrite the above lantern relation as

(LT )T T NI = Ty

The theorem is now reduced to showing that if {u,v} is a pair of simple
closed curves in S, where uUw is nonseparating, then 7,7, " is a product of
involutions. Indeed, it then follows from the change of coordinates principle
that each of T, T, !, TyTb_l, and T, T, is a product of involutions, and then
so is Ty.

Let v and v be curves in S, as above. We claim that there is an involution
f € Mod(S,) interchanging « and v. Indeed, there is an involution of S,
interchanging the simple closed curves s and ¢ in Figure 7.1. Our claim then
follows from the change of coordinates principle.

O

Figure 7.1 Rotation by 7 is an involution of S, interchanging s and ¢.

Since f(u) = v and since f = f~1, we can use Fact 3.7 to write
T, = Tu(fT, ' ).

By simply changing the parentheses on the right-hand side of the last equa-
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tion we have
T = (T, fT, Y f.

We know that f is an involution by assumption, and so T;, fT, ! is an invo-
lution since it is conjugate to f. Thus T}, 7., ! is a product of two involutions,
and we are done. a

Luo asked if there was a universal bound on the number of torsion el-
ements needed to generate Mod(S,). Korkmaz showed that Mod(S,) can
actually be generated by two torsion elements, which is obviously optimal
[125]. Building on work of Brendle—Farb, Kassabov proved that Mod(S)
is generated by four involutions when g > 7 [32, 117]. Now Mod(.S,) does
not have a finite-index cyclic subgroup, so it is not generated by two invo-
lutions. The question of whether or not Mod(.S;) can be generated by three
involutions remains open.



Chapter Eight

The Dehn—Nielsen—Baer Theorem

The Dehn-Nielsen—Baer theorem states that Mod(.S,) is isomorphic to an
index 2 subgroup of the group Out(m(S,)) of outer automorphisms of
71(Sg). This is a beautiful example of the interplay between topology and
algebra in the mapping class group. It relates a purely topological object,
Mod(Sy), to a purely algebraic one, Out(m(.S,)). Further, these are related
via hyperbolic geometry!

8.1 STATEMENT OF THE THEOREM

We begin by defining the objects in the statement of the theorem.

Extended mapping class group. Let S be a surface without boundary. The
extended mapping class group, denoted Mod™*(.S), is the group of isotopy
classes of all homeomorphisms of .S, including the orientation-reversing
ones.! The group Mod(S) is an index 2 subgroup of Mod®(S). There is
a homomorphism Mod* () — Z/27 which records whether or not an ele-
ment is orientation-preserving, and we have the short exact sequence

1 — Mod(S) — Mod*(S) — Z/2Z — 1.

For any S, there is an order 2 element of Modi(S ) that reverses orientation,
and so this sequence is split.

As a first example, we have Mod*(S?) ~ 7/27Z. Also, it follows from
the fact that Mod(7"?) ~ SL(2,Z) (Theorem 2.5) that

Mod™*(T?) ~ GL(2,Z).

"For the surfaces So,1 and Sp 2, we must be careful to define Modi(S ) as the group of
isotopy classes of homeomorphisms; for these surfaces, every homeomorphism is homotopic
to an orientation-preserving homeomorphism.
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Similarly, we have

MOdi(SO73) ~ 23 X Z/2Z
Mod*(Sp.4) ¥ PGL(2,Z) x (Z/27 x 7./27)
Mod* (S} 1) ~ GL(2,Z).

We remark that, the way we have defined things, we do not automatically
have a definition of the extended mapping class group for a surface S with
boundary since a homeomorphism that is the identity on 0 is necessarily
orientation-preserving.

Outer automorphism groups. For a group G, let Aut(G) denote the group
of automorphisms of G. For any h € G, there is an associated inner auto-
morphism I, : G — G given by

g+— hgh™!
forall g € G. For ® € Aut(G) and h € G, we have
®ol,o0d " = Iy

Thus the inner automorphisms form a normal subgroup of Aut(G), called
the inner automorphism group of G, denoted Inn(G).
The outer automorphism group of GG is defined as the quotient

Out(G) = Aut(G)/ Inn(G).

In other words, Out(G) is the group of automorphisms of G considered up
to conjugation. Note that while an element of Out(G) does not act on the
set of elements in G, it does act on the set of conjugacy classes of elements
in G.

A natural homomorphism. Let S be a surface with x(S) < 0. The uni-
versal cover of S is contractible, and so S is a K (m1(S), 1)-space. We thus
have a correspondence:

Free homotopy classes of - Conjugacy classes of homo-
(unbased) maps S — S morphisms 71 (S) — 71 (5)

Letp € S. Given amap ¢ : S — S and a path v from p to ¢(p), we obtain
a homomorphism ¢, : 71(S,p) — 71(S, p) as follows. For a loop « based
at p, we set

di([e]) = [y * pla) x v 1.
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For fixed ¢, different choices of -y give rise to maps ¢, that differ by conju-
gation.

If ¢ is a homeomorphism, then it is invertible, and so ¢, is an automor-
phism. It follows that we have a well-defined homomorphism

o : Mod*(S) — Out(m(S))

which is injective by the correspondence given above. We have the follow-
ing remarkable theorem.

THEOREM 8.1 (Dehn—-Nielsen-Baer) Let g > 1. The homomorphism
o : Mod®(S,) — Out(m(S,))
is an isomorphism.

As noted above, the proof of Theorem 8.1 reduces to the statement that o
is surjective. The original proof of this is due to Dehn [51], although Nielsen
was the first to publish a proof [168]. Baer was the first to prove injectivity.

Note that in the case g = 1, the Dehn—Nielsen—Baer theorem recovers the
fact that Mod™ (7T2) ~ GL(2, Z). Note too that the statement of the theorem
does not hold when g = 0 since

Mod*(5?) ~ Z/27 3 1 ~ Out(m (5?)).

Action on the fundamental class. The action of Mod*(S,) on
H(Sy;Z) ~ Z and the action of Out(71(Sy)) on Ha(m1(Sy); Z) ~ Z are
related by the Dehn—Nielsen—Baer theorem in the sense that the following
diagram is commutative.

Mod*(S,) = Out(m1(Sy))

| |

Z./27 =~ Out(H2(Sy; Z)) = Out(Ha(m1(S,); Z))

An element of Modi(Sg) is orientation-preserving if and only if the in-
duced element of Out(H2(Sy;7Z)) is trivial. This gives an algebraic charac-
terization of Mod(S, ) inside Mod*(S,): it is the subgroup of Out (1 (S,))
that acts trivially on Hy(m1(S,); Z).

The case of punctured surfaces. The Dehn—Nielsen—Baer theorem does
not hold as stated for surfaces with punctures. For example, let Sp 3 be the
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thrice-punctured sphere. We have 7 (Sp 3) ~ F?, the free group on two gen-
erators. Also, it is a theorem of Nielsen that Out(F5) ~ GL(2,Z); see [133,
Proposition 4.5] or [20, Section 5.3]. Thus Out(m(Sp3)) ~ GL(2,Z), but,
as above, Mod® (S 3) is isomorphic to the finite group X3 x Z/2Z.

For punctured surfaces, we will see in Theorem 8.8 below that Mod™(.S)
is isomorphic to the subgroup of Out(7;(S)) that preserves the collection
of conjugacy classes of elements corresponding to punctures of .S (the prim-
itive parabolic elements).

8.2 THE QUASI-ISOMETRY PROOF

Dehn’s original proof of the Dehn—Nielsen—Baer theorem uses the notion of
quasi-isometry. Again, the goal is to show that each element of Out(m;(.S,))
is induced by an element of Mod®(S,). The key step is to show that an
element of Out(71(Sy)), which a priori preserves only algebraic proper-
ties/objects, must in fact preserve topological ones. For example, the first
step in the proof will be to prove that an element of Out(71(Sy)) must re-
spect the topological property of whether or not the free homotopy classes
of two simple closed curves have geometric intersection number 0. We will
prove this by studying the behavior of 71 (S,) “at infinity” in H?.

8.2.1 METRICS ON 71 (S)

Let G be a group with a fixed finite generating set S. The Cayley graph
I'(G,S) for G with respect to S is the abstract graph with a vertex for each
element ¢ € G and an edge between the vertices g and gs if s € S or
571 € &. The group G acts on I'(G, S) on the left by graph automorphisms.

There is a natural metric on I'(G, S) given by taking each edge to have
length 1 and putting the path metric on I'(G,S), whereby the distance be-
tween two points is the length of the shortest path between them. Restricting
this metric to the vertices of I'(G, S) gives a G-invariant metric on G called
the word metric on G with respect to S. For g € G, the distance ds(1, g) is
called the word length of g. By left invariance, for any g, h € G, the distance
ds(g, h) is the word length of g~ 'h.

For a surface S with x(S) < 0, another way to get a metric on 71 (.5)
is to choose a covering map H? — S that endows S with a hyperbolic
metric (recall that, by “hyperbolic metric,” we mean a complete, finite-area
Riemannian metric with constant curvature —1). If we fix a basepoint in
S, its set of lifts to H? are in bijection with elements of 71(S). We can
therefore define the hyperbolic distance between two elements of 71 (.S) as
the hyperbolic distance between the corresponding lifts.
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Clearly, the word metric on 71(S) depends on the choice of generating
set, and the hyperbolic metric on 71 (S) depends on the choice of covering
map. We would like to understand what properties of the metric do not de-
pend on these choices. In short, the answer is that all choices give metrics
that look the same, up to a universally bounded stretch, at large scales. This
brings us to the notion of quasi-isometry.

8.2.2 QUASI-ISOMETRIES

A function f: X — Y between metric spaces (X,dx) and (Y,dy) is a
quasi-isometric embedding if there are constants /' and C so that

%dx(x,x') _C < dy(f(@), f(a) < Kdx(z,2') +C

for any choice of x and 2’ in X. We say that f is a quasi-isometry if there is
a constant D so that the D-neighborhood of f(X) is equal to Y. In this case
we say that X and Y are quasi-isometric. Quasi-isometry is an equivalence
relation on metric spaces.

There is a more symmetric definition of quasi-isometry, as follows. Two
metric spaces (X,dx) and (Y, dy) are quasi-isometric if and only if there
aremaps f : X — Y and f: Y — X and constants K, C, and D such that

dy (f(z), f(2)) < Kdx(z,2") +C  dx(f(y),f(¥)) < Kdy(y,') + C

and

dx(fof(x),x) <D  dy(fof(y),y) <D

forall 7,2’ € X and y,yy' € Y.

As a first exercise, one can show that given two word metrics on the same
finitely generated group G, the identity map G — G is a quasi-isometry.
This fact also follows from the first statement of Theorem 8.2; see Corol-
lary 8.3 below.

8.2.3 THE FUNDAMENTAL OBSERVATION OF GEOMETRIC GROUP THEORY

The following theorem, sometimes called the Milnor-Svarc lemma, is one
of the most basic theorems in geometric group theory. It first appeared in
the work of Efremovi& [55], Svarc [202], and Milnor [158].

Recall that the action of a group G on a topological space X is properly
discontinuous if, for each compact K in X, theset{g € G : (¢9- K)N K #
(0} is finite. Let X be some metric space. The space X is proper if closed
balls in X are compact. A geodesic in X is a distance-preserving map of a
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closed interval into X . Finally, X is a geodesic metric space if there exists
a geodesic connecting any two points in X .

THEOREM 8.2 (Fundamental oberservation of geometric group theory)
Let X be a proper geodesic metric space and suppose that a group G
acts properly discontinuously on X via isometries. If the quotient X /G is
compact, then G is finitely generated and G is quasi-isometric to X. More
precisely, there is a word metric for G so that, for any point xo € X, the
map

G— X
gr—g-Zo

is a quasi-isomerry.

One example of the phenomenon described in Theorem 8.2 is given by
the action by deck transformations of a compact Riemannian manifold on
its universal cover.

Proof. Let x( be some fixed basepoint of X. Since the action of G on X is
properly discontinuous, the metric on X induces a metric on X/G. Indeed,
the distance between two points in the quotient is the infimum of the dis-
tances between any two of their preimages; the proper discontinuity implies
the infimum is a minimum. As X /G is compact, it has finite diameter R. It
follows that X is covered by the G-translates of B = B(zg, R), the ball of
radius R about x. Let

S={9eG:g9g#1andg- BN B # 0}.

By the properness of X and the proper discontinuity of the action of G on
X, the set S is finite.
Let d denote the metric on X. We define

A= meagcd(:co, s-xo) and r=inf{d(B,g-B)|g¢ SU{1}}.
S
Note that, since the action of G is properly discontinuous and since X is
proper, 7 is actually a minimum.

If r = 0, then G is finite, and the theorem is trivial in this case. So we
may assume 7 > 0.

Let g € G. As X is geodesic, it is in particular path-connected. Given a
path from xg to g - g, we can choose points x1,...,x, = ¢ - xg along this
path so that d(z;, ;1) < r. Since the {g - B} cover X, we may choose
Ji,---,9n € Gsothatx; € g; - B.If weset gg = 1 and s; = g;llgz-, we
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have that s;sy - - - s, = g. We have
d(s; - B, B) =d(g;,gi - B,B) =d(g; - B, gi—1 - B) < d(ws,x;_1) <.

By the definition of 7, we see that s; € S U {1} for all i. Thus S generates
G, and G is finitely generated.

We will now show that the map g — ¢ - x¢ defines a quasi-isometric
embedding G — X, where G is given the word metric associated to S. In
other words, we will show that for g1, go € G we have

1 1
Xd(gl - 20,92 - x0) < ds(g1,92) < ;d(gl - 20, g2 - To) + 1.

Since G acts by isometries on itself and on X, this is equivalent to the state-
ment that

%d(mo,g cxp) < ds(1l,g) < %d(mo,g ~x0) + 1

for any g € G (substitute g, L gy for g). In our definition of a quasi-isometric
embedding, one can take K = max{\, 1} and C = 1. The constant C
cannot be taken to be 0 because, for instance, g could be in the stabilizer of
ZQ.

The inequality %d(mo, g-z9) < ds(1,g) follows immediately from the
triangle inequality, the definitions of S and A, and the fact that s € S if and
only if s~! € S. Thus “short” paths in G give rise to short paths in X.

We must now show that short paths in X correspond to short paths in
G. Precisely, we will prove the inequality ds(1,g) < Ld(zg,g - ) + 1.
The argument is a souped-up version of the argument that S generates
G. Let g € G. Since X is geodesic, we may find a geodesic of length
d(xp,g - xo) connecting x( to g - xg. Let n be the smallest integer strictly
greater than d(zg,g - xo)/r, so n < d(zg,g - xo9)/r + 1. We can find
points x1,...,Tp—1,T, = ¢ - xg in X so that d(x;,x;41) < r for
0 < ¢ < n — 1. Since the G-translates of B cover X, we can choose el-
ements 1 = ¢o,91...,9n-1,9n = g of G so that z; € g; - B. If we set
5 = g;_ 11 gi, then g = s1---5,. Again, by the definition of r, we have
s; € S, and so the word length of g is at most n. In summary, we have

1
d(l,g9) <n < ;d($079 - x0) + 1,

which is what we wanted to show.
By the definition of R, the R-neighborhood of the image of G is all of X,
and so the quasi-isometric embedding G — X is a quasi-isometry. O



226 CHAPTER 8

Applications to Cayley graphs. Any Cayley graph for a finitely generated
group is a proper, geodesic metric space. Thus, by considering the action of
a group GG on an arbitrary Cayley graph for GG, we obtain the following fact.

Corollary 8.3 For any two word metrics on a finitely generated group G,
the identity map G — G is a quasi-isometry.

The following corollary of Corollary 8.3 represents the first step in our
proof of the Dehn—Nielsen—Baer theorem.

Corollary 8.4 Any automorphism of a finitely generated group is a quasi-
isometry.

By Corollary 8.3, we do not need to specify which word metric we are
using in the statement of Corollary 8.4.

Proof. Let ® : G — G be an automorphism of a finitely generated group
G and let S be a finite generating set for G. Since ® is an automorphism,
we have that ®~1(S) = {®~!(s) : s € S} is a finite generating set for G.
What is more, we have

ds(®(g), ®(h)) = de-1(s)(9, h)-

In other words, the amount word length in G is stretched under the map & is
equivalent to the amount of stretch word length undergoes when changing
the finite generating set. The result now follows immediately from Corol-
lary 8.3. a

Combining Theorem 8.2 and Corollary 8.3, we have that any two word
metrics on 771(59) are quasi-isometric, and for g > 2, each word metric
is quasi-isometric to each hyperbolic metric on 71(S,). What is more, the
quasi-isometry in each case is the identity map. In other words, there is
only one natural metric on 7 (.S,) up to the equivalence relation of quasi-
isometry. Thus in our arguments we will be able to switch back and forth
between word metrics and hyperbolic metrics. For instance, Corollary 8.4
is proved using the word metric, and then it is applied in the proof of
Lemma 8.5, where we use a hyperbolic metric on 7 (.Sy).

Now that we have a well-defined metric on 7 (S,), we can begin our
study of its large-scale behavior.
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8.2.4 LINKING AT INFINITY

Let S be a hyperbolic surface. We say that an element of 71 (.S) is hyperbolic
if the corresponding deck transformation is a hyperbolic isometry of H?. Re-
call that the axis of a hyperbolic element « of 711 (.S) has a pair of endpoints
da lying in OH?2. Two hyperbolic elements «, 3 of 71(S) are linked at in-
finity if Oa and O3 are linked in OH? ~ S, that is, if the pair Do separates
the pair 03 (and vice versa).

A priori this notion depends on the choice of hyperbolic metric on S. One
can prove that actually the property of being linked at infinity is independent
of the choice of metric. For simplicity, though, we will use a fixed covering,
so there is no ambiguity.

Lemma 8.5 Let g > 2 and let H?> — Sy be a fixed covering map. Let ®
be an automorphism of m1(Sy) and let v and § be nontrivial elements of
m1(Sy). Then the elements ®(y) and ®(5) are linked at infinity if and only
if v and 0 are linked at infinity.

Proof of Lemma 8.5. Since S is a closed hyperbolic surface, all nontrivial
elements are hyperbolic, and so it makes sense to talk about linking at infin-
ity. Because @ is invertible, it suffices to show that if v and § are not linked at
infinity, then ®(+) and ®(0) are not linked at infinity. Also, we may assume
that v and § do not share an axis since having the same axis is equivalent
to having equal (nontrivial) powers, and this property is preserved by the
automorphism P.

By Corollary 8.4, ® is a quasi-isometry of 7 (Sg). Say that with respect
to the hyperbolic metric coming from the fixed covering H? — Sy, the
quasi-isometry constants are X > 1 and C' > 0. Let D be the diameter of
some fixed fundamental domain for 71 (S,) in HZ.

Fix some R > 2DK? + 2CK. Let o some fixed basepoint for H? and
consider the orbit

Ovz{wk-xO:kEZ}.

Connect the points of O, by an infinite piecewise-geodesic path, where each
segment of the path connects two points in the orbit of x that lie in adjacent
fundamental domains and where the entire path lies in some fixed metric
neighborhood of the axis for v. We can denote such a path by its set of
vertices, say {o;}.

Since v and § are unlinked hyperbolic isometries of H?, and since the
path {«;} lies in a metric neighborhood of the axis for v, we may choose an
N = N(R) so that each point of

Osv = {0 - 20 : ke Z,k #0}
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has a distance at least R 4+ D from each point of O,. Note that Oy~ is
not the entire orbit of ¢ under §V since it is missing the point x. We can
connect the points of Osn by a piecewise-geodesic path {/3; } where each 3;
is in the orbit of x¢, so that the path {/3;} stays a hyperbolic distance at least
R from the path {c;} and so that consecutive vertices (3; and (3,11 lie in
adjacent fundamental domains. To find the (3;, we start with any bi-infinite
continuous path that connects the points of Ogsn and stays outside the (R +
D)-neighborhood of the path {«;}, and we keep track of the fundamental
domains through which this path passes.

For both of the paths we just constructed, the length of each geodesic
segment is at most 2D (any pair of points in adjacent fundamental domains
have distance at most 2D). The vertices of the two paths are identified with
particular elements of 71 (Sy).

Figure 8.1 Left: the polygonal paths constructed in the proof of Lemma 8.5. Right: polygo-
nal paths that are linked at infinity.

Assume, for the purposes of contradiction, that the hyperbolic isometries
®(7) and () are linked at infinity. It follows that the polygonal paths
{®(;)} and {®(5;)} have to cross. Since P is a quasi-isometry with con-
stants K and C', each geodesic segment of {®(«;)} and {®(5;)} has length
at most K (2D) + C. But if these paths cross, two of the geodesic segments
themselves must cross—see the right-hand side of Figure 8.1. Now, each
segment has at least one endpoint whose distance from the crossing point is
less than or equal to (K (2D) + C)/2, and so these two endpoints lie at a
distance of at most K (2D) + C.

What we have now is that there exist elements o, 3 € m(S5,) with
d(a, 8) > Rand d(®(a), ®(3)) < K(2D)+C. Since R > 2DK?+2CK,
we obtain a contradiction with the assumption that ® is a quasi-isometry
with constants K and C'. Thus it must be the case that ®(v) and ®(0) are
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not linked at infinity, and we are done. a

Sides. In addition to linking, we can also talk about two hyperbolic elements
a, 3 € m(S) being on the same side of a hyperbolic element v € 7 (5).
That is, if o and 3 are unlinked with v (and do not share an axis with ~y),
then their axes either lie on the same side of the axis for v or do not. One
can also formulate this notion purely topologically at infinity in terms of the
endpoints of the axes on OH?.

Corollary 8.6 Let g > 2 and let H?> — Sy be a fixed covering map. Let ®
be an automorphism of w1(Sy). If o, 3, and vy are elements of w1(Sg) with
distinct axes, then the axes for ®(«) and () lie on the same side of ®(vy)
if and only if the axes for o and (3 lie on the same side of .

Proof. The axes for a and (3 lie on the same side of the axis for ~ if and
only if there is an element § € 7 (.S,) that is linked at infinity with o and 3
but not with . Apply Lemma 8.5. O

8.2.5 FINISHING THE PROOF

We can now prove the Dehn—Nielsen—Baer theorem.

Proof of the Dehn—Nielsen—Baer theorem. As discussed above, we need
only prove that the homomorphism o : Mod®(S,) — Out(m(S,)) is sur-
jective. Let any [®] € Out(m;(Sy)) be given and let ® be a representative
automorphism. Also, fix once and for all a covering map H? — Sy.

Let (c1,. .., caq) be a chain of isotopy classes of simple closed curves in
Sgy. As in Section 1.3, this means that i(¢;, ¢;+1) = 1 and i(¢;, ¢;) = 0 oth-
erwise. For concreteness, we take the curves shown on the top of Figure 8.2.
Orient each c; so that each algebraic intersection number i(c;, ¢i11) is +1.

Recall that free homotopy classes of oriented curves in S, correspond to
conjugacy classes of elements of 71(Sy); each ¢; is the conjugacy class of
the element ~; shown on the bottom of Figure 8.2.

Since @ is an automorphism of 7 (.S,), it acts on the set of conjugacy
classes of 1 (Sy). We claim that {®(c;) } is also a chain of isotopy classes of
simple closed curves and that the algebraic intersections i(®(c;), ®(ciy1))
are all +1 or all —1. We prove this claim in four steps:

1. ®(¢;) is a simple closed curve for each .
2. i(®(c;), (c;)) = O for |i — j| > 1.
3. i(®(¢;), P(ci+1)) = 1 for each 1.
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Figure 8.2 A chain on a genus 2 surface (top) and representatives in the fundamental group
(bottom).

4. 1(®(c;), ®(ciy1)) does not depend on i.

Each of the four steps will follow from Lemma 8.5. For step 1, recall that
a conjugacy class of a primitive element of 71 (S,) has a simple representa-
tive if and only if each pair of representatives for the class is not linked at
infinity (cf. the proof of Proposition 1.6). Now simply note that, as proved
in Lemma 8.5, ® preserves whether or not axes are linked.

Similarly, for step 2, we use the fact that two conjugacy classes have ge-
ometric intersection number O if and only if any pair of representatives is
unlinked at infinity and this latter property is preserved by ®. For step 3
we use the following ®-invariant characterization of when two conjugacy
classes have representatives with geometric intersection number 1 (plus
Lemma 8.5):

Two conjugacy classes a and b have geometric intersection
number 1 if and only if for some representative « of a that is
linked at infinity with a given representative 3 of b, the set of
representatives of a that are linked at infinity with (3 is precisely
{BFap=* .k cZ}.

Step 4 is more intricate. It suffices to prove that given three conjugacy
classes a, b, and ¢ with i(a,b) = i(b,c) = 1 and i(a,c) = 0, we can char-
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acterize the agreement of the signs of (a, b) with 7(b, ¢) in terms of data we
know to be preserved by ®. Let «, 3, and ¥ be any representatives for a, b,
and c so that the axes for « and ~y are disjoint and the axis for § intersects
each of the axes for o and v once each. Now note the following.

With the above notation, i(a,b) has the same sign as i(b, c) if
and only if the axes for aBa™" and v3~~" lie on different sides
of the axis for (3.

Replacing a, b, and ¢ with ¢;, ¢;11, and ¢;42, we apply Lemma 8.5 and
Corollary 8.6 to complete step 4, thus proving the claim.

By the change of coordinates principle, more precisely by example 6 in
Section 1.3, there is a homeomorphism ¢ that fixes the basepoint of 71 (.S,)
and satisfies ¢, (c;) = P.(c;) (with orientation) for each i. Here ¢, and @,
denote the induced actions on (conjugacy classes of) elements of 71(S).

To complete the proof of the theorem, we must now prove that the map-
ping class [¢], acting on 7 (.S,), induces the outer automorphism [®]. For
any 5 € m(Sy), let Ig denote the inner automorphism of 7 (S,) given by
v + ByB~L. Since the representatives 7; generate 1 (.S,), it suffices to
show that there is an inner automorphism I, of m;(Sy) so that

Ioo ¢t o®(vy) =1

for each 7.

Note that it is simply not true in general that if an automorphism of a
group fixes the conjugacy class of each generator, then it is an inner auto-
morphism. As an example, take the free group on {x, y, z} and consider the
automorphism given by z — yxy ™!, y — y, and z — 2.

We will use the fact that the particular representatives -; of the ¢; shown
in Figure 8.2 form a chain in the sense that the lifts of ~; and ~y; ;1 to H? are
linked at infinity for each <. This follows from the fact that ; and ;4 are
linked on the surface; more precisely, if we take a small closed neighbor-
hood of the basepoint of 71 (.Sy), 7; and 7,1 are linked on the boundary of
this neighborhood. Arbitrary lifts of ¢; and ¢; 1 may or may not be linked
at infinity.

Denote ¢, ! o ® by F. Since ¢ induces an automorphism of m1(Sy), we
see that F still preserves linking at infinity. Again, the goal is to find an
element « so that I, o F' is the identity automorphism of 7 (.S).

Since F'(¢;) = ¢; with orientation for all ¢, we have in particular F'(¢;) =
c1,and so F'(vy) = al_lfyloq for some a; € m1(Sy). Thus

Ial o F(’Yl) = M-

We know that F'(ca) = co, that I, o F preserves linking at infinity, and
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that +; and 9 are linked. It follows from the characterization of conjugacy
classes with geometric intersection number 1 given above that I,,, o F'(y2) =
v k'yg’yf for some k € Z. Therefore,

Lpg 0 F(m)= Lpoly oF(m)= m
and
Lo 0 F(12) = Lgola oF(y)= .

We can now see inductively that I x o F'(v;) = ~; for each i > 3, and

Y11
so [ Yoy 18 the desired inner automorphism. Indeed, since +; and - are both

fixed by I, o F, it follows that each element of {7 yoy7 1Y is fixed. But
since 3 is linked with 79, it is characterized in 71 (S4) by the properties that
it is linked with -, and that its axis in H? lies between the axes for 7571 Yy !
and 75+ 1y17; Y
by induction, each y; for ¢ > 3 is also fixed (the inductive step for ~y; uses
that both ~v;_; and ;_o are fixed). We have thus found the required inner
automorphism, and so the proof is complete. O

for some particular /. Thus ~3 is fixed by I%Cal o F and,

8.2.6 THE INDUCED HOMEOMORPHISM AT INFINITY

Our proof of the Dehn—Nielsen—Baer theorem suggests an elegant way to
think about the automorphism &, namely, through an induced action 09 on
OH? ~ S'. We now explain this idea.

If v is an element of 7 (.S,), then the forward endpoint of the (oriented)
axis of v in H? is identified with a point v+, € OH?. Let

Fo = {Vo0 17 € m1(5)}-

Since the action of 71 (S,) on H? is cocompact, the set ', is dense in OH?.
We define 9P : T'y, — ' by

92(Vo0) = (2(7))o-

Note that 09 is well defined on this set because the axes of two elements of
m1(S4) can share an endpoint at infinity only if they share a common power.
Since ® is an automorphism, O is a bijection.

Denote the backward endpoint of the axis for v € m1(Sg) by 7_oo. The
set

IN'ioo = {('Yoofyfoo) 1Y€ 771(59)}
is dense in OH? x OH?; see [13, Theorem 5.3.8]. This fact was used implic-
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itly in our proof of Corollary 8.6.
The following theorem underlies much of Nielsen’s work on surface
homeomorphisms. We already used this fact in Section 5.5.

Theorem 8.7 Let g > 2. Any automorphism ® of w1(S,) induces a homeo-
morphism of OH?.

Proof. 1Tt suffices to show that 0® induces a homeomorphism of I',. Since
'y is dense in OH2, there is then a unique extension to a homeomorphism
of OH2.

Let 6 € m(Sy). Let 0r denote the set of elements v of 71(Sy) so that
Yoo lies to the right of the oriented axis of §. The sets dp are identified with
subsets of I', via the correspondence v < Yoo.

By the density of I' o in OH? x OH?, the sets {dg : § € m1(S,)} form a
basis for the topology of T'.

To show that 09 is a homeomorphism, we will show that in fact ® (hence
®~1) takes each element of {5z} to another such element. More precisely,
we will show that ® () is equal to either ®(5) g or ®(61)g.

Indeed, let a be any element of dg that is unlinked with . Assume for
concreteness that ®(«) is contained in ®(d)z. We will show that ®(dr) C
®(0) g (if ®() were contained in ®(5~1) g, the same argument would show
that ‘I’((SR) - @(5*1)3).

First, let 8 be an element of § that is not linked with 6. Applying Corol-
lary 8.6 to d, v, and 3, we find that ®(3) € ®(J)g.

Now suppose ( is an element of dg that is linked with §. By Lemma 8.5,
we immediately obtain that ® () is linked with ®(J). Because the axis for
(3 crosses the axis for § from left to right, it follows that 3~/ is unlinked
with § and lies in dg. By the previous case, ®(57163) = ®(3)~1®(5)®(3)
lies in ®(9) g. But then it must be that ®(3) crosses ®(9) from left to right,
which means ®(3) € ®(d)g.

We have thus proven that ®(d0r) C ®(0)g. Since P is invertible, we in
fact have that ®(d0r) = ®(0) . This completes the proof. O

In fact, a much more general statement than Theorem 8.7 is true: any
quasi-isometry of H? induces a homeomorphism of OH?. A related fact is
that any (S, )-equivariant homeomorphism of H? extends to a 1 (S,)-
equivariant homeomorphism of the closed disk H? U OH?. This last fact will
be used in the proof of Theorem 14.20.

8.2.7 THE PUNCTURED CASE

There is a version of the Dehn—Nielsen—Baer theorem for punctured sur-
faces as follows. Let Out*(m(.S)) be the subgroup of Out(w(S)) con-
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sisting of elements that preserve the set of conjugacy classes of the simple
closed curves surrounding individual punctures. Note that these conjugacy
classes are precisely the primitive conjugacy classes that correspond to the
parabolic elements of Isom(H?).

THEOREM 8.8 Let S = S, be a hyperbolic surface of genus g with p
punctures. Then the natural map

Mod*(S) — Out*(m;(S))
is an isomorphism.

The proof of this more general theorem follows the same outline as in the
proof of the closed case (Theorem 8.1). We content ourselves to point out
the two main differences.

1. In the case S = S,, we knew automatically that any automorphism
of 71(S,) must send hyperbolic elements to hyperbolic elements
since all nontrivial elements of 71(S,) are hyperbolic. If S is not
closed, then an arbitrary automorphism of 71 (S) can exchange hyper-
bolic elements with parabolic elements. But the fact that we consider
Out*(m1(5)) instead of Out(71(.S)) in the statement of Theorem 8.8
exactly accounts for this.

2. The map 71 (S) — H? given by taking the orbit in H? of a single point
is not a quasi-isometry. To remedy this, we truncate S by deleting a
small neighborhood of each puncture. We can choose the neighbor-
hoods to be small enough so that the preimage in H? of the truncated
surface is a connected space X. If we endow X with the path metric,
then the action of 71 (S) on X satisfies the conditions of Theorem 8.2,
and so 71 (5) is quasi-isometric to X.

The proof of Lemma 8.5 now proceeds similarly as before. Points are
farther in X than they are in H?, so there is no problem in choosing N
so that the sets O, and Ogn are far apart. Also, there is no obstruction
to choosing the paths {«;} and {£3; }. If {®(;)} and {®(3;)} were to
cross, we would still have a short path in X between two vertices of
the paths, which would give the desired contradiction.

We have already mentioned the theorem of Nielsen that Out(F3) =~
GL(2,7Z). Thus we have

Out(Fy) ~ GL(2,Z) ~ Mod* (S ).

In the language of Theorem 8.8, this means that the group Out™ (71 (S51,1)) is
the entire group Out(71(S1,1)). In other words, every element of the outer
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automorphism group of F, = (z,y) preserves the conjugacy class [z,y].
Thus GL(n, Z), Mod*(S), and Out(F},) can be viewed as three different
generalizations of the same group.

Once-punctured versus closed. The Dehn—Nielsen—Baer theorem can be
used to relate the group Mod(Sy) to the group Mod(Sy 1), where Sy 1 is
the genus g > 2 surface with one marked point. This is done by the follow-
ing isomorphism of exact sequences, where each square is a commutative
diagram:

1 ——Inn(m(Sy)) — Aut(m1(Sy)) — Out(m1(S,)) —= 1

R

1 ———mi(Sy)

Out*(7r1 (5971))

The first row is the usual relationship between the automorphism group
and outer automorphism group of any group. The second row is a version of
the Birman exact sequence for the extended mapping class group.

The isomorphism Inn(7i(Sy)) ~ m1(S,) is equivalent to the state-
ment that 71(Sy) has trivial center, and the isomorphism Out(m(Sy)) ~
Mod*(S,) is the Dehn-Nielsen-Baer theorem. Now there certainly is a
map Mod® (S, 1) — Aut(m(S,)) that makes the diagram (as described so
far) commutative—simply choose the basepoint for 71 (.S;) to be the marked
point. The five lemma then tells us that the middle vertical map is an iso-
morphism from Mod® (S, 1) to Aut(m1(S,)).

Finally, we examine the isomorphism Out*(7m1(Sg,1)) — Aut(m1(Sy)).
At first it seems odd to have an outer automorphism group of a surface
group be the same as the automorphism group of another surface group.
However, given ¢ € Out™(m1(S,,1)), we get an element of Aut(71(Sy))
by taking the unique representative automorphism of ¢ that fixes the loop
corresponding to the puncture (not just up to conjugacy), and this gives the
desired isomorphism.
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8.3 TWO OTHER VIEWPOINTS

In this section we provide two other proofs of the Dehn—Nielsen—Baer theo-
rem, one inspired by 3-manifold theory (adapted from [93, Theorem 13.6])
and one using harmonic maps. There are various other proofs, each involv-
ing a different kind of mathematics. For example, in Theorem 1.8 of [43]
Calegari exploits the relationship between simple closed curves on S, and
HNN extensions of 71(Sy) to give an inductive argument for the Dehn—
Nielsen—Baer theorem. Zieschang—Vogt—Coldewey give a combinatorial-
group-theoretical proof in [218, Section 5.6], and Seifert gives an elemen-
tary covering space argument in [192].

Let S be a surface with x(S) < 0. Since S'is a K (m1(5), 1)-space, every
outer automorphism of 71 (.S) is induced by some (unbased) map S — S.
By the Whitehead theorem [91, Theorem 4.5] and the fact that 7;(.S) = 0 for
¢ > 1, we have that this self-map of .S is a homotopy equivalence. Thus, for
the surjectivity part of the Dehn—Nielsen—Baer theorem, it suffices to show
that every homotopy equivalence of .S is homotopic to a homeomorphism
of S.

THEOREM 8.9 If g > 2, then any homotopy equivalence ¢ : Sq — Sy is
homotopic to a homeomorphism.

We give two approaches to Theorem 8.9 below, one topological and one
analytical.

8.3.1 THE TOPOLOGICAL APPROACH: PANTS DECOMPOSITIONS

Recall that a pair of pants is a compact surface of genus 0 with three bound-
ary components. Let S be a compact surface with x(.S) < 0. A pair of pants
decomposition of S, or a pants decomposition of S, is a collection of disjoint
simple closed curves in S with the property that when we cut S along these
curves, we obtain a disjoint union of pairs of pants. Equivalently, a pants de-
composition of S is a maximal collection of disjoint, essential simple closed
curves in S with the property that no two of these curves are isotopic.

We can easily prove the equivalence of the two definitions of a pants de-
composition. First, suppose we have a collection of simple closed curves
that cuts S into pairs of pants. We immediately see that every curve is es-
sential since there are no disk components when we cut S. Further, since
any simple closed curve on a pair of pants is either homotopic to a point
or to a boundary component, it follows that the given collection is maximal.
For the other direction, suppose we have a collection of disjoint, nonisotopic
essential simple closed curves in S. If the surface obtained from S by cut-
ting along these curves is not a collection of pairs of pants, then it follows
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from the classification of surfaces and the additivity of Euler characteris-
tic that one component of the cut surface either has positive genus or is a
sphere with more than three boundary components. On such a surface there
exists an essential simple closed curve that is not homotopic to a boundary
component. Thus the original collection of curves was not maximal.

A pair of pants has Euler characteristic —1. If we cut a surface along
a collection of disjoint simple closed curves, the cut surface has the same
Euler characteristic as the original surface. Thus a pants decomposition of
S cuts S into —x(.S) pairs of pants. It follows that, for a compact surface S
of genus g with b boundary components, a pants decomposition for S has

—3x(S) =0
2

curves. Indeed, each pair of pants has three boundary curves and, aside from
the curves coming from 0.5, these curves match up in pairs to form curves
in S. In particular, a pants decomposition of S, for g > 2 has 3g — 3 curves,
cutting .S, into 2g — 2 pairs of pants.

=39g+b-3

First proof of Theorem 8.9. We modify ¢ in steps by homotopies until it
is a homeomorphism; at each stage, the resulting map will be called ¢.
Choose some pants decomposition P of S, consisting of smooth simple
closed curves. We first approximate ¢ by a smooth map that is transverse to
‘P. By choosing a close enough approximation we can assume that the ap-
proximation is homotopic to ¢ (see [95, p. 124]). By transversality we have
that ~!(P) is a collection of simple closed curves. If any component of
¢~ 1(P) is inessential, we can homotope ¢ to remove that component since
such a curve bounds a disk, and we can use that disk to define the homotopy.

Since ¢ induces an automorphism on 71 (S, ), it takes primitive conjugacy
classes in 7 (Sy) to primitive conjugacy classes in 71 (S ). Thus the restric-
tion of ¢ to any particular component of ¢~!(P) has degree 4-1 as a map
S1 — S'. We can therefore homotope ¢ so that it restricts to a homeomor-
phism on each component of ¢~1(P).

Since ¢ is a homotopy equivalence, it has degree 41, and so ¢ is surjec-
tive. It follows that ¢~ () has at least 3¢ — 3 components. If it had more,
then two such components would necessarily be isotopic, and the annulus
between them would give rise to a homotopy of ¢ reducing the number of
components of ¢~ 1(P).

At this point ¢ is a homeomorphism on each component of ¢~*(P), and
¢ maps each component of S, — ¢! (P) to a single component of S, —P. It
therefore suffices to show that if R and R’ are pairs of pants and if ¢ : R —
R’ is a continuous map such that ¢|gr is a homeomorphism, then there is a
homotopy of ¢ to a homeomorphism R — R/, so that the homotopy restricts
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to the identity map on JR.

Let X be the union of three disjoint arcs in R’, one connecting each pair
of boundary components. Note that it must be that R’ — (R’ U X) is home-
omorphic to a disjoint union of two open disks. Again, we may assume
that ¢ is smooth, and so ¢~!(X) is a properly embedded 1-manifold with
boundary lying in OR. If any component of ¢~!(X) is closed, then it is nec-
essarily null homotopic (since all nonperipheral simple closed curves on a
pair of pants are null homotopic), and we may modify ¢ by homotopy to
remove this component.

Since ¢|gp is assumed to be a homeomorphism, and so it takes distinct
boundary components to distinct boundary components, ¢~!(X) consists
of exactly three arcs, one for each pair of boundary components of R. We
can modify ¢ so that it restricts to a homeomorphism on each component of
X. By the Alexander lemma ¢ is homotopic to a homeomorphism. a

8.3.2 THE ANALYTIC APPROACH: HARMONIC MAPS

We now give an analytic proof of Theorem 8.9. While this proof relies on
the machinery of harmonic maps, it is conceptually straightforward.

A harmonic map f : M — N between Riemannian manifolds is one that
minimizes the energy functional

B(H = [ 1P

Second proof of Theorem 8.9. We endow S with a hyperbolic metric. It is
a theorem of Eells—Sampson that, with respect to this metric, there is a
harmonic map h in the homotopy class of ¢ [54]. Since h is a homotopy
equivalence, we must have that the degree of h is +=1. Then by a theorem
of Schoen—Yau, any degree one harmonic map between compact surfaces of
negative curvature is necessarily a diffeomorphism [189]. a



Chapter Nine

Braid Groups

In this chapter we give a brief introduction to Artin’s classical braid groups
B,,. While B, is just a special kind of mapping class group, namely, that
of a multipunctured disk, the study of B,, has its own special flavor. One
reason for this is that multipunctured disks can be embedded in the plane,
so that elements of B, lend themselves to specialized kinds of pictorial
representations.

9.1 THE BRAID GROUP: THREE PERSPECTIVES

The notion of a mathematical braid is quite natural and classical. For in-
stance, this concept appeared in Gauss’s study of knots in the early nine-
teenth century (see [182]) and in Hurwitz’s 1891 paper on Riemann surfaces
[102]. The first rigorous definition of the braid group was given by Artin in
1925 [6].

In this section we give three equivalent ways of thinking about the braid
group, starting with Artin’s classical definition. We will then explain how to
go back and forth between the different points of view.

| NINK
) 1w )
W™

Figure 9.1 Left: a sample 3-braid. Right: the product of two 3-braids.
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9.1.1 BRAIDED STRINGS

Let p1, ..., p, be distinguished points in the complex plane C. A braid is a
collection of n paths f; : [0,1] — C x [0,1], 1 <4 < n, called strands, and
a permutation f of {1,...,n} such that each of the following holds:

o the strands f;([0, 1]) are disjoint
o fi(0)=pi

o fi(h) =pp

o fi(t) € C x {1},

See the left-hand side of Figure 9.1 for a typical example of a braid on three
strands. In our figures, we draw ¢ = 0 as the top of the braid.

A braid (fi(t),..., fa(t)) is determined by its braid diagram, which is
the picture obtained by projecting the images of the f; to the plane R X
[0, 1]. In order that this picture carry all of the information, we must indicate
which strands are passing over which other strands at the crossings, as in
Figure 9.1.

The braid group on n strands, denoted B,,, is the group of isotopy classes
of braids. The key is that strands are not allowed to cross each other during
the isotopy. It also follows from the definitions that an isotopy of braids fixes
the set {p;} x {0, 1} and is level-preserving.

The product of the braid (fi(¢),...fn(t)) with the braid
(91(t),...,gn(t)) is the braid (hy(t),..., hy(t)), where

[ re2 0<t<1/2
hilt) = {gm(zt 1) 1/2<t<1.

In other words, to multiply f, g € B,, one takes braid representatives for f
and g, scales their heights by 1/2, and then stacks the braid corresponding
to f on top of that corresponding to g, thus giving a braid representative for
fg € B,,. See the right-hand side of Figure 9.1 for an example of braid mul-
tiplication. There we use the typical convention of not rescaling the vertical
direction (this makes it possible to draw increasingly complicated braids).

The inverse of a given braid is obtained by taking its reflection either
through the plane C x {0} or through the plane C x {1}. See Figure 9.2.
Notice that the resulting composition is isotopic to the trivial braid, thus
showing that the two braids are indeed inverses.

For1 <1¢ <n—1,leto; € B, denote the braid whose only crossing is
the (7 + 1)st strand passing in front of the ith strand, as shown in Figure 9.3.
We claim that the group B,, is generated by elements o1,...,0,—1 . The
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[

Figure 9.2 A braid (above the dotted line) and its inverse (below the dotted line).

claim follows immediately from the fact that any braid § can be isotoped
so that its finitely many crossings occur at different horizontal levels (i.e.,
different values of ¢). Reading off the crossings in § from top to bottom then
gives [ as a product of the ¢;’s and their inverses.

We remark that if in the definition of B,, we allow an isotopy between
two braids to pass through n-tuples (f1(t),..., fn(t)) that satisfy all parts
of the definition of a braid except the condition f;(t) € C x {t}, then the
resulting group is the same.

\
\

Figure 9.3 A generator o; for the braid group: the (i 4 1)st strand passes in front of the ith
strand.
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9.1.2 FUNDAMENTAL GROUPS OF CONFIGURATION SPACES

Let C°"%(S,n) denote the configuration space of n distinct, ordered points
in a surface S:

Co4(S,n) = S*™ — BigDiag(S*"),

where S*™ is the n-fold Cartesian product of S and BigDiag(S*") is the
big diagonal of S*™, that is, the subset of S*" where at least two coor-
dinates are equal. The symmetric group >, acts on S*" by permuting the
coordinates. This action clearly preserves BigDiag(.S*") and thus induces
an action of ¥J,, by homeomorphisms on C°"¢(.S, n). Since the action of ¥,,
permutes the n coordinates and since these coordinates are always distinct
for points in C°"%(S, n), we see that this action is free. The quotient space

C(S,n) = Co4S,n)/,

is just the configuration space of n distinct, unordered points in S. Since
C(S, n) is the quotient of a manifold by a free action (by homeomorphisms)
of a finite group, it follows that C'(S,n) is a manifold.

It is almost immediate from the definitions that

B, =~ m(C(C,n)).

Indeed, since each strand of a braid is a map f; : I — C x I with f;(¢) €
Cx{t}, we can think of each f; as amap I — C, and this identification gives
the isomorphism. Said another way, the intersection of any slice C x {t}
with any braid is a point in C(C,n), and so the full collection of slices
gives an element of 71 (C(C,n)). In this way, we can think of a braid o =
(fi(t),..., fn(t)) as tracing out a loop of n-point configurations in C as ¢
increases from 0 to 1.

The generator o; of B,, described above corresponds to the element of
7m1(C(C,n)) given by the loop of n-point configurations in C where the
ith and (¢ + 1)st points switch places by moving in a clockwise fashion, as
indicated in Figure 9.4, and the other n — 2 points remain fixed.

o
N

Figure 9.4 A standard generator of B,, in the configuration space model.
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The configuration space C°"%(C, n) can also be written as

Crd(C,n) U{ (21, 2n) 1 2i = Zj }.

1<J

Thus C°"%(C, n) is the complement of a complex hyperplane arrangement,
that is, the complement of a finite union of hyperplanes in C". Since

B, = m(C(C,n)) = 7 (C°C,n))/%n

the group B,, is also isomorphic to the fundamental group of the quotient of
a complex hyperplane complement by the action of X2,,.
Since C°"(C, n) is a space of ordered n-tuples, there is a map

U : CY(C,n) — C"YC,n — 1)

defined by forgetting the last point. The fiber ¢, (21, ..., 2, 1) is clearly
Ccorl((C - (21,...,2n-1)),1) = C — (x1,...,T,_1). Fadell-Neuwirth
[57] proved that

C—(z1,...,2n_1) — C"C,n) — CYC,n —1)

is a fibration (what is more, it is a fibration with section). Note that the
space C — (z1,...,x,—1) is aspherical, that is, all of its higher homotopy
groups vanish. An application of the homotopy long exact sequence of a
fibration gives by an inductive argument that C°"%(C, n) is aspherical for
every n > 1. Since C(C,n) is finitely covered by C°"¢(C,n), all of its
higher homotopy groups vanish as well. Thus C'(C, n) is a K (B, 1)-space.

9.1.3 MAPPING CLASS GROUP OF A PUNCTURED DISK

Finally, we describe B,, as a mapping class group. Let D,, be a closed disk
D? with n marked points. Then B,, is also isomorphic to the mapping class
group of D,;:

~ Mod(D,,) = mo(Homeo™ (D,,,0D,,)).

The isomorphism between Mod(D,,) and 71(C(C,n)) ~ B, can be de-
scribed as follows. Let ¢ be a homeomorphism of D? that leaves invariant
the set of n marked points. If we forget that the marked points are distin-
guished, then ¢ is just a homeomorphism of D? fixing D? pointwise, so by
the Alexander lemma ¢ is isotopic to the identity. Throughout any such iso-
topy the marked points move around the interior of D? (which we identify
with C) and return to where they started, thus effecting a loop in C'(C,n).
We have thus produced a braid. We will prove in Theorem 9.1 below that
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this association gives a well-defined homomorphism B,, — Mod(D,,) and
that this is in fact an isomorphism.

Under the isomorphism B,, ~ Mod(D),,), each generator o; corresponds
to the homotopy class of a homeomorphism of D,, that has support a twice-
punctured disk and is described on this support by Figure 9.5. We denote
such a half-twist as H,, and we can think of « as either a simple closed
curve with two punctures in its interior or a simple proper arc connecting
two punctures.

Figure 9.5 A half-twist.

9.1.4 SURFACE BRAID GROUPS AND MAPPING CLASS GROUPS

We have given three different ways of thinking about the braid group. We
have already seen that the first two are equivalent. Now we prove that both
are equivalent to the third. Specifically, we will prove the isomorphism

m1(C(C,n)) =~ Mod(D,,).

To do this we will require a generalization of the Birman exact sequence
that is also due to Birman [24]. In the process we will need to consider the
fundamental group 71 (C(S,n)) for an arbitrary surface S. This group is
called the n-stranded surface braid group of S.

Let S be a compact surface, perhaps with finitely many punctures but
with no marked points. Let (S,{z1,...,z,}) denote S with n marked
points x1, ..., x, in the interior. We are using both punctures and marked
points here to distinguish the two, as they will play different roles. As in
Section 4.2, there is a forgetful homomorphism Mod(S,{z1,...,zn}) —
Mod(S) given by forgetting that the marked points are marked. As in the
proof of Theorem 4.6, there is a fiber bundle

Homeo™ ((S,{z1,...,2n}),d5) — Homeo™ (S,05) — C(S°,n)

where S° is the interior of S and Homeo™ ((S, {x1,...,2,}),dS) is the
group of orientation-preserving homeomorphisms of .S that preserve the set
{z1,...,2,} and fix the boundary of S pointwise. As a consequence, we
obtain the following generalization of the Birman exact sequence.
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THEOREM 9.1 (Birman exact sequence, generalized) Let S be a surface
without marked points and with 1 (Homeo™ (S, 9S)) = 1. The following
sequence is exact:

1 — m(C(S,n)) 228 Mod(S, {a1, ..., 2n}) 2% Mod(S) — 1.

Recall that the hypothesis 71 (Homeo™ (S,0S)) = 1 holds whenever
x(S) is negative (Theorem 1.14). Also, it follows from the Alexander trick
that Homeo ™ (D2, 9D?) is contractible.

Note that we have replaced C'(S°,n) with C'(S,n) in the statement of
Theorem 9.1 since these spaces are homotopy-equivalent.

When n = 1, Theorem 9.1 reduces to the usual Birman exact sequence
(Theorem 4.6) since C(S,1) ~ S. When S = D?, Theorem 9.1 gives an
exact sequence

1 — m(C(D? n)) — Mod(D,,) — Mod(D?) — 1.

Since Mod(D?) is trivial (Lemma 2.1), and since m(C(D? n)) =~
m1(C(C,n)) =~ B, it follows that B, ~ Mod(D,,). Note that since
71 (Homeo™ (C)) =~ Z (see [217]), Theorem 9.1 does not give that B,, ~
Mod(C — {n points}).

Spherical braid groups. As in the case of Theorem 4.6, the fiber bundle
picture still gives us information in the case where 71 (Homeo™ (S, .9))
is nontrivial. We still have a point-pushing map m(C(S,n)) —
Mod(S, 1, ..., xy), but the kernel of this map is isomorphic to the image
of 71 (Homeo™ (S)) in 71 (C(S, n)).

Consider for instance the case S = S2. The group 71 (C(S?,n)) is called
the spherical braid group on n strands. The group Homeo™ (52) has the
homotopy type of SO(3) [197], and so 71 (Homeo™ (S?)) ~ Z/2Z. When
n > 2, this group maps nontrivially into 71 (C (52, n)). Combining this with
the fact that Mod(S?) = 1 gives a short exact sequence

1 — Z/2Z — m(C(S?n)) — Mod(Sp,) — 1. 9.1)

The nontrivial element of the kernel in (9.1) is given by rotating the n
marked points by a 27 twist. In S? x [0, 1] the points trace out n paths,
as shown in Figure 9.6 for the case n = 3. This is a nontrivial element « of
71(C(S?,n)) because there is no way to untangle the strands in the figure.
The image of « in Mod(Sp ,,) is a Dehn twist about a simple closed curve
that surrounds all of the punctures, which is the trivial mapping class. How-
ever, the 4 twist o? is trivial in 71 (C(S2,n)). The fact that the spherical
braid o? can be unraveled is an example of the belt trick.
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Figure 9.6 The nontrivial element of the kernel 71 (C'((S%, 1)) — Mod(S? — n points).

9.2 BASIC ALGEBRAIC STRUCTURE OF THE BRAID GROUP

In this section we investigate some of the basic algebraic properties of B,,.

A finite presentation. In his seminal paper on braid groups, Artin [6] gives
the following presentation for B,,.

B, =(01,...,0n-1| 0i0i410; = 044100;41 foralli,
0;0j = 0,05 fOl"i—j‘>1>

Here, and in general with braid groups, we use algebraic notation: the ele-
ment on the left of a word comes first (for the given presentation this does
not matter).

We can see in Figure 9.7 that the given relations hold in 5,,. Note that
the relation 0;0;110; = 044+10;0;41 corresponds to the type 3 Reidemeister
move from knot theory. In fact, it is possible to derive the above presentation
for B, using the fact that any two planar diagrams for a given knot differ by
a finite sequence of Reidemeister moves; see [118, Theorem 1.6]. Another
derivation of the presentation is given in [61, Théoréme 5].

Computations. It follows from the presentation of B,, that

B=1
BQ%Z

—~—

B3~SL(2,7),
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Figure 9.7 Relations in the braid group: the commuting relation and the braid relation.

—_—

where SL(2,Z) is the central extension

1—7Z — SL(2,Z) — SL(2,Z) — 1.

The abelianization. It is easy to see from the presentation of B, that the
abelianization of B, is Z and that this Z is generated by the image of any o;
under the abelianization map B,, — Z (cf. Section 5.1). The abelianization
map B, — Z is the length homomorphism which counts the signed word
length of elements of B, in terms of the standard generators.

Torsion-freeness. Since D,, is a surface with boundary, Corollary 7.3 im-
plies that B, is torsion-free for any n. If GG is a group with nontrivial tor-
sion, then any K (G, 1)-space must be infinite-dimensional [91, Proposition
2.45]. Therefore, the fact that B,, is torsion-free also follows from the fact
that C'(C, n) is a finite-dimensional K (B, 1).

The center. For n > 3, the braid group B,, has an infinite cyclic center
Z(By,) generated by

z= (o1 op_1)".

Note that Z(By) = (o1). Figure 9.8 demonstrates that z is indeed central.

From the point of view of mapping class groups, z corresponds to the
Dehn twist about the boundary of D,,. This Dehn twist commutes with the
standard half-twist generators for B,,, and so we again see that z is central.

We now prove that (z) is the entire center of B,,. There is a homomor-
phism B,, — Mod(Sp 1) obtained by capping the boundary of D,, with a
once-punctured disk. By Proposition 3.19 the kernel of this homomorphism
is (z). Now any surjective homomorphism between groups takes central ele-
ments to central elements. Since Z(Mod(Sp ,,+1)) is trivial (cf. Section 3.4),
it follows that z generates Z(B,,).
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Figure 9.8 Twisting the box by 27 along the vertical axis takes the braid zg to the braid gz.

Braid group modulo center. The previous paragraph gives that the quo-
tient B,,/Z(By,) is isomorphic to the index n subgroup of Mod(Sp 1)
consisting of elements that fix one distinguished puncture. By taking the
distinguished puncture to be the point at infinity, we see that this is the same
as the mapping class group of the n-times-punctured plane. One can also
derive this description of B,,/Z(B,,) from the long exact sequence used in
the proof of Theorem 9.1 and the fact that 711 (Homeo™ (R?)) ~ Z.

Roots of central elements. In Section 7.1.1, we classified all finite-order
elements of the mapping class group of a multipunctured sphere: they are
all conjugate to Euclidean rotations of the sphere. By our above description
of B,/Z(By), roots of central elements in B,, correspond to finite-order
elements in the subgroup of Mod(Sp 1) consisting of elements that fix
some distinguished puncture. Therefore, up to powers, any root of a central
element of B,, is conjugate to one of the elements shown in Figure 9.9. In
terms of the generators for B,,, the first root is given by oy - - - 0,1, and the
second is given by 0%02 e Op—1.

9.3 THE PURE BRAID GROUP

The pure braid group P B,, is the kernel of the homomorphism from B,, to
the permutation group 3.,, given by the definition of f above:

1— PB, —» B, —> %, — 1.
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Figure 9.9 Two views of each of the types of roots of central elements.

In other words, a pure braid is a braid where each strand begins and ends at
the same point of C. A small variation of Theorem 9.1 gives the following
isomorphisms:

PB,, =~ 1 (C”%(C,n)) ~ PMod(D,,).

Generators. Artin proved that PB,, is generated by the elements
aij = (0j-10i11)07 (01 0ig1)

for 1 < i < j < n. Since each a;; is the conjugate of a square
of a half-twist, we see that each a;; is a Dehn twist about a simple
closed curve surrounding exactly two punctures. In fact, we can see exactly
which simple closed curves. If o2 corresponds to the Dehn twist 7., then
(0j—1-+0i41)"" corresponds to the mapping class f = HC_JL . Hc_z}rl
and a; ; corresponds to the mapping class fT¢, f 1= T¥(c,) (note that we
have passed to functional notation). The effect of f on ¢; is shown in Fig-
ure 9.10. We see a; ; is the Dehn twist about a simple closed curve that
surrounds the ¢th and jth punctures.

One can derive the above generating set for PB,, ~ PMod(D),,) from the
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Birman exact sequence, as in our proof of Theorem 4.9.

Figure 9.10 Writing the generators of the pure braid group.

The center. The central element z of B,, is also an element of PB,,. For
the same reason as before (the Alexander method), z generates the center of
PB,,. It is not at all obvious how to write z in terms of the generators {a; ;}
for PB,,. We claim that

z = (a1,2 ars --- al,n) te (an72,n71 an72,n) (anfl,n)-

We now prove this claim. We think of the product on the right hand side as
a product g192 - - - gn—1, where

9i = Qiit1 Qiit2 " Qip-

In terms of configuration spaces, g; is the element obtained by pushing the
ith point around the (i + 1)st point, around the (¢ 4+ 2)nd point, and so on,
all the way up to the nth point. The orientations of these paths agree, and so
this loop in C'(C, n) is isotopic to the loop that pushes the ith point around
the last n — ¢ points all at once. In the mapping class group, this push map
(see Section 4.2) is equal to the product of two Dehn twists: Tdiqu_,-l (see
Figure 9.11). We then have that the product g1 g2 - - - g,—1 is equal to

(Tao Ty, NIy T3, ')+ (T, T3

n

All terms in this expression cancel except the first, which is the Dehn
twist about dD,,, and the last, which is trivial (it is the Dehn twist about a
simple closed curve with one puncture in its interior). This proves our claim.
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Figure 9.11 The simple closed curves d; and d;—1.

A finite presentation. Artin’s original presentation for P B,, is considerably
more complicated than that for B,,. We give here a slightly modified version
of his presentation:

PBy ~ <ai,j’ [ap,q,arvs] =1 p<g<r<s
[ap,saaq,r]zl p<g<r<s
ap,rGq,rQp,q = Qq,rGp,qap,r = Qp,qprlqrpP < g <T
[ar,sap,ra;,;v aq,s] =1 p<qg<r<s).

Each of the relations in this presentation can be viewed as a type of com-
mutation relation. The four diagrams in Figure 9.12 show the configurations
of arcs that appear in the four types of relations (recall that elements are
applied left to right).

o~ N

Figure 9.12 Relations for PB,,.

The first two relations are the familiar commutations of Dehn twists about
disjoint simple closed curves. The third relation corresponds to the relation
T,T,T, = T,T.T,, which we discussed in Section 5.1 as a consequence of
the lantern relation. By Facts 3.7 and 3.9, we can rephrase the fourth and
final relation as follows: if we twist the (p, r)-arc about the (r, s)-arc, the
result—namely, the dotted arc in Figure 9.12—is disjoint from the (g, s)-
arc.



252 CHAPTER 9

It is possible to refine the above presentation for PB,, so all of the rela-
tions are disjointness relations and lantern relations [141, Theorem 4.10].

A splitting. One important (and nonobvious) fact about PB,, that can be
deduced from the above presentation is that PB,, splits as a direct product
over its center:

PB, ~ PB,/Z(PB,) x Z(PB,).

To verify that P B,, splits as above, it suffices to show that there is a homo-
morphism f : PB,, — Z(PB,,) such that the composition

Z(PB,) — PB, - 7(PB,)

is the identity map. We can define such an f by f(a12) = zand f(a; ;) =1
otherwise (the choice of a; 2 is noncanonical). The map f is a well-defined
homomorphism because all of the defining relations for P B,, are commuta-
tions. The composition is the identity since f(z) = z.

The homomorphism B,,/Z(B,) — Mod(So n+1) from page 247 identi-
fies PB,,/Z (P By,) isomorphically with PMod(Sp ,,+1), and so we have

PBn ~ PMOd(SQ7n+1) X 7.

We can think of the projection PB,, — Z geometrically as the map PB,, —
P B5 obtained by forgetting n — 2 of the strands.

The abelianization. Another consequence of the fact that all of the defining
relations for PB,, are commutations is that the abelianization of PB,, is a
free abelian group with one generator for each generator of PB,,. Thus

Hi(PB,;Z) ~ Z(5).

A decomposition. Since the pure braid group can be thought of as the pure
mapping class group of the n-times-punctured disk, we can apply the Bir-
man exact sequence (Theorem 9.1), which in this context takes the form

1— F,1— PB, — PB,_1 — 1.

As usual, F},_; denotes the free group on n — 1 letters, which is isomorphic
to the fundamental group of the disk with n — 1 punctures. There is a natural
splitting PB,,_1 — P B,, obtained by adding an extra strand, and so we see
that PB,, ~ PB,,_1 X F,_1. What is more, by repeating this argument, we
see that PB,, is an iterated extension of free groups.
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This splitting of PB,, follows from the theorem of Fadell-Neuwirth that
the map C°"%(C,n) — C°%(C,n — 1) is a fiber bundle with section.

9.4 BRAID GROUPS AND SYMMETRIC MAPPING CLASS GROUPS

Besides the relation to mapping class groups of punctured spheres, braid
groups arise in the study of the mapping class groups of higher-genus sur-
faces.

Let S; be a surface of genus g with one boundary component. We de-
fine a homomorphism v : B, — Mod(S;) for n < 2g + 1 as follows.
Choose a chain of simple closed curves {c;} in S;, that is, a collection of
simple closed curves satisfying i(c;, 1) = 1 for all 4 and (o, ) = 0
otherwise. We then define v via ¢)(0;) = Ty,. By the disjointness relation
(Fact 3.9) and the braid relation (Proposition 3.11) for Dehn twists, the map
1) does indeed define a homomorphism. We will prove below that 1) is in-
jective. Even without knowing injectivity, ¢ is useful because it allows us to
transfer relations from By, to Mod(S,)).

Figure 9.13 The Birman-Hilden double cover

9.4.1 THE BIRMAN-HILDEN THEOREM

Let ¢ be the order 2 element of Homeo™ (S ;) as shown in Figure 9.13 and
let SHomeo™ (S gl) be the centralizer in Homeo*(S;) of v:

SHomeo™ (S}) = Chomeo*(s1) (4)-
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The group SHomeo ™ (S ;) is called the group of orientation-preserving sym-
metric homeomorphisms of S;. The symmetric mapping class group is the
group

SMod(S;) = SHomeo™ (S;)/isotopy,

that is, the subgroup of Mod (S gl) that is the image of SHomeo™ (S gl)

The homeomorphism ¢ has 2g + 1 fixed points in Sgl. The quotient of
S; by (¢) is a topological disk D41 with 2g + 1 cone points of order 2,
with each cone point coming from a fixed point of ¢. Since the elements
of SHomeo™ (S;) commute with ¢, they descend to homeomorphisms of
the quotient disk. Also, by the commutativity, they must preserve the set of
2g + 1 fixed points of ¢, and so there is a homomorphism

SHomeo™ (Sgl) — Homeo™ (Dag41).

This homomorphism is easily seen to be injective. It is actually an isomor-
phism of topological groups since any element of Homeo™ (D2g+1) can be
lifted to SHomeo™ (S gl) We thus have

SHomeo™ (S;)/symmetric isotopy = mo(SHomeo™ (S;))
~ mo(Homeo™ (Dag41))
= Mod(Dag+1)
~ B2g+1.

We would like to show that SMod(S;) ~ Bag1. Since
SHomeo+(Sg1) /symmetric isotopy =~ Bag1,

this amounts to showing that if two symmetric homeomorphisms of S; are
isotopic, then they must actually be symmetrically isotopic. Birman—Hilden
proved that this is indeed the case [27].

THEOREM 9.2 Using the above notation, SMod(S;) ~ Bagy1.

We will give a proof of Theorem 9.2 at the end of the section.
As an illustration of Theorem 9.2, take g = 1. The theorem of Birman—
Hilden tells us that

Mod(S]) = SMod(S}) ~ Bs ~ Mod(Ds).

The Birman-Hilden theorem also holds for surfaces with two (symmet-
ric) boundary components that are interchanged by ¢ (see top right of Fig-
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ure 9.15), and so we have
SMod(S?) ~ Bag+a.
This implies
SMod(S2)/Z(SMod(S2)) & Bagi2/Z(Bagy2),
which in the case g = 1 gives
PMod(S1,2) ~ Bs4/Z(Ba).

From this isomorphism we obtain that Mod(S12) ~ Bi/Z(Ba) x Z/2Z,
where the last factor is generated by the hyperelliptic involution ¢.

Dehn twists and half-twists. Let o be a nonseparating simple closed curve
in S, gl that is fixed by ¢ and let N be a neighborhood of « that is fixed by ¢.
Since ¢4 ([a]) = —[a], the restriction of ¢ to « is a flip. Thus, the restriction
of + to IV is a rotation that switches the two boundary components, and
N = N/uis a disk with two cone points of order 2. The Dehn twist T},
commutes with ¢|y and hence descends to a homeomorphism of N. The
induced homeomorphism of N is nothing other than the half-twist about the
arc that is the image of « in IV (the half-twist interchanges the two cone
points). See the bottom arrow in Figure 9.14.

Figure 9.14 The Dehn twist about the core of the annulus covers the half-twist in the disk
with two punctures/marked points.

In the other direction, we see that any Dehn twist T’ in Ba, 1 either lifts
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to the square of a Dehn twist, a product of two Dehn twists, or the square
root of a Dehn twist, depending on whether the preimage of 7 in Sg1 has
two isotopic components, two nonisotopic components, or one component
(equivalently, whether « surrounds two punctures, an even number of punc-
tures greater than 2, or an odd number of punctures greater than 1).

9.4.2 DERIVING RELATIONS IN Mod(S,) FROM RELATIONS IN B,,

The connection between the braid relation in Mod (.S ) and the braid relation
in the braid group is now apparent. If o and 3 are the arcs in D3 shown at the
bottom left of Figure 9.15, then the half-twists H, and H g satisfy the braid
relation in Bs. Via the Birman—-Hilden theorem, these half-twists lift to the
Dehn twists T and T in Mod(S7) (see top left of Figure 9.15), which also

satisfy the braid relation.

Figure 9.15 The braid relation and the chain relations via the Birman—Hilden theorem.

Our next goal is to explain the chain relations. Recall the relation
(0102)3 = 2z, where o1 and o9 are the standard generators for B3 and z
generates the center Z(Bs). Via the isomorphism B3 ~ Mod(D3), this re-
lation becomes (H,Hg)? = Ty, where , 3, and § are the arcs and the
curve in D3 shown at the bottom left of Figure 9.15. Via the isomorphism
Bs =~ SMod(S7), the Dehn twist Ts corresponds to a half-twist about the
curve 4 in S1 shown at the top left of the figure; this mapping class is
achieved by holding the boundary fixed and twisting the rest of the surface
halfway around. So if we want to get a relation in SMod(S]) between full
Dehn twists, we should consider the relation (H,H)® = T7 in Mod(D3).
In SMod(Sy), this corresponds to the relation (T575)° = T, where the

curves are as shown at the top left of Figure 9.15. This is precisely the 2-
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chain relation.

Similarly, the relation (H,HgH.,)* = Ty in By (see bottom right of Fig-
ure 9.15) corresponds to the relation (737 BT;;)‘* = T5 T3, in SMod(S%).
This is exactly the 3-chain relation. The other k-chain relations are obtained
similarly.

Comparing with Figure 9.9 (and the surrounding discussion), we see that
the k-chain relation in the mapping class group corresponds to a rotation of
order k£ + 1 in the punctured disk.

If instead of using the factorization (o - - - 03,)**! of 2 € Z(Bj41) we
use the factorization (030 - - - 03 )* = 2z, we obtain the alternate chain rela-
tions discussed in Section 4.4.

We also mention that the star relation comes from an embedding of the
Artin group of type D, into the mapping class group of a torus with three
boundary components [178].

Closed surfaces. For closed surfaces, the Birman—Hilden theorem takes the
form

SMod(Sy)/{t) ~ Mod(Sp 2¢+2),

where Sp 2442 is a sphere with 2g + 2 marked points. Birman—Hilden used
this version of their theorem in order to obtain the presentation for Mod(S2)
given in Section 5.1. Since each standard generator for Mod(.S2) has a rep-
resentative in SHomeo ™ (S5), we have SMod(Ss) = Mod(S2). Thus

MOd(SQ)/([L]> = SMOd(SQ)/([L]> ~ MOd(SOVG).

Certain relations in Mod(.S,) can also be interpreted from this point of
view. For instance, the hyperelliptic relation in Mod(S,) (see Section 5.1)
becomes the relation in Mod(Sp 24+2) that pushing a puncture around a
simple loop surrounding all of the other punctures is the trivial mapping
class; the other side of the loop is a disk.

9.4.3 PROOF OF THE BIRMAN-HILDEN THEOREM

Here we give a new proof of the Birman-Hilden theorem. Our proof is
combinatorially flavored, relying on the bigon criterion and the Alexander
method. For concreteness, we deal with the case of a closed surface S, with
g > 2. At the end, we discuss various other surfaces for which the proof
applies.

Below, when we say that two symmetric simple closed curves are symmet-
rically isotopic, we mean that they are isotopic through symmetric simple
closed curves.
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Lemma 9.3 Let g > 2 and let « and 3 be two symmetric nonseparating
simple closed curves in Sy. If o and 3 are isotopic, then they are symmetri-
cally isotopic.

This lemma is not true for the torus since there exist simple closed curves
that are isotopic but pass through different fixed points of «.

Proof. Let @ and 3 denote the images of a and 3 in Sp o442 ~ Sy/(1).
As above, & and 3 are simple proper arcs in Sg 24.+2. Any isotopy between
these arcs will lift to a symmetric isotopy between « and 3.

We can modify o by a symmetric isotopy so that it is transverse to 5. We
claim that o cannot be disjoint from 3. Indeed, for then @ and 3 are disjoint,
including endpoints. But such arcs cannot correspond to isotopic curves in
Sg. Indeed, any arc 7 that shares an odd number of endpoints with & and an
even number of endpoints with (3 lifts to a simple closed curve + in Sy with
i(cv,7y) odd and i(3,~y) even.

Since « is isotopic to 3 and o N 3 # (), the bigon criterion gives that o
and ( form a bigon B. We assume that B is an innermost bigon. As « and
3 are both fixed by ¢, we have that «(B) is another innermost bigon in the
graph o U .

Notice that we cannot have ((B) = B. One way to see this is to note that
B lies to one particular side of o and ¢ takes « to «, reversing its orientation.
It follows that the image of B in Sy 2442 is an innermost bigon B between
@ and 3. What is more, since (B) # B, there are no fixed points of ¢ in B
and hence no marked points of Sy 242 in B.

The bigon B can have zero, one, or two of its vertices on marked points
of Sp,24+2. In the first two cases, we can modify @ by isotopy in order to
remove the bigon, reducing the intersection number of & with (3. In the last
case, since B is innermost, we see that @ U 3 is a simple loop bounding a
disk, and we can push @ onto 3. Removing bigons inductively, we see that
@ is isotopic to 3, and this isotopy lifts to a symmetric isotopy between o
and [3. O

We say that two symmetric homeomorphisms of S, are symmetrically
isotopic if they are isotopic through symmetric homeomorphisms, that is, if
they lie in the same component of SHomeo(S,).

Proposition 9.4 Let g > 2 and let ¢, € SHomeo™ (S,). If ¢ and 1 are
isotopic, then they are symmetrically isotopic.

Proof. It suffices to treat the case where ) is the identity since any symmet-
ric homotopy from ¢ o ™! to identity gives a symmetric homotopy from ¢
to 7. Let ¢ denote the induced homeomorphism of Sy 242.
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Let (71, ...,72¢+1) be a chain of nonseparating symmetric simple closed
curves in S;. By assumption, ¢ is isotopic to the identity, and so for each ¢
the curve ¢(+y;) is isotopic to ;. By Lemma 9.3, we have that ¢(~;) is sym-
metrically isotopic to +y; for each . If 7; and ¢(~;) are the images in Sp 242
of 7; and ¢(v;), then the last sentence implies that for each i the arc ¢(;)
is isotopic to 7;. What is more, each such isotopy must fix the endpoints of
the arcs throughout and must avoid the marked points of Sq 242 throughout
(if the interior of an arc were to cross a marked point in Sg 2442, then its
preimage in S, would fail to be simple). Applying the Alexander method
to the collection of arcs 7; in Sp 2442, we conclude that ¢ is isotopic to the
identity. The isotopy induces a symmetric isotopy of ¢ to the identity. O

Proof of the Birman—Hilden theorem. If we compose the natural surjective
homomorphism SHomeo™ (S;) — Homeo™ (Sp 24+2) with the projection
Homeo™ (Sp 2412) — Mod(Sp24+2), We obtain a surjective homomor-
phism SHomeo™ (Sy) — Mod(Sp 24+2). By Proposition 9.4, the latter fac-
tors through a surjective homomorphism

SMod(S,) = mo(SHomeo ™ (S;)) — Mod(Sp 24+2)-

It remains to determine the kernel of this map. Let f € SMod(S,) and let
¢ € SHomeo™ (S,) be a symmetric representative. Let ¢ be the image of
¢ in Homeo™ (Sp 2412). Since f +— 1, we have that ¢ is isotopic to the
identity. This isotopy lifts to an isotopy of ¢ to either the identity or .. We
thus have

SMod(Sy)/([t]) ~ Mod(So,29+2),
as desired. O

It is straightforward to generalize our proof of the Birman—Hilden theo-
rem. For instance, in the case of S;, we simply use a chain of 2g curves. The
quotient of S; by the hyperelliptic involution ¢ : S; — S; is a disk with
2g + 1 marked points. Since ¢ is not an element of Homeo*(Sgl, as;), it

does not represent an element of SMod(S;), and so we obtain SMod(Sgl) ~
Mod(D2g+1) = Bag1, as desired.
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PART 2
Teichmuller Space and Moduli Space
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Chapter Ten

Teichmdller Space

This chapter introduces another main player in our story: the Teichmiiller
space Teich(.S) of a surface S. For g > 2, the space Teich(S,) parameter-
izes all hyperbolic structures on S, up to isotopy. After defining a topology
on Teich(S), we give a few heuristic arguments for computing its dimen-
sion. The length and twist parameters of Fenchel and Nielsen are then in-
troduced in order to prove that Teich(Sy) is homeomorphic to R%9-6, At
the end of the chapter, we prove the 9g — 9 theorem, which tells us that a
hyperbolic structure on S, is completely determined by the lengths assigned
to 9g — 9 isotopy classes of simple closed curves in S,.

In Chapter 12, we will prove that Teich(S) admits a properly discon-
tinuous action of Mod(.S). The quotient M(S) = Teich(S)/ Mod(S) is
the moduli space of Riemann surfaces. The interplay between properties of
Teich(S), properties of Mod(S), and properties of this action provide us
with information on Teich(S), Mod(S), and M (S). For example, in Chap-
ter 13 we will use the action of Mod(.S) on Teich(S) to give a classification
of elements of Mod(S).

10.1 DEFINITION OF TEICHMULLER SPACE

Let S be a compact surface with finitely many (perhaps zero) points re-
moved from the interior. We assume for now that x(S) < 0. After some
preparation, we will define the Teichmiiller space of S to be the set of iso-
topy classes of hyperbolic structures on S. While implicit in the work of
Poincaré, Riemann, and Klein, Teichmiiller space was first defined and stud-
ied by Fricke, Teichmiiller, Fenchel, and Nielsen.

By a hyperbolic structure on S we will mean a diffeomorphism ¢ : S —
X, where X is a surface with a complete, finite-area hyperbolic metric with
totally geodesic boundary. We can record the hyperbolic structure ¢ : S —
X by the pair (X, ¢). The diffeomorphism ¢ is referred to as the marking,
and either X or (X, ¢) can be referred to as a marked hyperbolic surface
(depending on whether or not we need to be explicit about the marking).

Two hyperbolic structures ¢ : S — Xj and ¢ : S — Xs on S are
homotopic if there is an isometry X; — X» so that the markings I o ¢; :
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S — Xs and ¢ : S — X5 are homotopic. This is to say that the following
diagram commutes up to homotopy:

v\

1

X5 Xo
Here homotopies are allowed to move points in the boundary of X5.
We can then define the Teichmiiller space of S as the set of homotopy
classes of hyperbolic structures on S

Teich(S) = {hyperbolic structures on S’} /homotopy
In slightly different language,
Teich(5) = {(X,0)}/~,

where two marked hyperbolic surfaces are equivalent if the hyperbolic struc-
tures they define are homotopic.

$1(a) ~—=

oo ([
/ X1
-9

S
2 \
¢2

Figure 10.1 The hyperbolic surfaces X and X5 are isometric, but X1 = [(X1, ¢1)] and
X2 = [(X2, ¢2)] are not the same point of Teich(S2) since, for example, the
way we have arranged things, ¢y, () is not equal to £, ().

Teichmiiller space as a set of metrics. A marking ¢ : S — X of course
gives rise to an actual hyperbolic Riemannian metric on S, namely, the pull-
back of the hyperbolic metric on X. Thus we can also describe Teichmiiller
space as the set of isotopy classes of hyperbolic metrics on .S:

Teich(S) = HypMet(S)/ Diff((.5),

where the action of Diff((S) on the set of hyperbolic metrics HypMet(.S)
is by pullback. While this second definition is in a sense more direct—for
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instance, there are no auxiliary surfaces required—our first definition will
be easier to use in practice.

Length functions. Let S denote the set of isotopy classes of essential sim-
ple closed curves in S. The hyperbolic structure on S corresponding to a
point X € Teich(.S) is defined only up to isotopy, but this is exactly enough
information to define a length function

Ex:S—>R+.

If X is the equivalence class of the marked hyperbolic surface (X, ¢) and
c is an isotopy class of simple closed curves in S, then ¢y (c) is the length
of the unique geodesic in X in the isotopy class ¢(c). As we proved in
Proposition 1.3, there is a unique such curve in X realizing this minimum.

Understanding points of Teich(S) via the length functions they define is
a useful point of view. See Figure 10.1. Indeed, as we will prove in Sec-
tion 10.7 below, if RS denotes the set of real-valued functions on S, the
map £ : Teich(S) — RS given by X — /x is injective. Actually, we will
prove something much stronger: an element of Teich(S) is determined by
finitely many coordinates of the length function £.

Change of marking. Given two hyperbolic structures ¢ : S — X and
¥ : S — Y on S, there is a bijective correspondence between Homeo(.S)
and Homeo(X,Y) given by f « 1) o f o L. The only canonical homeo-
morphism S — S is the identity map. The corresponding canonical home-
omorphism X — Y is the change of marking map 1) o ¢~ 1.

10.2 TEICHMULLER SPACE OF THE TORUS

The Gauss—Bonnet theorem implies that any closed hyperbolic surface X
has fixed area —27x (X ). In contrast, a flat metric on the torus T2 can have
any positive number as its area. Of course, any flat metric on the torus can be
multiplied pointwise by a fixed real number so that the area of the resulting
metric equals 1. It is thus natural to define the Teichmiiller space Teich(72)
as the set of isotopy classes of unit-area flat structures on 7°2.

The space Teich(7'2) will serve as a simple example with which we can
compute explicitly, in contrast to the case of Teich(S,) with g > 2. As a
first example, we have the following.

Proposition 10.1 There is a natural bijective correspondence

Teich(T?) < H2.
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We will give two proofs of Proposition 10.1, one using the upper half-
plane model for H? and one using the open unit disk model.

In the first proof of Proposition 10.1 we will describe Teich(72) in terms
of lattices. By a lattice in R?, we mean a discrete subgroup A of the additive
group R? with A ~ Z?2. Equivalently, a discrete subgroup A < R? is a lattice
if R2/A is compact.

Note that the R-span of any pair of generators for the group A is all of
R2. The area of a lattice A in R? is the Euclidean area of the torus R?/A.
Any lattice in R? is homothetic to a unique unit-area lattice. Recall that a
homothety of R? is a map z +— Mz for some A € R,.

We say that a lattice in R? is marked if it comes equipped with an ordered
set of two generators. Equivalently, we can say that a lattice in R? is marked
if it comes with a fixed isomorphism with Z2.

First proof of Proposition 10.1. We proceed in two steps.

Step 1: Teich(T?) «— {marked lattices in R?}/ ~, where the equiva-
lence relation is generated by Euclidean isometries and homotheties.

Fix a standard ordered generating set for 7y (T'2). The ordered generating
set for a marked lattice A in R? descends to an ordered generating set for
71 (R2/A). It is possible to find a diffeomorphism ¢ : 72 — R? /A that takes
the first and second generators of 71 (7'?) to the first and second generators
for 71 (R?/A). We can scale the flat torus R? /A so that it has unit area, and
the diffeomorphsm ¢ induces a marking of this unit area flat torus. We have
thus obtained a point of Teich(72).

On the other hand, if we start with a point [(X, ¢)] € Teich(7T?), where
¢ : T? — X is a unit-area flat structure, then the metric universal cover of
X is isometric to R?. The group of deck transformations is a lattice A in
R?, and the image under ¢ of the ordered set of generators for 71 (T2) is a
marking of A.

Step 2: H? « {marked lattices in R}/ ~.

Let A be a marked lattice in C ~ R?. We can describe A by an ordered
pair of complex numbers (v, 7), namely, the ordered set of generators com-
ing from the marking. We think of each of these complex numbers as vectors
in the plane. Staying within the same equivalence class of lattices, we can
scale and rotate A so that v becomes 1. In other words, A is equivalent to
the lattice corresponding to (1, 7). The choice of 7 here is not unique since
(1,7) and (1,T) correspond to equivalent marked lattices (they differ by re-
flection across the x-axis, which is a Euclidean isometry). Reflecting across
the z-axis, we can assume 7 lies in the upper half-plane, which we identify
with H?2. The map [A] ~— 7 from the set of equivalence classes of marked
lattices to H? is the desired bijection. a
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For the second proof of Proposition 10.1 we need to discuss how to write
down real linear maps R? — R? using complex notation. Let f : R? — R?
be a linear map. We can represent f by a matrix

a b
Using complex notation and setting z = = + 4y, we can rewrite f as

flz)=az+ 02z
where

o (a+ic) —i(b+id) and § = (a—{—ic)—ki(b—i—id).
2 2
Indeed, it is straightforward to check that the latter map sends 1 to a + ic

and ¢ to b + ¢d. We have

la?> = |8)* = ad — be = det f.

Thus f is a linear isomorphism if and only if || # | 3], and in this case f is
orientation-preserving if and only if |a] > |3].

Second proof of Proposition 10.1. We again prove the proposition in two
steps.

Step 1: Teich(T?) « {orientation-preserving isomorphisms R? —
R?}/ ~, where two linear maps are equivalent if they differ by rotation
and/or dilation.

This bijection is essentially a restatement of the bijection in step 1 of the
first proof of Proposition 10.1. Indeed, a linear map is exactly given by a
marked lattice (the image of the standard basis).

Step 2: H? « {orientation-preserving isomorphisms R? — R2}/~.

Let f : R?> — RR? be an orientation-preserving linear automorphism of
R2. As above, we can write f uniquely in complex notation

fe)=az+p0z

for some «, § € C. Since multiplication by a complex number is the compo-
sition of a rotation with a dilation, we can postcompose f by multiplication
by a1, staying in the same equivalence class. We then obtain the linear
map

22+ Uz,
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where p« = (/. Again, since f is orientation-preserving, the complex num-
ber u lies inside the unit disk in C and hence gives a point of H? via the unit
disk model. This process is reversible, so we have exhibited the desired bi-
jection. a

The complex number y attached to the map f is called the complex di-
latation of f. We will see in Chapter 11 that  conveys salient information
about the map f in that it records the amount of stretching that f effects on
R2,

There is a third space lurking that is also equivalent to Teich(72) and H?2,
namely,

SL(2,R)/SO(2,R).

Indeed, our description of Teich(7?) in step 1 of the second proof of Propo-
sition 10.1 is equivalent to this quotient: given an orientation-preserving lin-
ear map, we can scale in order to get an element of SL(2,R). Then the
rotations in SL(2, R) are exactly the elements of SO(2, R).

There is a direct way to see the bijection SL(2,R)/SO(2,R) «» H?: the
group SL(2,R) acts transitively on H? with point stabilizers isomorphic to
SO(2,R).

A topology on Teich(7T?). The bijection Teich(7?) « H? induces a
topology on Teich(7T?) by declaring the bijection to be a homeomorphism
(one can check that the various bijections are compatible). We will see below
that this idea generalizes to give a topology on Teich(.S) for arbitrary S.

Sample tori. We explore the dictionary between Teich(7?) and H? given
by our first proof of Proposition 10.1. To start, the points ¢ and ¢ + 1 both
represent the standard lattice in R?. However, the point i corresponds to the
marking (1,%), whereas the point ¢ + 1 corresponds to the marking (1,7 +
1), and so these are different points of Teich(7?). Viewed as marked tori,
both are isometric to the standard square torus, but ¢ corresponds to the
square torus with the standard marking, and 7 + 1 corresponds to the square
torus where the marking differs from the standard marking by a Dehn twist.
Similarly, one can check that the points ni and i/n represent isometric tori
but different points in Teich(77?) for any n > 0. Finally, one can check that,
for e € (0,1), the points 7 and 7 + € represent nonisometric tori and hence
different points in Teich(772).
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10.3 THE ALGEBRAIC TOPOLOGY

There is an alternate characterization of Teich(S) which gives rise to a
natural topology on Teich(.S), called the algebraic topology. To describe
this characterization we will use a higher-genus analogue of the description
of Teich(7T?) in terms of marked lattices. We begin with the closed case
S =9, forg>2.

Recall that Isom™ (H?) ~ PSL(2,R) and Isom(H?) ~ PGL(2,R). A
representation p : m(Sy) — PSL(2,R) is called faithful if it is injec-
tive. Such a representation p is called discrete if p(m1(Sy)) is discrete in
PSL(2,R).

The group PGL(2, R) acts on the space DF (71 (S,), PSL(2,R)) of dis-
crete, faithful representations p : 71(Sy) — PSL(2,RR) by conjugation: for
each v € m(5,) and each h € PGL(2,R), we let

(h-p)(v) = hp(m)h ™"
The quotient
DF(m1(Sy),PSL(2,R))/ PGL(2,R)

is the set of PGL(2,R) conjugacy classes of discrete, faithful representa-
tions of m1(Sy) into PSL(2,R). The following is an analogue of Proposi-
tion 10.1.

Proposition 10.2 Let g > 2. There is a natural bijective correspondence:
Teich(Sy) < DF(m1(S,), PSL(2,R))/ PGL(2,R).

To make the analogy between Propositions 10.2 and 10.1 more clear, we
can think of an equivalence class of marked lattices in R? as a discrete,
faithful representation of 71 (7?) ~ Z? into Isom™ (R?) up to conjugation
by Isom(R?) and homothety. Again, the reason that homothety does not
appear in Proposition 10.2 is that the Gauss—Bonnet theorem implies that
all hyperbolic structures on S; have the same area when g > 2.

Proof. Let [(X,$)] € Teich(Sy). There is an isometric identification 7 :
X — H2, where X is the metric universal cover of X. The group 71 (X) acts
isometrically and properly discontinuously on X. The marking ¢ identifies
m1(Sy) with 71(X) and hence with the group of deck transformations of
X. These identifications give rise to a discrete, faithful representation p :
m1(Sy) — PSL(2,R).

In determining p we made several choices: the choice of (X, ¢) in the
class [(X, ¢)], the choice of 7, the choice of isomorphism ¢, (71(Sy)) —
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71(X), and the choice of identification of 71(X) with the group of deck
transformations of X . We claim that none of these choices affect the equiv-
alence class of p. For example, the choice of 7 is unique up to postcom-
posing by an element of Isom(H?). If we replace 1 with 1 o v, where
v € Isom(H?) ~ PGL(2,R), then p simply becomes v - p. Changing
(X, ¢) within its equivalence class is tantamount to changing ¢ within its
homotopy class. But changing ¢ by homotopy does not affect p. One way to
see this is to observe that if we lift any isotopy of X to X = H?, then points
of H? move a uniformly bounded distance and so the induced action on OH?
is trivial. On the other hand, an isometry of H? is determined by its action
on OH?. Finally, the choices of isomorphisms between ¢..(m1(S,)), m1(X),
and the group of deck transformations are well defined up to conjugation,
and so the resulting p is well defined up to conjugation.

For the other direction, let p € DF(m;(Sy), PSL(2,R)). We claim that
p is a covering space action on H?. Since p(7(S,)) is discrete, the action
of p(m1(S,)) on H? is properly discontinuous. Thus to prove the claim we
must show that this action is free. If the action of p were not free, then
the image of p would contain a nontrivial elliptic isometry of H?, that is, a
rotation. Since p is faithful and 71 (Sy) is torsion-free, this elliptic element
must have infinite order. This violates the discreteness of p. Thus the action
of p(m1(S,)) on H? must be free.

Since p is a covering space action, it follows that X = H?/p(m(S,))
has fundamental group 71 (.S,). Thus, by the classification of surfaces, X is
diffeomorphic to S,.

We can recover a homomorphism p, : 71(S,) — 71 (X) from p since p
maps elements of 7 (S) to covering transformations over X, which in turn
correspond to elements of 71 (X ). Since Sy and X are K (m1(S,), 1)-spaces,
it follows that there is a unique homotopy class of homotopy equivalences
from S, to X that realizes the map p... But any homotopy equivalence S, —
X is homotopic to a diffeomorphism (Proposition 8.9 plus Theorem 1.13),
and this diffeomorphism serves as the desired marking.

Suppose we replace p by one of its PGL(2, R) conjugates, p’. The result-
ing Riemann surface X' is isometric to X, and it follows that the resulting
point of Teich(.S,) is the same.

The two maps described above are inverses of each other, so the proof is
complete. a

The topology. There is a natural topology on the quotient space
DF(m1(S4), PSL(2,R))/ PGL(2,R), which we now describe.

We endow 71 (.S) with the discrete topology and PSL(2, R) with its usual
topology as a Lie group and then give the set Hom(m(S,), PSL(2,R))
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the compact-open topology. There is a more concrete way to describe this
topology. Pick a set of 2¢g generators for 71(Sy). Since a homomorphism
m(Sy) — PSL(2,R) is determined by where it sends a generating set,
there is a natural inclusion of Hom (71 (S,), PSL(2, R)) into the direct prod-
uct PSL(2,R)% of 2¢g copies of PSL(2,R). We endow PSL(2,R)? with
the usual Lie group topology. Then the set Hom(m;(Sy), PSL(2,R)) in-
herits the subspace topology. It is straightforward to check that different
choices of generating sets for 71(S;) give rise to equivalent topologies on
Hom(m(Sy), PSL(2,R)). It is also not hard to verify that the two topolo-
gies on Hom(m(S,), PSL(2,R)) described above give rise to equivalent
topologies.

Since DF (7 (Sg), PSL(2,R)) is a subset of Hom(m(Sy), PSL(2,R)),
it inherits the subspace topology. Finally, we endow the quotient

DF (7, (S,), PSL(2,R))/ PGL(2,R)

with the quotient topology. We then obtain via Proposition 10.2 a topology
on Teich(S,) called the algebraic topology on Teich(S).

In Chapter 11, we will define a metric on Teich(S,) called the Te-
ichmiiller metric, and we will check that the induced topology on Teich(.Sy)
is homeomorphic to the algebraic topology on Teich(.S).

Continuity of length functions. Let v be some fixed element of 7 (.Sy),
where g > 2. The function [p] — trace(p(7y)) is a continuous function on
DF(m1(Sy), PSL(2,R))/PGL(2,R). For X € Teich(Sy), denote by px
some corresponding representation. Since

() = 2 cosh™ (trace(px(7))/2),

we have the following consequence of Proposition 10.2.

Proposition 10.3 Let S be any hyperbolic surface and let ¢ be an isotopy
class of simple closed curves in S. The function Teich(S) — R given by

X — lx(c)

IS continuous.

Nonclosed surfaces. The procedure just described for obtaining a topol-
ogy on Teich(.S) is more delicate when S is not closed. The reason is that
there are nonhomeomorphic surfaces with the same fundamental group, for
example, 71 (Sp,3) = m1(S1,1) = F5. In these cases we do not simply con-
sider all discrete faithful representations of 71 (.S) into PSL(2, R). Instead,
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we consider the subset of DF (71 (S), PSL(2,R)) consisting of those repre-
sentations corresponding to complete, finite-area hyperbolic surfaces with
geodesic boundary homeomorphic to S. For example, this restricts the con-
jugacy class in 7 (.S) corresponding to a loop around a puncture to map to
a unipotent element of PSL(2, R), so that the corresponding isometry of H?
will be of parabolic type. Indeed, if a loop around a puncture corresponds
to a hyperbolic isometry, the hyperbolic structure on the surface will have
infinite area.

10.4 TWO DIMENSION COUNTS

In Section 10.6, we will give a formal proof that Teich(S,) ~ R96
when g > 2. Before doing this we first arrive at the correct dimension for
Teich(S,) via two different heuristic counts. This dimension was first stated
by Riemann in his paper on abelian functions [185].

10.4.1 TEICHMULLER SPACE AS A REPRESENTATION SPACE

For the first dimension count we use the bijection between Teich(S,) and
DF(m1(Sy), PSL(2,R))/ PGL(2,R) given in Proposition 10.2.

The Lie group PGL(2,R) is 3-dimensional and acts on the space
DF(m1(S4), PSL(2,R)) with 3-dimensional orbits (this is not hard to
check). Thus the dimension of the quotient

DF (r1(S,), PSL(2, R))/ PGL(2, R)

can be computed as the dimension of DF (7 (Sy), PSL(2,R)) minus 3.
The set DF(m(S,), PSL(2,R)) is open in Hom(m(S,), PSL(2,R))

(see [212]), so the dimensions of the two spaces are the same, and it suf-

fices to find the dimension of the latter. Let 71, ... ,y24 € m1(Sy) so that

m1(Sg) = (71, v20lv1, 2] - (V2915 Y2g])-

A homomorphism p : 71(S,) — PSL(2,R) is determined by choosing the
2g images p(y;) € PSL(2,R). However, by the relation

[P(’Yl)’ﬂ(’m)] t [P(’Yngl),P(’ng)] =1,

we see that p(y24) is completely determined by the other p(+y;). This cuts
down on 3 degrees of freedom in our choices of the p(7;).
We thus arrive at the following count.
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Figure 10.2 The tiling of H? by regular octagons.

Dimension count 1: the space of representations

+6¢ : Choose elements p(71), ..., p(724) € PSL(2,R).
—3: The p(v;) must satisfy one relation.
—3: Conjugate representations are equivalent.

= 6g — 6 total dimensions

10.4.2 TEICHMULLER SPACE AS A SPACE OF TILINGS

We define a hyperbolic Sy-tile as a geodesic hyperbolic 4g-gon with the
following properties

1. The sum of the interior angles is 2.
2. Reading clockwise, the edges are labeled
Y1 7V25 V15 V2 - - -5 V2915 V295 V29—15 V2g-
3. Edges with the same labels have the same hyperbolic length.

If we identify the sides of a hyperbolic S,-tile according to the labels, we
obtain a closed hyperbolic surface of genus g.

We will give a bijection between Teich(S,) and equivalence classes of
Sg-tiles and use this identification to find the dimension of Teich(S).
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Fix a collection of simple loops {71, ...,724} in S, that are based at a
common point z, that are disjoint away from x, and that cut .S, into a 4g-
gon whose labels agree with that of a hyperbolic S,-tile.

Let [(X, ¢)] € Teich(Sy). If we consider homotopy classes relative to
¢(x), then each ¢(+;) has a unique shortest representative d; in X. The ¢;
are all simple and intersect pairwise only at ¢(z). When we cut X along the
0;, we obtain a hyperbolic S,-tile.

Any path lifting of any §; to the universal cover X ~H?isa geodesic
segment, and the union of all path lifts of all the ; gives a tiling of H? by
hyperbolic S,-tiles. See Figures 10.2 and 10.3 for sample tilings of H? by
hyperbolic Sy-tiles.

In passing from [(X, ¢)] to a hyperbolic S,-tile, we had to choose a spe-
cific marking in the homotopy class ¢ : S, — X. If we modify ¢ by ho-
motopy, then the based geodesics J;, and hence the hyperbolic S,-tile, will
change. The resulting geodesics ¢§; are not sensitive to the specific homo-
topy; they only depend on the path that ¢(x) traces out during the homo-
topy. What is more, the §; only depend on the relative homotopy class of
this path. In other words, the choice we made in going from [(X, ¢)] to a
hyperbolic Sy-tile amounts to a choice of point in X.

To summarize the previous paragraph, there is a map from Teich(S,) to
the set of hyperbolic S-tiles. This map is not well defined, but the ambiguity
is exactly accounted for by X, which is 2-dimensional.

Conversely, given a hyperbolic S,-tile, the space X obtained by identify-
ing the sides in pairs is isometric to a hyperbolic surface that is homeomor-
phic to S;. Moreover, the labeling induces an identification of 7 (S;) with
m1(X). As in Section 10.3, there is then a diffeomorphism ¢ : S; — X
realizing this isomorphism, which is a marking.

We thus have a bijective correspondence between points of Teich(Sy)
and the set of equivalence classes of hyperbolic \S,-tiles, where two hyper-
bolic S,-tiles are equivalent if they differ by marked, orientation-preserving
isometry and by “pushing the basepoint.” We will count the dimension of
the set of these equivalence classes.

In our dimension count, we will use the fact that, given any geodesic
polygon in H?, we can scale the polygon so that its interior angles sum to
2. This is true because scaling a polygon in H? continuously varies the
interior angle sum from nearly the Euclidean angle sum (small polygons)
to nearly zero (big polygons). When g > 2, the Euclidean angle sum of a
geodesic 4g-gon is greater than 27, and so it follows that we can scale any
geodesic 4g-gon so that the angle sum is exactly 27.
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Figure 10.3 Some possible tilings of H? coming from hyperbolic structures on So. These
pictures are sketches of images from the (existing but inactive) web page for
the “Teichmiiller Navigator” on the Geometry Center’s web site.

Dimension count 2: the space of tilings

+8¢ : Choose a set of 4g vertices in HZ.
—2g : Side lengths must match in pairs.
—1: Scale so the sum of interior angles is 2.
—3: Isometric tilings are equivalent.
—2: Pushing the base point gives different tilings
representing the same point of Teich(.S).

= 6g — 6 Total dimensions

10.5 THE TEICHMULLER SPACE OF A PAIR OF PANTS

Let P denote a pair of pants, that is, a compact surface of genus 0 with three
boundary components. Recall from Chapter 8 that a pants decomposition
of a surface S is a maximal collection of pairwise disjoint, pairwise non-
isotopic, essential simple closed curves in S. When S is given a hyperbolic
metric, the curves in a pants decomposition can be represented by geodesics
in S.

Decomposing a hyperbolic surface S with totally geodesic boundary
along a collection of disjoint geodesics gives another hyperbolic surface S’
with totally geodesic boundary. The surface S’ has smaller complexity than
S in the sense that the number of curves in a pants decomposition for S’
is strictly less than the number for S. This cutting procedure thus gives us
an inductive method for understanding the hyperbolic structure of a surface.
Since the only geodesic simple closed curves on a hyperbolic pair of pants
are the three boundary components, the pair of pants serves as our base case
for the induction.

So our first goal is to determine Teich(P) for a pair of pants P. To do this
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we will reduce the problem to understanding a certain space of right-angled
hexagons, as we now explain.

Hyperbolic hexagons. By a marked hexagon we will mean a hexagon with
one vertex distinguished. Let H denote the set of equivalence classes of
marked right-angled geodesic hexagons in H?, where two such hexagons
are equivalent if there is an orientation-preserving isometry of H? taking
one hexagon to the other and taking the marked point of the first to the
marked point of the second.

Any space of metrics on a surface is a priori infinite-dimensional. It seems
difficult to find a precise set of constraints on a metric so that the space of
such metrics is finite-dimensional but still not empty. Thus the finite di-
mensionality of Teich(S) of any compact surface is quite remarkable. At
some point one has to make the jump from an infinite-dimensional space of
possibilities to a finite-dimensional one. The following key proposition is
precisely where this jump occurs.

Proposition 10.4 The map W : ' H — Ri defined by taking the lengths of
every other side of a hexagon, starting at the marked point and traveling
counterclockwise, is a bijection.

Proof of Proposition 10.4. We will define a two-sided inverse Ri — H to
W. That is, given an arbitrary triple (Lq, Lg, L) € ]sz’r, we will construct
a marked right-angled hexagon H that is unique up to marked orientation-
preserving isometry and that satisfies W (H) = (L, Lg, L-). Throughout,
the reader should refer to Figure 10.4.

There is a basic fact from hyperbolic geometry that we will use: given
two disjoint geodesics in H? with four distinct endpoints at infinity, there is
a unique geodesic perpendicular to both.

For any ¢ > 0, let o; and (3; be a pair of geodesics in H? a distance ¢ apart
and let v/ be the unique geodesic segment realizing this distance. Let o}
and [3] be geodesics on the same side of +; such that «} has a perpendicular
intersection with 3, at a distance L away from +; and /3; has a perpendicular
intersection with oy at a distance L, away from ~y;. We further require that
if 7/ is oriented from ay to (3, then «v; and 3} lie to the left of the ;.

There is a value ¢y > 0 so that «j, and 3, share an endpoint on OH?. For
t > to, let v; be the unique geodesic segment perpendicular to «v; and [3;.

As t varies from tg to infinity, the length of ~; varies continuously and
monotonically from zero to infinity, so there is a unique ¢ so that the length
of ~y; is exactly L.,.

Trimming geodesics to segments as necessary and marking the intersec-
tion of ¢ and (3}, we obtain a right-angled hexagon that represents the de-
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sired point of H.

In the construction just described, we made no choices after the initial
choice of a; and ;. What is more, up to orientation-preserving isometries
of H?, there is a unique ordered pair of geodesics whose distance from each
other is a given positive length. In other words, even the choices of a; and
3; were unique up to isometries of H?. It follows that the point of H we con-
structed is uniquely defined, and we have indeed given a two-sided inverse
of W. O

2

Figure 10.4 The picture for the proof of Proposition 10.4.

Pairs of pants. Having determined H we can now show that Teich(P) ~
R3.

Proposition 10.5 Let P be a pair of pants with boundary components a;,
o, and 3. The map Teich(P) — R3. defined by

X = (lx(1), €x(az), fx(as))

is a homeomorphism.

Proof. We first establish a bijection between Teich(P) and H, the set of
oriented isometry classes of marked right-angled hyperbolic hexagons.

Let X = [(X,¢)] € Teich(P), where X is a hyperbolic surface with
totally geodesic boundary and ¢ : P — X is a homeomorphism. For each
pair of distinct boundary components of X, there is a unique isotopy class
of arcs connecting them; let ¢;; = d;; denote the geodesic representative of
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the arc connecting ¢(cy;) and ¢(c;). By the first variation principle, each of
the ¢;; is perpendicular to X at both of its endpoints. The closures of the
two components of X — Ud;; are hyperbolic right-angled hexagons H; and
Hs.

An application of Proposition 10.4 gives that H; and Hs are abstractly
isometric since the lengths of the d;; determine the hyperbolic structure on
each. Let H be a marked right-angled hexagon in H? that is the isometric
image of the marked hexagon Hj, where the image of d13 N ¢(aq) is the
marked point and where the images of the ¢(«;)-, ¢(2)-, and ¢(ag)-edges
appear in counterclockwise order. The equivalence class of this hexagon is
an element of H.

On the other hand, given an element of H, we realize it as a marked
hexagon H in H?, create a second hexagon H' by reflecting H over the edge
lying first in the clockwise direction from the marked point, label the sides
as in Figure 10.5, and obtain a hyperbolic pair of pants X by identifying the
pairs of sides labeled d12 and do3. Then, as the marking we take the unique
isotopy class of diffeomorphisms P — X (remember: isotopies are free on
the boundary) respecting the labels of the boundary components.

We have thus established a bijection between Teich(P) and H. Com-
posing with the map W from Proposition 10.4, we obtain a bijection be-
tween Teich(P) and Ri. This bijection is a homeomorphism because if two
points of Ri”r are close, then the corresponding right-angled hexagons are
nearly isometric and so the corresponding representations w1 (P) ~ Fy —
PSL(2,R) (defined by identifying two side pairs of a doubled hexagon in
H?) are close in the algebraic topology on Teich(P). O

Consider the thrice-punctured sphere Sy 3, which is homeomorphic to
the interior of P. An argument similar to that given above shows that
Teich(Sp3) is a single point. The reason for this is that we can identify
the point(s) of Teich(Sp 3) with the space of ideal triangles in H? (we can
think of an ideal triangle as a hexagon with three degenerate sides); but there
is a unique ideal triangle in H? up to isometry since PGL(2, R) acts triply
transitively on OH?2.

10.6 FENCHEL-NIELSEN COORDINATES

As every closed surface of negative Euler characteristic can be built from
pairs of pants, we can extend Proposition 10.5 to coordinatize Teich(.S,)
for g > 2. Using this idea, we will prove the following theorem of Fricke
[67].

For g > 2, Teich(Sy) is homeomorphic to R%9~°.
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Figure 10.5 A pair of pants from a marked hexagon.

(We will give an explicit homeomorphism below; see Theorem 10.6.)

The basic idea is to decompose .S, into pairs of pants using 3g — 3 sim-
ple closed curves. Then there are 3g — 3 length parameters that determine
the hyperbolic structure on each pair of pants, and there are 3g — 3 twist
parameters that determine how the pairs of pants are glued together. Taken
together, these 6g — 6 coordinates are the Fenchel-Nielsen coordinates [64,
Section 26.9] for Teich(.S,). We now explain this more precisely.

10.6.1 LENGTH PARAMETERS AND TWIST PARAMETERS

In order to define the Fenchel-Nielsen coordinates we must first choose a
coordinate system of curves on S,. This consists of the following data:

e a pants decomposition {7i,...734—3} of oriented simple closed
curves and

e aset {#,...,0,} of seams; that is, a collection of disjoint simple
closed curves in S, so that the intersection of the union Uf3; with any
pair of pants P determined by the {v;} is a union of three disjoint
arcs connecting the boundary components of P pairwise.

Given a pants decomposition, we can construct seams by first choosing
three disjoint arcs on each pair of pants and then matching up endpoints in
any fashion. See Figure 10.9 below for an example in the case g = 2.



280 CHAPTER 10

Fix once and for all a coordinate system of curves on S, consisting of an
oriented pants decomposition {~; } with seams {(3;}.

We define the 3g — 3 length parameters of a point X € Teich(S,) to be
the ordered (3g — 3)-tuple of positive real numbers

(61(X), ... l3g—3(X)),

where £;(X) = lx (7).

According to Proposition 10.5, the length parameters for a point of
Teich(S,) determine the isometry types of the 2g — 2 pairs of pants cut
out by the coordinate system of curves for S;. In order to record how these
pants are glued together we introduce the twist parameters 6;(X).

Before we begin in earnest with twist parameters, let us make an obser-
vation. Suppose we have two hyperbolic pairs of pants with totally geodesic
boundary, as on the left-hand side of Figure 10.6. If these pairs of pants have
boundary components of the same length, then we can glue them together
to obtain a compact hyperbolic surface X of genus O with four boundary
components. It is intuitively clear that the isometry type of X depends on
how much we rotate the pairs of pants before gluing. For instance, as Fig-
ure 10.6 indicates, the shortest arc connecting two boundary components of
X changes as we change the gluing instructions. Thus we have a circle’s
worth of choices for the isometry type of X. Of course, we care about more
than just the isometry type—we also care about markings. So the twist pa-
rameters we define on Teichmiiller space will be real numbers, but modulo
2m, they are simply recording the angles at which we glue pairs of pants.

As a first step toward defining the twist parameters, suppose that 3 is an
arc in a hyperbolic pair of pants P connecting boundary components v;
and 2 of P. We define the twisting number of J at «; as follows. Let §
be the unique shortest arc connecting ; and 7,. Let N7 and N, be regular
metric neighborhoods of v; and 2. We can modify 3 by isotopy (leaving the
endpoints fixed) so that it agrees with § outside of N1 U N; see Figure 10.7.
The twisting number of 3 at ~y; is the signed horizontal displacement of the
endpoints 3 N ON;. The sign is determined by the orientation of ;. The
twisting number of (3 at s is defined in the same way.

Given X = [(X, ¢)] € Teich(Sy), we define the ith twist parameter 6, (X)
as follows: let 3; be one of the two seams that cross ;. On each side of the
¢(~i) geodesic there is a pair of pants, and the ¢(3;) geodesic gives an arc
in each of these. Let ¢1, and ¢ be the twisting numbers of each of these arcs
on the left and right sides of ¢(~; ), respectively. The ith rwist parameter of
X is defined to be

tr, —tr
‘91' X) =27 .
) Oxc(7i)
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@glue pull tight
twist « - ——> -

Figure 10.6 The effect of the twist parameter on geodesic arcs. If the twist parameter were
instead taken to be zero, the geodesic arc at the end would be the union of the
two geodesic arcs from the original pairs of pants.

Figure 10.7 Modifying an arc on a pair of pants so that it agrees with a perpendicular arc
except near its endpoints.

Since there were two choices of seams [3;, we need to check that the twist
parameter is well defined. To see this, we pass to the universal cover of the
neighborhood N; of ¢(~;). As in the proof of Proposition 10.5, the four
geodesic arcs connecting ¢(7;) to the boundary components of the adjacent
pairs of pants are perpendicular to ¢(+y;). Also, on each side of ¢(;), the
two geodesics lie on diametrically opposed points along ¢(+y; ). If we modify
the seams as in the definition of the twist parameter and pass to the universal
cover of NV;, we obtain Figure 10.8. Here the geodesic arcs are dashed, and
the modified seams are solid. Each lift of a seam connects two dashed arcs,
and the twist parameter is the signed distance between these dashed arcs.
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Combining the fact that the two perpendicular arcs lie diametrically opposite
each other on ¢(+;) with the fact that the seams do not cross each other, we
see that the twist parameters computed from the two seams are the same.

Figure 10.8 The universal cover of the annular neighborhood of a ¢(7y;).

10.6.2 FENCHEL-NIELSEN COORDINATES

Now that we have defined the length and twist parameters, we can give the
precise statement of Fricke’s theorem.

Theorem 10.6 Let g > 2 and fix any coordinate system of curves on S,.
The map

FN : Teich(S,) — R~ x R%~3
defined by setting
FN(X) = (61(X), ..., l35-3(X),01(X), ..., 035-3(X))

is a homeomorphism. In particular, Teich(S,) ~ R%~6.

The ordered set of numbers (¢1(X), ..., l35-3(X),01(X),...,035—3(X))
are called the Fenchel-Nielsen coordinates of the point X € Teich(S).

Proof. Denote the pants decomposition of the fixed coordinate system of
curves for S, by {~;} and the seams by {; }.

Let (01,...,035-3,01,...,03,_3) € Rig_‘g x R3973, In order to prove
that F'N is a bijection, we will find a unique X € Teich(S,) with these
Fenchel-Nielsen coordinates with respect to the given coordinate system of
curves. We construct X in four steps.
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Step 1. Let P j ;. denote the pair of pants' determined by ~;, 7vj,» and .
Note that ;, v;, and ~y;, might not be distinct. By Proposition 10.5, we can
construct a hyperbolic pair of pants X; ; , whose boundary components have
lengths ¢;, /;, and /1, and there is only one way to do this up to isometry. By
construction, there is a homeomorphism F; ;. — X; ; x taking each ~y; to a
boundary curve of length ¢;. Via this homeomorphism, the boundary curves
of X; ; » inherit orientations from the ;.

Step 2. For each X ;. and each pair of its boundary components, we
draw the unique geodesic arc that is perpendicular to those boundary com-
ponents. For each m € {i, j, k}, we adjust this seam as follows: in a small
neighborhood of a boundary component corresponding to the left side of
Ym, We replace each geodesic arc with an arc that travels along that bound-
ary component an oriented distance of (6,,,/27)¢,,. The result is unique up
to isotopy relative to 0.X ; .

Given a seam in P j 1, that is, an intersection of some (3;, with P ; 1., there
is a unique corresponding seam in X; ; x, namely, the arc that connects the
corresponding boundary components.

Step 3. Since the boundary curves and the seams of the Xj; ; ;. are identi-
fied with the boundary curves and seams of the P, ; x, there is a unique way
to construct a quotient

X =[] Xijn/~

of the disjoint union of the X ; 5. Specifically, we identify corresponding
boundary components of the X; ; 5, and we do this in such a way that the
corresponding seams match up.

Step 4. We construct a diffeomorphism from ¢ : S, — X that respects
the identifications of the coordinate system of curves. The marked surface
(X, ¢) represents the desired point of Teich(S).

By construction, [(X,¢)] is a point in Teich(S,) with the desired
Fenchel-Nielsen coordinates. We have thus defined a map FN' : Ri’rg 3 x
R3973 — Teich(S,). It is clear that F N’ is an inverse of F'N. That both
maps are continuous is straightforward to check from the definitions. Thus
F'N is a homeomorphism, and we are done. a

""This is a slight abuse of notation because when g = 2 it is possible to have two pairs of
pants determined by the same triple {4, j, k}.
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oI

f(3) 73)

Figure 10.9 Constructing the map ¢ : Sg — [[ X j,x/ ~. Here the second twist parameter
is a small positive number, and the third twist parameter is approximately —27
(the first is zero).

10.6.3 FENCHEL-NIELSEN COORDINATES FOR NONCLOSED SURFACES

Let Sg be a compact surface of genus g with b boundary components. As-
sume that X(Sg) < 0. As in Section 8.3, a pants decomposition for Sg has
3g — 3 + b curves (boundary curves are not included). Fenchel-Nielsen co-
ordinates for Sg are given by a total of 6g — 6 + 3b coordinates. There are
3g—3+2b length parameters, one for each curve of the pants decomposition
and one for each boundary curve. There are 3g — 3 + b twist parameters, one
for each curve of the pants decomposition. We thus obtain

Teich(SS) ~ ROI-6+30,

By setting some or all of the length parameters to be zero, we can turn
boundary components into punctures. So if S, ,, is a surface of genus g with
n punctures and x(S,,,) < 0, then

Teich(S,.,) ~ ROI-6+2n,
Together with our determination of Teich(72), this in particular gives
Teich(T?) ~ Teich(S; 1) =~ Teich(Sp4) ~ R?.

What is more, each of these isomorphisms is natural. For example, the for-
getful map S11 — T2 and the quotient map 7% — S 4 identify Fenchel—
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Nielsen coordinate systems on the three surfaces.

10.6.4 FENCHEL-NIELSEN COORDINATES FOR THE TORUS

We can define Fenchel-Nielsen coordinates for 72 using a method similar
to that used for hyperbolic surfaces. Pick a cylinder decomposition (instead
of a pants decomposition) of T2, that is, an oriented simple closed curve .
Also choose a seam, which in this case is a simple closed curve 3 in 72 with

i(B,y) = 1.

—
SN
Do
¥l~
o~
N—

(¢,0)

Figure 10.10 The effect of length and twist parameters on the universal cover of the corre-
sponding point in Teich(T?).

The Fenchel-Nielsen coordinates for a point X = [(X, ¢)] € Teich(7?)
is a pair (¢, 0) defined as follows. The length coordinate ¢ is the length in X
of any geodesic in the homotopy class of ¢(7). When we cut X along any
such geodesic, we obtain a flat cylinder X’. The curve ¢(/3) becomes an arc
on X’. The universal cover of X’ is isometric to R x 1/¢. Any lift of the arc
¢(3) to this cover is an arc, and the twist parameter 6 is given by the hori-
zontal displacement of its two endpoints. Specifically, if the displacement is
d, then 6 = (d/¢)2m.

If we identify Teich(7?) with the upper half-plane H? via the bijection
given in Proposition 10.1, we can write the Fenchel-Nielsen coordinates as
amap FN : H? — R, x R. Specifically, we have

FN(z,y) = (1/\/y ,2mx).

It is instructive to define the inverse map R x R — H? ~ Teich(7T?).
Let (¢,0) € R, xR. We start by constructing the unique flat, unit-area, right
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cylinder X’ with boundary length /. Call its boundary components J; and
d2. We draw a vertical arc 3 on X’ and then modify /3’ by dragging its end-
point on d; an oriented distance (6/27)¢ along 9, (see Figure 10.10). We
then obtain a torus X by identifying &; and d2 by the unique orientation-
preserving isometry that identifies the endpoints of 3. There is a homeo-
morphism ¢ : T2 — X, unique up to isotopy, that sends v to the image of
91 U dy in X and §3 to the image of 3’ in X. Then (X, ¢) represents the de-
sired point in Teich(7). This point of Teich(7?) corresponds to the point
(6/27,1/¢?) in the upper half-plane.

10.6.5 WOLPERT’S MAGIC FORMULA

The Fenchel-Nielsen coordinates (¢1,...,¥¢35—3,01,...,03,_3) obviously
depend in an essential way on the choice of coordinate system of curves.
It follows that the same can be said for the associated 1-forms d¢; and db;
on Teich(Sy). There are infinitely many coordinate systems to choose from,
each giving a different set of coordinates (and thus different associated 1-
forms) on Teich(S,). Wolpert discovered the remarkable fact that the 2-
form

13973
w=g Zl de; A db;

on Teich(S,) actually does not depend on the initial choice of pants decom-
position inducing the coordinates {(¢;, 6;)}. Wolpert does this by proving
that w is equal to the Weil-Petersson form on Teichmiiller space; see [216,
Theorem 3.14]. Since the Weil-Petersson form is defined without any refer-
ence to a choice of pants decomposition, it follows that w does not depend
on the pants decomposition.’

10.7 THE 9g — 9 THEOREM

At the beginning of the chapter we described a map
¢ : Teich(S) — R,

where S is the set of isotopy classes of essential curves in the surface .S. The
map is given by X +— £. It would be interesting to say that ¢ is injective,

% Actually, the twist parameters 6; in Wolpert’s formula are defined differently than our
twist parameters. In our coordinates, a full twist on the ith curve corresponds to replacing 6;
with 0; + 27. Under Wolpert’s conventions, a full twist is ; — 0; + £;.
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in other words, that a point X = [(X, ¢)] of Teich(.S) is completely deter-
mined by the geodesic lengths in X of the simple closed curves in S. In
this section we will show something much stronger: there are finitely many
simple closed curves in S whose lengths in a marked hyperbolic surface de-
termine the corresponding point of Teich(S). For S = S, the next theorem
states that 9g — 9 curves suffice.

Theorem 10.7 (9g — 9 theorem) There is a collection of simple closed
curves {81, ...,89g—9} in Sy so that the map from Teich(S,) to R~ given
by

X (KDC((Sl)v v 7KX(599—9))
is injective.

Our proof of Theorem 10.7 generalizes to the case of any hyperbolic Sy ,,,
where 9g — 9 is replaced by 3(3g — 3 + n).

It has been shown that in fact there are 6g — 5 simple closed curves in
Sy whose lengths determine a point in Teich(Sy). On the other hand, it has
also been shown that no 6g — 6 curves suffice; see [75].

The marked length spectrum of a hyperbolic surface X is the function
S — R that records the lengths of the isotopy classes of simple closed
curves in X. It follows immediately from Theorem 10.7 that the marked
length spectrum of X—indeed only a finite part of it—determines X up to
isometry.

To begin, we give the technical statement at the heart of the proof of the
9g — 9 theorem on the convexity of length functions. Then we state and
prove the 9g — 9 theorem, and then we prove the statement about convexity
of length functions.

10.7.1 CONVEXITY OF LENGTH FUNCTIONS

How does the hyperbolic geometry of a genus g > 2 surface X change as
one varies X = [(X, ¢)] over Teich(S,)? One specific problem in this direc-
tion is to understand, for a given simple closed curve «y in Sy, the function
Teich(Sy) — Ry defined by X — ().

Fix on S, a pants decomposition {v;} consisting of oriented simple
closed curves. We take this pants decomposition as part of a coordinate sys-
tem of curves that gives Fenchel-Nielsen coordinates on Teich(S).

Fix any point X € Teich(S,) and consider the one-parameter family
{Xs : s € R} of points in Teich(.S,) obtained from X by varying the twist
parameter s associated to the curve v = ;.
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Proposition 10.8 Let b be any isotopy class of simple closed curves on S,
such that i(b,~) > 0. The function R — R given by

s — Uy, (D)

is strictly convex.

10.7.2 PROOF OF THE 9g — 9 THEOREM

Let {v1,...,734—3} be a pants decomposition of S, and choose simple
closed curves {f31,. .., #34—3} in Sy so that i(3;,~;) > 0 and i(53;,v;) =0
for i # j. We do not require the 3; to be disjoint. Let o; = T, (3;).
Choose a set of Fenchel-Nielsen coordinates for Teich(S,) where the
coordinate system of curves consists of the pants decomposition {v;}
and any set of seams. For X € Teich(S,), we will show that the set
{x(c;), bx(0;), €x(;)} determines the Fenchel-Nielsen coordinates of X.
The length parameters for X are exactly the £ (;). It therefore remains
to show that the twist parameters for X are uniquely determined by the
{lx(a;), €x(Bi), £x(vi)}. Let X; be the point of Teich(S) with the same

length parameters as X and with twist parameters ¢t = (t1,...,%35—3). Up
to a reparametrization of Teich(Sy), we can assume that X = X,. We
will show that if ¢; # 0 for some i, then either fx,(c;) # fx(c;) or
Cox, (Bi) # Lx(Bi)-

Consider the functions A(t) = fx,(aq) and B(t) = fx,(01). Since
i(a1,7j) = i(B1,7;) = 0 for j # 1, both functions are simply functions of
the parameter ¢, which we denote by s. By Proposition 10.8, A(s) and B(s)
are strictly convex, hence so is their sum (A + B)(s). Also, by definition,
we have that A(s + 27) = B(s).

Assume A(s) = A(0) for some s # 0. We will show that B(s) # B(0),
that is, A(27) # A(27 + s). For concreteness say s > 0. Since A(s) =
A(0), it follows from the strict convexity that A(t) < A(0) fort¢ € (0, s) and
that A(t) is strictly increasing for ¢t > s.If s < 27, then s < 27 < 27 + s,
and it follows that A(27) < A(2m + s). If s > 27, then 0 < 27 < s <
2 + 5,0 A(2m) < A(0) = A(s) < A(2m + s). Finally, if s = 27, we
certainly cannot have A(27) = A(27 + s), for then A(t) would take the
same value at 0, 27, and 4, violating strict convexity.

We have shown that if ¢ = (t1,...,t35-3) and lx, (1) = fx (1) and
Uy, (1) = €x(01), then t; = 0. Since the same argument works for the
other twist parameters, the theorem is proven.
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10.7.3 PROOF OF THE CONVEXITY OF LENGTH FUNCTIONS

As preparation for our proof of Proposition 10.8, we will give a way of
comparing the lengths of curves in X, versus their lengths in X = Xg. Recall
that in our discussion of the Fenchel-Nielsen coordinates, we regarded X as
the equivalence class of a marked hyperbolic surface (X, ¢). We constructed
X from a collection of hyperbolic pairs of pants X; ; ;. whose isometry types
were determined by the length parameters for X. Then we identified the
X; jx along their boundary components, and the amount of rotating we did
before gluing was determined by the twist parameters for X. The marking ¢
was then constructed using the seams as a guide.

Twist deformations and earthquake maps. Given the above description
of X, we can construct X as follows. We modify the gluing of the Xj ;
along ~ by rotating to the left by an angle s/27. The new identification
gives a new hyperbolic surface X;. Note that X is isometric to X 2.

There is then a natural way to modify the marking ¢ to obtain a marking
¢s : Sg — X, as we now explain. Abusing notation, let v denote the simple
closed curves in X and X, marked by the curve vin S, (in X this is exactly
®(7), but in X this curve does not yet have a name). There is a canonical
isometry 7o : X — and X —y since both X and X are obtained by gluing
together the same set of X ; . If we modify 7y by an s/2m left-hand twist
on the left side of , we obtain a map from X — ~ to X — + that uniquely
extends to a homeomorphism 75 : X — X,. The marking for X is then
¢s = Ts 0 Q.

Let 7 : H? — X be the universal covering. Just as X, is described
by cutting X along v and regluing with a twist, the universal covering
75 : H2 — X, can be constructed by decomposing H? along the lifts of ~,
sliding the pieces to the left by (s/27)¢« (), and regluing. More precisely,
let H2 be the metric space obtained from H? by the following inductive pro-
cedure. Choose some lift 7; of v in X = H2. Decompose H? into the union
of the open half-space to the left of 7; and the closed half-space to the right
of 71. We reglue the pieces after translating a distance (s/27)¢y () to the
left. Next choose some lift 75 that is adjacent to 7, (here adjacent means
there are no other lifts between the two). We decompose the new space
along the 75 as above and reglue by the same recipe. We can perform this
procedure inductively along all lifts of . At the end we have a new metric
space H2. Each point of H? has a neighborhood that is isometric to an open
disk in H2. It follows that H? is globally isometric to H?2.

There is a built-in discontinuous map

E,: H? - H? ~ H?
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which is called an earthquake map.
Away from the preimage of v, the covering map 7, : H2 — X is given
by

7TS:TQO7TOE;1

(it is easy to check that this composition is a local homeomorphism).

Computing lengths. We would like to compute the length of § in X by
looking in H? as opposed to H2. In other words, we want to use H? as
a frame of reference, independent of s. The image of § in X under the
marking for X is ¢5(3) = 75 o ¢(3). The preimage of this curve in H?
under the covering map 7 = 79 o 7 o E; ! is then

Esom ! 07'0_1 o750 ¢(f).

Let us unwrap this composition. The curve ¢(3) is the image of  in X
under the marking for X. The map 7;° Loty : X — X is adiscontinuous map
that twists the left-hand side of by s/27. Thus 7~ 'o (7, to75)o¢(3) differs
from the preimage 7! 0 ¢(3) in H? by a lift of the partial twist 7, Lor,.So
the preimage 7! o(7; ' o75)0$(/3) consists of a collection of “broken paths”
in H? that “jump” to the left by (s/27)¢x () every time they approach a lift
of «y from the left; see Figure 10.11. The effect of E, : H2 — H?2 is to take
these broken paths in H? to continuous paths in H2.

Since E; is a local isometry, we can compute the length of a continuous
path in H? by considering its image in H? under E,, computing the lengths
of each piece of this broken path, and adding up. In particular, if B is a path
lifting of ¢, (/3) to H2, then the length of the broken path E; ! (B ) is the same
as the length of ¢4(3) in Xs.

We can choose B to start and end on lifts of ~ in Hg There is a deck
transformation Dg of M2 that corresponds to the conjugacy class ¢(3) and
that fixes the lift of ¢s(/3) containing B The hyperbolic isometry Dy takes
the start point of B to the endpoint of B .

Now to find the value of ¢y (3), we modify /3 by homotopy until length
is minimized. We can perform this homotopy so that the endpoints stay in
the preimage of + throughout and so that the startpoint and endpoint differ
by Dg throughout.

We know that the minimizing path is a geodesic segment that starts and
ends on lifts of +, that intersects (3, ) + 1 lifts of +, and whose endpoints
differ by Dg. Therefore, the closure of the image of the minimizing path
under E; ! in H? is a collection of i(3, ) geodesic segments 1, . . . , di(By)
[0, 1] — H?2 with the following properties:
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1. 6;(1) and 6;+1(0) lie on a common lift of -y and differ by a displace-
ment of (s/27)ly () to the left (also d;(0) and 6,1 (1) lie on distinct
lifts).

2. 61(0) and d;(p,) (1) differ by the map Dj; = E;!'oDgoE;.

The collection of segments {d;} (thought of as a collection of subsets of
H?) is completely determined by the collection of points {§;(0)}. Indeed,
the other endpoints are determined by the two conditions above.

We have thus reduced the problem of finding the length of 3 in X, to
the problem of sliding the points {9;(0)} along a fixed collection of (b, )
geodesics in H? until the length of the corresponding piecewise geodesic
path is minimized.

Say that the point 6;(0) is restricted to the lift ; of . We can identify
Y1 X X Fi(p,y) With R0 Let

L:R®Y) xR - Ry

denote the function that takes as input the points ¢;(0) and s and records the
length of the corresponding piecewise geodesic path.

For a point w in some 7; = R, let w® denote the point that lies an oriented
distance of (s/27)¢x () from w along 7;. We can write L more concretely
as the function

d(Zl, Zéts) + d(z2a Z3is) +oot d(zi(b,v)v Db(zl))v

where each z; lies in 7; ~ R and the signs are determined by the orientations
of the 7; (all distances are taken in H?).
We finally have

lx,(b) = inf {L(z, s):z€ Ri(bm)} '

Finishing the proof. We require the following fact, suggested by Mladen
Bestvina; it is an ingredient in a new proof of the Nielsen realization theorem
due to Bestvina—Bromberg—Fujiwara—Souto [19].

LEMMA 109 Let f : R™ x R™ — R be a strictly convex function. If the
function F : R™ — R defined by

F(z) = min{f(x,y) : y € R"}

is well defined, that is, if the minimum always exists, then F is strictly con-
vex.



292 CHAPTER 10

lifts of ~

Figure 10.11 If 3 is the lift of 3 for the point X of Teich(S,) as in the discussion, then the
broken path is homotopic to a lift of the image of 3 in the new point X of
Teich(Sy) obtained by varying the twist parameter s on one curve ~y. At each
lift of -y, the path jumps to the left a distance s.

Proof of Proposition 10.8. The starting point is the following basic fact
from hyperbolic geometry (see [35, Chapter II, Proposition 2.2]):

Let o and (3 be two disjoint geodesics in H? parameterized
at unit speed. The function d : R?> — R given by (s,t)
dg2(a(s), B(t)) is strictly convex.

Given k + 1 disjoint oriented geodesics «; in H?, each parameterized at unit
speed, we consider the function f; : R?* — R given by

k

fl(xlaylr .. axk‘)yk‘) - Zd(ml)yl))

i=1

where each z; lies in «; and each y; lies in a; 1. Since strict convexity is
preserved under finite sums, we have that fi is strictly convex.

Next, let fo : R?* x R — R be the function given by fo(x,s) = fi(z)
for any « € R?*. The function f; is strictly convex in every direction except
the s-direction, where it is constant.
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Restrict f5 to the hyperplane in R%* x R described by z; = y;_, (abusing
the previous notation) for 2 < ¢ < k, and y, = ¥ (z1)”°, where v is some
fixed isometry oy — a1 1. Call the new function fs. It is straightforward
to check that this hyperplane is not parallel to the s-direction, and so f3 is
strictly convex.

Finally, let F' : R — R be the function given by F'(s) = inf{ f3(z,s)},
where z is any point on the hyperplane in R?* where f3 is defined. We have
that F'(s) is strictly convex by Lemma 10.9. But, by the above discussion,
for the appropriate choices of oriented geodesics «; and isometry ), the
function F(s) is exactly the function ¢ (b), and so we are done. 0



Chapter Eleven

Teichmuller Geometry

Teichmiiller space Teich(S) was defined in Chapter 10 as the space of hy-
perbolic structures on the surface .S modulo isotopy. But Teich(S) param-
eterizes other important structures as well, for example, complex structures
on S modulo isotopy and conformal classes of metrics on S up to isotopy.

We would like to have a way to compare different complex or confor-
mal structures on S to each other. A natural way to do this is to search for
a quasiconformal homeomorphism f : S — S that is homotopic to the
identity map and that has the smallest possible quasiconformal dilatation
with respect to the two structures. Informally, a homeomorphism with min-
imal dilatation is one that distorts angles least. This problem was solved by
Grotzsch when S is a rectangle, and for general surfaces by Teichmiiller.

After presenting the solution to this extremal problem, we will see how
the least dilatation can be used to define a metric on Teichmiiller space called
the Teichmiiller metric. Understanding the basic properties of this metric,
for example, determining its geodesics, is important in a number of prob-
lems in low-dimensional topology. In particular, it will play a central role in
Chapter 13, where we present Bers’ proof of the Nielsen—Thurston classifi-
cation of surface homeomorphisms.

The underlying objects encoding the solution to the extremal problem
are holomorphic quadratic differentials and their associated measured folia-
tions. Thus we will spend some time describing these objects.

There are many approaches to the theory of quasiconformal mappings
and Teichmiiller theory, each with their own advantages and disadvantages.
In this chapter, we adopt an approach of Bers that is described in the lecture
notes written by Abikoff [1].

11.1 QUASICONFORMAL MAPS AND AN EXTREMAL PROBLEM

In this section we define quasiconformal maps between surfaces in order
to set up the extremal problem mentioned above. The natural setting for
quasiconformal maps is that of complex structures on surfaces, as opposed
to hyperbolic structures. Thus we begin by explaining the correspondence
between these two types of structures.
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11.1.1 COMPLEX STRUCTURES VERSUS HYPERBOLIC STRUCTURES

By a Riemann surface X we mean a 1-dimensional complex manifold. This
means that X comes equipped with an atlas of charts to C that has biholo-
morphic transition maps; that is, transition maps are holomorphic with holo-
morphic inverses. Two Riemann surfaces X and Y are said to be isomorphic
if there is a biholomorphic homeomorphism between them.

The uniformization theorem gives that any Riemann surface of genus
g > 2 is the quotient of the unit disk A by a group I" of biholomorphic
automorphisms acting properly discontinuously and freely on A; see, for
example, [198, Chapter 9]. Any group of biholomorphic automorphisms of
A preserves the hyperbolic metric on A. Thus A/T" has an induced hyper-
bolic structure, and conversely, any such hyperbolic structure gives a com-
plex structure on X. In other words, for g > 2, there is a bijective corre-
spondence:

Isomorphism classes Isometry classes
of Riemann surfaces «—— < of hyperbolic surfaces
homeomorphic to S, homeomorphic to S,

Using isothermal coordinates, one can define a complex structure on any
surface endowed with a Riemannian metric. In this way Teich(Sy) can also
be identified with the set of conformal classes of Riemannian metrics on S,,.

11.1.2 QUASICONFORMAL MAPS

Let U and V be open subsets of C and let f : U — V be a homeomorphism
that is smooth outside of a finite number of points. In Section 10.2, we ex-
plained how to write linear maps R? — R? using the notation of complex
analysis. We now apply this idea to describe the differential df.

Using the usual notation for maps R? — R2, we can write f as f(x,y) =
(a(z,y),b(z,y)), where a,b : R? — R. Where it is defined, the derivative
df is then the real linear map

[ % Gy
o= (i %)

df = fxdx+fydy’

where f, = (az,b;) and fy, = (ay, by).
Switching to complex notation and setting z = x + ¢y, we can write

We can also write
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fz = az +1ib; and f, = a, + ib,, and we can rewrite df as
df = f.dz + fzdz,

where

fo= SUfe—ify) and f: = S(fa+if,)

Recall from Section 10.2 that the quantity py = fz/f. is called the com-
plex dilatation of f.

The condition that f; = 0 is equivalent to the condition that f satisfies
the Cauchy—Riemann equations. Thus f is holomorphic if and only if f; =
pr = 0. Also, since

|fz|2 - |f2|2 = a:vby - aybxa

we see that f is orientation-preserving if and only if |f,| > |fz|, which is
the same as saying |us| < 1.

Dilatation. Suppose now that the homeomorphism f : U — V is
orientation-preserving. Let p be a point of U at which f is differentiable.
The dilatation of f at p is defined to be

LW @] 1+ L)
L@ 1] T )

The quantity log(K(p))/2 is precisely the distance between 1 ¢(p) and O
in the Poincaré disk model of H? (this makes sense since f is orientation-
preserving and so || < 1). Note in particular that K¢(p) > 1.

The quantity K f(p) can be interpreted as follows. The map df,, takes the
unit circle in TU, =~ C to an ellipse E in TV, and Ky (p) is the ratio of
the length of the major axis of E to the length of the minor axis of E. To
see this, we parameterize the unit circle in C as 6 +— €' for 6 € [0, 27]. The
image of this circle under df), is then the ellipse ' and is determined by the
equation E(0) = f.(p)e + fz(p)e~ for # € [0, 27]. The modulus (i.e.,
absolute value) of a point E(0) is

Ky(p)

[E(0)] = |f-(p)e” + fz(p)e™ ™

= L) [+ s )e|.
Since
1= Ly 0 < |1+ gl <1+ g (o),

it follows that the ratio of the maximum modulus of a point on E to the
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minimum modulus of a point on E is precisely K ¢(p).
The dilatation of the map f is defined to be the number

Ky = sup K¢(p),

where the supremum is taken over all points p where f is differentiable.
Thus 1 < Ky < oo. If Ky < oo, we say that f is a quasiconformal or
K ¢-quasiconformal map between the domains U and V' of C. Note that
biholomorphic maps are conformal with conformal inverses, hence are 1-
quasiconformal. The notion of a quasiconformal homeomorphism was first
considered by Grotzsch in 1928.

Quasiconformal maps. Let f : X — Y be a homeomorphism between
Riemann surfaces that is smooth outside of a finite number of points. As-
sume further that f respects the orientations induced by the complex struc-
tures on X and Y and that f~! is smooth outside of a finite number of
points. Since the transition maps in any atlases for X and Y are biholo-
morphic (hence 1-quasiconformal) and since the local expressions for f are
orientation-preserving, there is a well-defined notion of the dilatation K y(p)
of f at a point p € X where f is smooth. Since f is smooth outside of a
finite number of points, we can define Ky = sup K¢(p) as above. We will
say that f is quasiconformal or K ;—quasiconformal if Ky < oo.

A map between Riemann surfaces is holomorphic if, in any chart, it is
given by a holomorphic map from some domain in C to C. A bijective,
holomorphic map between Riemann surfaces is called a conformal map.
Conformal maps between Riemann surfaces are also biholomorphic; that is,
they have holomorphic inverses. The last fact follows from the open map-
ping theorem; see Section 10.32 and Theorem 10.34 in Rudin’s book [187].

Lemma 11.1 Let f : X — Y be a homeomorphism between Riemann
surfaces. Then f is a 1-quasiconformal homeomorphism if and only if it is
a conformal map.

Proof. Suppose that f is conformal. In this case, f’ is defined at every point
and never vanishes. Further, f takes circles in the tangent space of X to
(nondegenerate) circles in the tangent space of Y [187, Theorem 14.2], and
so f is 1-quasiconformal.

Now suppose that f is 1-quasiconformal. This is the same as saying that
fz = 0 wherever f is differentiable. Let A C X be the set of points where f
is not differentiable. The restriction f|x_ 4 is then holomorphic. Since f is
a homeomorphism, its singularities at A must be removable [187, Theorem
10.20]. Since f is continuous, it follows that f is already holomorphic. As
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f is a homeomorphism, it is bijective. By our definition of a conformal map
of Riemann surfaces, f is conformal. a

The group QC(X). Let X be a Riemann surface. We would like to show
that the set of quasiconformal homeomorphisms X — X forms a group
QC(X). We require some basic facts about the dilatations of linear maps.
The first fact is that if f : C — C is any linear map, then the dilatations of
fand f —Lare equal, that is, Ky = Ky-1. The second fact, which we will
use repeatedly, is the following.

LEMMA 11.2 Let f and g be two linear maps C — C. Denote the complex
dilatations of f, g, and f o g by iy, g, and jiy.q and denote the dilatations
by Ky, Ky, and K., We have

Kyog < Ky Ky,

with equality if and only if either arg(uy) = arg(jug) or one of jiy and pg is
zero.

The last statement of Lemma 11.2 can be rephrased as: Ko, = Ky K if
and only if the directions of maximal stretch for f and g are the same or at
least one of Ky or K4 is 1. Lemma 11.2 is an easy exercise in linear algebra
[70, Section 1.2].

We can now deduce the following about compositions of quasiconformal
homeomorphisms of X.

Proposition 11.3 Let X be a Riemann surface and let f and g be quasi-
conformal homeomorphisms of X with dilatations Ky and K. We have:

1. The composition f o g is quasiconformal and
Koy < KfK,.
2. The inverse f~1 is quasiconformal and
Ky = Ky.
3. If g is conformal, then
Kfog = Ky = Kgof.

In particular, the set of quasiconformal homeomorphisms QC(X) forms a
group.
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11.1.3 TEICHMULLER’S EXTREMAL PROBLEM

In 1928 Grotzsch considered the following natural extremal problem, at
least in the case of rectangles. Because Teichmiiller later considered the
case of general Riemann surfaces [203], this problem is sometimes referred
to as Teichmiiller’s extremal problem.

Fix a homeomorphism f : X — Y of Riemann surfaces and
consider the set of dilatations of quasiconformal homeomor-
phisms X — Y in the homotopy class of f. Is the infimum of
this set realized? If so, is the minimizing map unique?

Teichmiiller’s theorems (see below) give a positive solution to both ques-
tions (under the assumption of negative Euler characteristic). The minimiz-
ing map is called the Teichmiiller map.

In Section 11.8, we will use Teichmiiller’s theorems to define a metric
on Teichmiiller space called the Teichmiiller metric, as follows. Let g >
2 and let X,Y € Teich(S,). The points X and Y can be represented by
marked Riemann surfaces X and Y. Because of the markings, there is a
unique preferred homeomorphism of Riemann surfaces X — Y, namely,
the change of marking map, which corresponds to the identity map of .S,
(for abstract Riemann surfaces without markings, there is no way to choose
such a preferred map). Thus we can ask for the infimum of the dilatations
of quasiconformal homeomorphisms X — Y in the preferred homotopy
class. Teichmiiller’s theorems say that there exists a unique quasiconformal
homeomorphism /& : X — Y of minimal dilatation among all maps X — Y
in this homotopy class. We can then define a distance function

1
dTeiCh(:X:’y) = 5 log(Kh)

In Section 11.8, we will prove that dreich is @ metric on Teich(Sy).

As we will see below, the Teichmiiller map is smooth outside a finite set
of points in S, but is not smooth at all points of S,. This is precisely why
we defined the notion of quasiconformality for homeomorphisms that are
smooth outside a finite set of points. Quasiconformality can be defined for
homeomorphisms with significantly weaker smoothness conditions than we
have assumed. We chose smoothness outside a finite set of points since this
is easier to work with and avoids technical difficulties, but it is still general
enough for all of our applications.
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11.2 MEASURED FOLIATIONS

We will see that Teichmiiller maps, the maps that appear as solutions to Te-
ichmiiller’s extremal problem, are homeomorphisms of a surface that stretch
along one foliation of the surface and shrink along a transverse foliation. In
order to make this precise, we first need to give a careful discussion of mea-
sured foliations.

11.2.1 MEASURED FOLIATIONS ON THE TORUS

Before giving the general definition of a measured foliation, we restrict our
attention to the case of the torus where (as usual) the situation is much sim-
pler. We will also explain what it means for a linear map of the torus to
stretch the torus along one foliation and shrink along another.

Let / be any line through the origin in R?. The line ¢ determines a foliation
fg of R? consisting of the set of all lines in R? parallel to £. Translations of
R? take lines to lines, and so any translation preserves .?Eg in the sense that
it takes leaves to leaves.

Since all of the deck transformations for the standard covering R? — T2
are translations, the foliation .7?@ descends to a foliation Fy of T2. If the slope
of £ is rational, then every leaf of F is a simple closed geodesic in T2. If
the slope of ¢ is irrational, then every leaf of F; is a dense geodesic in 7.

The foliations .7::( come equipped with extra structure. Let vy : R? — R
be the function that records distance from ¢. Integration against the 1-form
dvy gives a transverse measure on .?Eg. What this means is that any smooth
arc « transverse to the leaves of 7, can be assigned a length p(o) = [ duy.
The quantity p(«) is the total variation of « in the direction perpendicular
to ¢. Thus p(«) is invariant under isotopies of o that move each point of «
within the leaf of .77} in which it is contained. The 1-form dvy is preserved by
translations and so descends to a 1-form wy on 72 and induces a transverse
measure on the foliation 7. The structure of a foliation on 72 together with
a transverse measure is called a transverse measured foliation on T?.

Note that a transverse measured foliation on 7' is completely determined
by the 1-form wy. The leaves of Fy in T2 are simply the integral submani-
folds to the distribution determined by the kernel of wy.

Consider a linear map A € SL(2,Z) with two distinct real eigenvalues
A > land A~! < 1 corresponding to eigenspaces £ and ¢'. As in the proof of
Theorem 2.5, A induces a homeomorphism ¢ 4 of the torus 72. The homeo-
morphism ¢ 4 preserves the foliations Fy and Fy and multiplies their trans-
verse measures by A\~ and ), respectively. We think of ¢4 as stretching
by a factor of A in the ¢-direction and contracting by a factor of A in the
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¢'-direction.

On a higher-genus surface, it is not clear what it would mean for a home-
omorphism to stretch in the direction of a single vector. However, we can
define a foliation on a higher-genus surface, and we will see that it makes
sense for a homeomorphism to stretch the surface in the direction of that
foliation. Teichmiiller maps will be given exactly such a description.

11.2.2 SINGULAR MEASURED FOLIATIONS

We will transfer our discussion of measured foliations on the torus to closed
surfaces of genus g > 2. The Euler—Poincaré formula (see below) shows
that such surfaces do not admit foliations. This can be corrected by allowing
foliations with a finite number of singularities of a specific type.

Singular foliations. A singular foliation F on a closed surface S is a de-
composition of S into a disjoint union of subsets of S, called the leaves of
F, and a finite set of points of S, called singular points of F, such that the
following two conditions hold.

1. For each nonsingular point p € S, there is a smooth chart from a
neighborhood of p to R? that takes leaves to horizontal line segments.
The transition maps between any two of these charts are smooth maps
of the form (z,y) — (f(z,y),g(y)). In other words, the transition
maps take horizontal lines to horizontal lines.

2. For each singular point p € S, there is a smooth chart from a neigh-
borhood of p to R? that takes leaves to the level sets of a k-pronged
saddle, k > 3; see Figure 11.1.

We say that a singular foliation is orientable if the leaves can be consis-
tently oriented, that is, if each leaf can be oriented so that nearby leaves are
similarly oriented. It is not hard to see that a foliation is locally orientable
if and only if each of its singularities has an even number of prongs. For in-
stance, the foliation in Figure 11.1 is not orientable in a neighborhood of the
singular point. However, there do exist foliations that are locally orientable
but not (globally) orientable.

The Euler-Poincaré formula. The following proposition gives a topologi-
cal constraint on the total number of prongs at all singularities of a measured
foliation.

Proposition 11.4 (Euler-Poincaré formula) Let S be a surface with a sin-
gular foliation. Let P; denote the number of prongs at a singular point s.



302 CHAPTER 11

—— r

Figure 11.1 A foliation at a three-pronged singular point (left) and at a four-pronged singular
point (right).

Then

QX(S) = 2(2 - Ps)a

where the sum is over all singular points of the foliation.

Since Ps > 3, Proposition 11.4 implies that a surface S with x(S) > 0
cannot carry a (singular or nonsingular) foliation. Proposition 11.4 also im-
plies that any foliation on a surface S with x(.S) = 0 must have no singular
points and that any foliation on a surface S with x(S) < 0 must have at
least one singular point. Because of this, we will unambiguously use the
term “foliation” for foliations that have singularities as well as for those that
do not.

The Euler—Poincaré formula is a straightforward consequence of the
Poincaré—Hopf formula for vector fields applied to the context of line fields;
see [61, Exposé 5, Section 1.6].

Measured foliations. As in the case of foliations on the torus, we would
like to equip foliations on higher-genus surfaces with a transverse measure,
that is, a length function defined on arcs transverse to the foliation. In order
to do this precisely, we will need some preliminaries.

Let F be a foliation on a surface .S. A smooth arc « in S is fransverse to
F if a misses the singular points of F and is transverse to each leaf of F at
each point in its interior. Let o, 3 : I — S be smooth arcs transverse to F.
A leaf-preserving isotopy from avto B isamap H : I x I — S such that

e H(I x{0})=aand H(I x {1}) =0
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e H(I x {t}) is transverse to F foreach ¢ € [0, 1]
e H({0} x I)and H ({1} x I) are each contained in a single leaf.

Note that the second and third conditions imply that H ({s} x I') is contained
in a single leaf for any s € [0, 1].

A transverse measure £ on a foliation J is a function that assigns a pos-
itive real number to each smooth arc transverse to JF, so that y is invariant
under leaf-preserving isotopy and p is regular (i.e., absolutely continuous)
with respect to Lebesgue measure. In other words, this last condition means
that each point of S has a neighborhood U and a smooth chart U — R? so
that the measure £ is induced by |dy| on R2.

A measured foliation (F, 1) on a surface S is a foliation F of S equipped
with a transverse measure /.

L1
Lo o)

Figure 11.2 Two transverse foliations near a singular point. Each foliation has a three-
pronged singularity.

We say that two measured foliations are transverse if their leaves are
transverse away from the singularities; see Figure 11.2. Note that transverse
measured foliations must have the same set of singularities.

Natural charts. There is another way of defining a measured foliation on
a surface S. Let {p; } be a finite set of points in S. Suppose we have an atlas
for S — {p;} where all transition maps are of the form

(z,y) = (f(z,y),c L y)

for some constant ¢ depending on the transition map. Then it makes sense
to pull back the horizontal foliation of R? with its transverse measure |dy|
(the absolute variation in the y-direction). After reinserting the p;, the result
is a measured foliation on S.
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Conversely, given any measured foliation, one can construct an atlas
where the transition maps are given as above and where the transverse mea-
sure is given by |dy|. Any chart from such an atlas is called a set of natural
coordinates for the measured foliation.

If we have an ordered pair of transverse measured foliations and there
is an atlas where, away from the singular points, the first foliation is the
pullback of the horizontal foliation of R? with the measure |dy| and the
second foliation is the pullback of the vertical foliation with the measure
|dx|, then we say that this atlas, and each of its charts, is natural with respect
to the pair of measured foliations.

The action of Homeo(.S). There is a natural action of Homeo(.S) on the
set of measured foliations of S. Namely, if ¢ € Homeo(S) and if (F, p) is
a measured foliation of S, then the action of ¢ on (F, u) is given by

¢ (Fyp) = (0(F), ox (1)),

where ¢, (u)(7) is defined as (¢~ 1(7)) for any arc «y transverse to ¢(F).
As a consequence, the mapping class group Mod(S) acts on the set of iso-
topy classes of measured foliations (the quotient of the set of measured fo-
liations by Homeog(.5)).

Measured foliations as 1-forms. Any locally orientable measured foliation
(F, p) can be described locally in terms of a closed 1-form as follows. In
any chart where F is orientable, there is a closed real-valued 1-form w so
that, away from the singular points of F, the leaves of F are precisely the
integral submanifolds of the distribution given by the kernel of w, and y is

given by the formula
n) = [ o
gl

for any arc -y transverse to . Indeed, in a neighborhood of a nonsingular
point, we have seen that we can take the 1-form to be dy. A key point,
though, is that —dy serves the same purpose—it defines the same foliation
and the same measure as dy. In the neighborhood of a singular point, the
1-form can be taken to be the derivative of a saddle function.

If a measured foliation is globally orientable, then there is a well-defined
way of distinguishing between dy and —dy on the entire surface. Thus the
local 1-forms we described above glue together to give a globally defined
closed 1-form on the surface. Conversely, the kernel of a closed 1-form on
a surface defines an orientable foliation.
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Punctures and boundary. The theory of measured foliations can be eas-
ily adapted to the case of surfaces with punctures and/or boundary. At a
puncture, a foliation can take the form of a regular point or a k-pronged sin-
gularity with £ > 3, as in the case of foliations on closed surfaces. However,
at a puncture we also allow one-pronged singularities as in Figure 11.3.

Figure 11.3 A one-pronged singularity on a surface with a puncture.

A measured foliation on a compact surface S with nonempty boundary
is defined similarly to the case when S is closed. There are four different
pictures in the neighborhood of a point of 0.5 depending on whether or
not the point is singular and whether or not the leaves are parallel to the
boundary or transverse to the boundary; see Figure 11.4.

Figure 11.4 Measured foliations near the boundary of a surface.

11.2.3 FOUR CONSTRUCTIONS OF MEASURED FOLIATIONS

In this subsection we give four concrete ways of constructing measured fo-
liations on a closed surface.

From a polygon. Given any closed surface S, we can realize S as the
quotient of a polygon P in R? by side identifications. We are using the Eu-
clidean plane here and not the hyperbolic plane because we want to consider
structures inherited from Euclidean geometry. We impose two additional
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conditions: (i) anytime two edges of P are identified, they are parallel, and
(ii) the total Euclidean angle around each point of S is greater than 7 (the
second condition needs to be checked only at the vertices of P). We do not
need to assume that P is connected. One example of this is the realization
of S, as the quotient of a regular (4g + 2)-gon in R? with opposite sides
identified. Another example is given in Figure 11.6.

Any foliation of R? by parallel lines restricts to give a foliation of (the
interior of) P. We claim that this foliation induces a foliation of S. It is easy
to see that any point of .S coming from a point of P that is not a vertex of P
has a regular neighborhood that satisfies the definition of a regular point of
a foliation.

So what happens at a point p € S corresponding to a vertex of P? The
first observation is that since identified sides of P are parallel, the total angle
around p is an integer multiple of 7. In particular, there is some vertex p of
P in the preimage of p, and a vector v based at p that points into P (possibly
along an edge) and is parallel to the foliation of P. If we sweep out an angle
of 7 starting with v, we find a closed Euclidean half-disk in .S that is foliated
by lines parallel to the diameter. If we continue to sweep out angles of ,
we see that a neighborhood of p looks like some number of Euclidean half-
disks each foliated by lines parallel to the diameter and glued along oriented
radii. By our assumption on the total angle around each point of .S coming
from a vertex of P, we know that there are at least two half-disks glued at
p. If there are exactly two half-disks, then p is a regular point. If there are &k
half-disks, where k& > 3, then p is a singularity with k prongs.

One measure on the induced foliation of S is the one given by the total
variation of the Euclidean distance in the direction perpendicular to the fo-
liation of P. The charts we described above are the natural charts for the
nonsingular points.

Suppose that, in this construction, we orient each edge of P so that the
identifications respect these orientations. If all side pairings identify sides of
P that are parallel in the oriented sense (as opposed to antiparallel), then the
resulting foliation of S' is orientable. Indeed, either of the two orientations
of the foliation on the interior of P extend to give an orientation of the entire
foliation of .S.

It is a fact that every measured foliation comes from this polygon con-
struction. The idea is that the natural coordinates for a measured foliation
pick out large rectangles in the surface that are foliated by horizontal lines.
See Section 14.3 for further discussion.

Enlarging a simple closed curve. Let S be a closed surface of genus g.
We can realize S topologically as a Euclidean (4g + 2)-gon with opposite
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sides identified. We can then straighten the sides of this polygon so that two
opposite sides are horizontal and the other 4¢ sides are vertical. The result
is a Euclidean rectangle R. If we identify the two horizontal edges of R
we obtain an annulus A. The foliation of R by vertical lines descends to
a foliation of A by curves parallel to the boundary. This foliation further
descends to a foliation of S where each nonsingular leaf is a simple closed
curve. All of these curves lie in the same homotopy class. There is a one-
parameter family of measures obtained by scaling the rectangle horizontally.

Let o denote one of the nonsingular leaves in S. We say that the above
measured foliation is obtained by enlarging the simple closed curve a. Note
that, by change of coordinates, we can enlarge any nonseparating simple
closed curve in a closed surface (it is also possible to extend the construction
to separating curves).

\O/\O/\O/Q

00000000

Figure 11.5 A twofold branched cover over the torus.

From a branched cover. Let g > 2 andletp : S; — T2 be a branched
covering map. For our purposes, a branched cover of one topological sur-
face over another is the quotient of one orientable surface by a finite group
of orientation-preserving homeomorphisms. So, for instance, orbifold cov-
erings are branched coverings. One such example, with 2g— 2 branch points,
is illustrated in Figure 11.5.

Any measured foliation (F, 1) of T pulls back via p to a measured fo-
liation (p*(F),p* (1)) on Sy. The singularities of p*(F) are precisely the
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ramification points of the covering. The foliation p*(F) has a singularity
of order 2k above any branch point of order k. Since the deck transforma-
tions of the cover S, — T? are orientation-preserving, an orientation of the
foliation on 72 pulls back to an orientation on the foliation of Sy. Since
every foliation of T2 is orientable, every foliation of S, obtained by this
construction is orientable.

The same construction as above can be used to pull back measured folia-
tions on any closed surface via any (branched or unbranched) cover.

From a pair of filling simple closed curves. Let o and 3 be two transverse
simple closed curves that are in minimal position and that fill a closed sur-
face S. Take, for instance, the example in Figure 1.7. We can think of o U 3
as a 4-valent graph in S, where the vertices are the points of o N 3. In fact,
by also considering the closures of the components of S — (aUf3) as 2-cells,
we have a description of S as a 2-complex X.

We construct a dual complex X’. The complex X’ is formed by taking
one vertex for each 2-cell of X, one edge transverse to each edge of X,
and one 2-cell for each vertex of X. Since the vertices of X are 4-valent, it
follows that X' is a square complex, that is, each 2-cell of X’ is a square.
What is more, each square of X’ has a segment of « running from one side
to the opposite side.

We can foliate each square of X’ by lines parallel to a. This gives rise to
a foliation F,, on all of S. We declare the “width” of each square to be the
same fixed number, and this gives a measure on F,. The foliation associated
to 3 is a measured foliation F that is transverse to F,.

This last construction is really just a special case of both the polygon
construction and the branched cover construction. Indeed, we can think of
X’ as a disconnected polygon with sides identified. Also, if we think of 7"
as the unit square with sides identified, then there is a branched cover from
S ~ X' — T? that takes each square of X’ to the unit square and takes the
a-foli