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Preface

Our goal in this book is to explain as many important theorems, examples,
and techniques as possible, as quickly and directly as possible, while at the
same time giving (nearly) full details and keeping the text (nearly) self-
contained. This book contains some simplifications of known approaches
and proofs, the exposition of some results that are not readily available,
and some new material as well. We have tried to incorporate many of the
“greatest hits” of the subject, as well as its small quirks and gems.

There are a number of other references that cover various of the topics we
cover here (and more). We would especially like to mention the books by
Abikoff [1], Birman [24], Casson–Bleiler [44], Fathi–Laudenbach–Poénaru
[61], and Hubbard [97], as well as the survey papers by Harer [84] and
Ivanov [107]. The works of Bers [14, 15] on Teichmüller’s theorems and on
the Nielsen–Thurston classification theorem have had a particularly strong
influence on this book.

The first author learned much of what he knows about these topics from
his advisor Bill Thurston, his teacher Curt McMullen, and his collabora-
tors Lee Mosher and Howard Masur. The second author’s perspective on
this subject was greatly influenced by his advisor Benson Farb, his mentors
Mladen Bestvina and Joan Birman, and his collaborator Chris Leininger.
This book in particular owes a debt to notes the first author took from a
course given by McMullen at Berkeley in 1991.

Benson Farb and Dan Margalit
Chicago and Atlanta, January 2011
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Overview

In this book we will consider two fundamental objects attached to a surface
S: a group and a space. We will study these two objects and how they relate
to each other.

The group. The group is the mapping class group of S, denoted by
Mod(S). It is defined to be the group of isotopy classes of orientation-
preserving diffeomorphisms of S (that restrict to the identity on ∂S if
∂S �= ∅):

Mod(S) = Diff+(S, ∂S)/Diff0(S, ∂S).

Here Diff0(S, ∂S) is the subgroup of Diff+(S, ∂S) consisting of elements
that are isotopic to the identity. We will study the algebraic structure of the
group Mod(S), the detailed structure of its individual elements, and the
beautiful interplay between them.

The space. The space is the Teichmüller space of S. When χ(S) < 0, this
is the space of hyperbolic metrics on S up to isotopy:

Teich(S) = HypMet(S)/Diff0(S).

The space Teich(S) is a metric space homeomorphic to an open ball. The
group Diff+(S) acts on HypMet(S) by pullback. This action descends to an
action of Mod(S) on Teich(S). A fundamental result in the theory is that
this action is properly discontinuous. The quotient space

M(S) = Teich(S)/Mod(S)

is the moduli space of Riemann surfaces homeomorphic to S. The space
M(S) is one of the fundamental objects of mathematics. Since (as we will
prove) M(S) is finitely covered by a closed aspherical manifold, the group
Mod(S) encodes most of the topological features ofM(S). Conversely, in-
variants such as the cohomology of Mod(S) are determined by the topology
ofM(S).

The appearance of Mod(S), Teich(S), and M(S) in mathematics is
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ubiquitous: from hyperbolic geometry to algebraic geometry to combinato-
rial group theory to symplectic geometry to 3-manifold theory to dynamics.
In this book we will relate the algebraic structure of Mod(S), the geom-
etry of Teich(S), and the topology of M(S). Underlying the connections
between these structures is the combinatorial topology of the surface S. In-
deed, one leitmotif of this book is the interplay of the “local” study of the
geometry and topology of a single surface S and the “global” properties
of the spaces Teich(S) and M(S). It is a beautiful thing to see how each
informs the other.

The classification. The third player in our story is the Nielsen–Thurston
classification theorem, which gives a particularly nice representative for
each element of Mod(S). This is a nonlinear analogue of the Jordan canon-
ical form for matrices; as such, it is a cornerstone of the theory. It is in
Bers’ proof of this theorem where the first two characters play off of each
other: the key is to understand how elements of Mod(S) act on Teich(S)
via isometries of the Teichmüller metric. Much of the usefulness of the
Nielsen–Thurston classification comes from the fact that the typical element
of Mod(S) has a pseudo-Anosov representative. Pseudo-Anosov homeo-
morphisms have very specific descriptions and exhibit many remarkable
properties.

In light of the above discussion this book is divided into three parts. We
now outline them, emphasizing what we consider to be some of the more
important results and focusing for simplicity on the case of the closed sur-
face Sg of genus g.

Part 1

Part 1 covers what might be called the core theory of mapping class
groups. The central theme is the relationship between the algebraic struc-
ture of Mod(S) and the combinatorial topology of S.

Chapter 1. Just as one understands a linear transformation by its action on
vectors, so one understands an element of Mod(Sg) by its action on simple
closed curves in S. Chapter 1 explains the basics of working with simple
closed curves. This is more difficult than it might sound, as the typical sim-
ple closed curve can be rather complicated (see Figure 1).

When g ≥ 2, hyperbolic geometry enters as a useful tool since each ho-
motopy class of simple closed curves has a unique geodesic representative.
Following the linear algebra analogy, we introduce the geometric intersec-
tion number. This is the analogue of an inner product on a vector space and
is a basic tool for working with simple closed curves in Sg. The chapter
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Figure 1 Thurston’s typical curve.

ends with the change of coordinates principle. This principle plays the same
role that change of basis plays for matrices, so it is not surprising that it is
applied with great frequency.

Chapter 2. After defining the mapping class group Mod(S), we compute
the examples that can be explicitly determined “by hand.” We then introduce
what we call the Alexander method, which gives an algorithm for determin-
ing whether or not two elements of Mod(S) are equal. In particular, this
method is used for showing that an element of Mod(S) is nontrivial or for
verifying relations in Mod(S). One of the computations we perform is the
following classical fundamental theorem of Dehn.

Theorem 2.5 Mod(T 2) ≈ SL(2,Z).

Chapter 3. Dehn twists are the simplest infinite-order elements of Mod(S).
They play the role of elementary matrices in linear algebra, so it is not sur-
prising that they appear in much of what follows. We present an in-depth
study of Dehn twists and their action on simple closed curves. As one appli-
cation of this study, we prove that if two simple closed curves in Sg have ge-
ometric intersection number greater than 1, then the associated Dehn twists
generate a free group of rank 2 in Mod(S). We also apply our knowledge of
Dehn twists in order to prove the following basic theorem.

Theorem 3.10 For g ≥ 3, the center ofMod(Sg) is trivial.

Chapter 4. At this point we have developed the nuts and bolts of the the-
ory, and we start to expose some of the most basic algebraic structure of
Mod(S). The following fundamental theorem of Dehn is analogous to the
fact that SL(n,Z) is generated by elementary matrices.
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Theorem 4.1 Mod(Sg) is generated by finitely many Dehn twists.

Theorem 4.1 is proved by induction on genus, and the Birman exact se-
quence is introduced as the key step for the induction. The key to the in-
ductive step is to prove that the complex of curves C(Sg) is connected when
g ≥ 2. The simplicial complex C(Sg) is a useful combinatorial object that
encodes intersection patterns of simple closed curves in Sg. More detailed
structure of C(Sg) is then used to find various explicit generating sets for
Mod(Sg), including those due to Lickorish and to Humphries.

A natural problem now arises: given a finite product of Dehn twists, is
there an algorithm to determine whether the resulting element of Mod(Sg)
is trivial or not? The next theorem says that the answer is yes.

Theorem 4.2 Mod(Sg) has a solvable word problem.

Chapter 5. After proving that a group G is finitely generated, the next in-
variant one wants to compute is the abelianization of G or, what is the same
thing, its first homology H1(G; Z). Chapter 5 begins with a simple proof,
due to Harer, of the following theorem of Mumford, Birman, and Powell.

Theorem 5.2 If g ≥ 3, then H1(Mod(Sg); Z) = 1.

The key ingredient in the proof of Theorem 5.2 is Theorem 4.1 together
with the lantern relation, a beautiful relation between seven Dehn twists that
was discovered by Dehn. We then apply a method from geometric group
theory to prove the following theorem.

Theorem 5.7Mod(Sg) is finitely presentable.

The geometric group theory technique converts the statement of Theo-
rem 5.7 to a problem about the topology of a certain arc complex and an
associated mapping class group action on it. The key in this case is a shock-
ingly simple and beautiful proof by Hatcher that the arc complex is con-
tractible. We also give explicit presentations of Mod(Sg), including those
by Wajnryb and Gervais.

Hopf gave a formula for computing H2(G; Z) for any group G from a
finite presentation for G. While this computation is usually too difficult to
perform in practice, Pitsch discovered that one can use the Wajnryb presen-
tation of Mod(Sg) to give an upper bound on the rank of H2(Mod(Sg); Z).
We use this method in proving the following deep theorem originally due to
Harer.

Theorem 5.8 If g ≥ 4, then H2(Mod(Sg); Z) ∼= Z.

The lower bound in Theorem 5.8 is given by explicitly constructing non-
trivial classes. We give a detailed construction of the the Euler class, the
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most basic invariant for surface bundles, as a 2-cocycle for the mapping
class group of a punctured surface. At this point homological algebra, in
the form of (a degenerate form of) the Hochschild–Serre spectral sequence,
is used to deduce Theorem 5.8. The Meyer signature cocycle is also ex-
plained, as is the important connection of this circle of ideas with the theory
of Sg-bundles. Indeed, understanding Sg-bundles and their invariants is a
major motivation for computing H2(Mod(Sg); Z). The strong connection
between Mod(Sg) and Sg-bundles comes from the following bijection:⎧⎨⎩ Isomorphism classes

of oriented Sg-bundles
over B

⎫⎬⎭←→

⎧⎨⎩ Conjugacy classes
of representations

ρ : π1(B)→ Mod(Sg)

⎫⎬⎭
for each fixed g ≥ 2 and each fixed base B.

Chapter 6. Algebraic intersection number gives a Mod(Sg)-invariant sym-
plectic form on H1(Sg; Z), thus inducing a representation

Ψ : Mod(Sg)→ Sp(2g,Z)

with target the integral symplectic group. This symplectic representation of
Mod(Sg) can be viewed as a kind of “linear approximation” to Mod(Sg).
We present three different proofs of the surjectivity of Ψ, each illustrating
a different theme. The usefulness of the symplectic representation is then
illustrated by two applications to understanding the algebraic structure of
Mod(S). First, we explain how Serre used this representation to prove the
following.

Theorem 6.9 Mod(Sg) has a torsion-free subgroup of finite index.

The actual statement of Theorem 6.9 given below provides explicit
torsion-free subgroups of Mod(Sg) that come from congruence subgroups
of Sp(2g,Z). We then use the symplectic representation to prove, following
Ivanov, the following theorem of Grossman.

Theorem 6.11 Mod(Sg) is residually finite.

The symplectic representation has a kernel, called the Torelli group, de-
noted I(Sg). This is an important but still poorly understood subgroup of
Mod(Sg). The Torelli group supports a rich and beautiful theory with im-
portant connections to other parts of mathematics. We continue Chapter 6
by explaining some of the pioneering work of Dennis Johnson on I(Sg). In
particular, we construct the Johnson homomorphism

τ : I(S1
g)→ ∧3H,
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where S1
g is Sg minus an open disk and H = H1(S

1
g ; Z). We then explain a

few of the many applications of τ .

Chapter 7. What are the finite groups of topological symmetries of S?
That is, what are the finite subgroups of Mod(S)? A deep theorem of Ker-
ckhoff states that each finite subgroup of Mod(S) comes from a group of
orientation-preserving isometries for some hyperbolic metric on S. Such
groups are highly constrained: using the Riemann–Hurwitz formula and ba-
sic facts about 2-dimensional orbifolds, we prove Hurwitz’s 84(g − 1) the-
orem, a nineteenth century classic.

Theorem 7.4 (84(g − 1) theorem) If X is a hyperbolic surface homeo-
morphic to Sg, where g ≥ 2, then

| Isom+(X)| ≤ 84(g − 1).

We also prove a corresponding 4g + 2 theorem for cyclic subgroups
of Mod(Sg). Later in the book we prove Kerckhoff’s theorem for cyclic
groups (i.e., “cyclic Nielsen realization”) by using the action of Mod(Sg)
on Teich(Sg).

The basic orbifold theory that we develop to prove Theorem 7.4 is then
applied to prove that Mod(S) has only finitely many conjugacy classes of
finite subgroups. On the other hand, we prove that there is enough torsion in
Mod(S) to generate it with finitely many torsion elements, and indeed we
can take these elements to have order 2.

Chapter 8. This chapter is an exposition of one of the most beautiful con-
nections between topology and algebra in dimension 2: the Dehn–Nielsen–
Baer theorem. Let Out(π1(S)) denote the group of outer automorphisms of
π1(S) and let Mod±(S) denote the extended mapping class group, which
is the group of isotopy classes of all homeomorphisms of S (including the
orientation-reversing ones).

Theorem 8.1 (Dehn–Nielsen–Baer theorem) For g ≥ 1, we have

Mod±(Sg) ∼= Out(π1(Sg)).

Theorem 8.1 equates a topologically defined group, Mod(Sg), with an
algebraically defined group, Out(π1(Sg)). What is more, Dehn’s original
proof uses hyperbolic geometry! Both the theorem and the ideas in the proof
foreshadowed the Mostow rigidity theorem nearly 50 years in advance.
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Chapter 9. Part 1 ends with a brief introduction to braid groups Bn. The
group Bn is isomorphic to the mapping class group of a disk with nmarked
points. Since disks are planar, the braid groups lend themselves to special
pictorial representations. This gives the theory of braid groups its own spe-
cial flavor within the theory of mapping class groups.

After presenting some classical facts about the algebraic structure of the
braid group, we give a new proof of the Birman–Hilden theorem, which re-
lates the braid groups to the mapping class groups of closed surfaces. Let
SMod(S1

g) denote the subgroup of Mod(S1
g ) consisting of elements with

representative homeomorphisms that commute with some fixed hyperellip-
tic involution.

Theorem 9.2 (Birman–Hilden theorem) Let g ≥ 1. Then

SMod(S1
g ) ≈ B2g+1.

Part 2

Part 2 of the book is a concise introduction to Teichmüller theory and the
moduli space of Riemann surfaces. We concentrate on those aspects of the
theory that are most directly applicable to understanding Mod(Sg). Part 2
has a decidedly more analytic and geometric flavor than Part 1.

Chapter 10. We introduce Teichmüller space Teich(Sg) as the space of
hyperbolic structures on Sg. After putting a natural topology on Teich(Sg)
and giving two heuristic counts of its dimension, we prove the following
classical result due to Fricke and Klein in 1897.

Theorem 10.6 For g ≥ 2 we have Teich(Sg) ∼= R6g−6.

We prove Theorem 10.6 by giving explicit coordinates on Teich(Sg)
coming from certain length and twist parameters for curves in a pants de-
composition of Sg; these are the Fenchel–Nielsen coordinates on Teich(Sg).
It is worth emphasizing how miraculous it is that the quotient Teich(Sg) =
HypMet(Sg)/Diff0(Sg) of an infinite-dimensional space by an infinite-
dimensional group action gives a finite-dimensional manifold. The kind of
“rigidity” behind this is in some sense contained in hyperbolic trigonome-
try, as can be seen in the proof of Theorem 10.6. The chapter ends with the
following fundamental theorem about hyperbolic metrics on surfaces.

Theorem 10.7 Let g ≥ 2. There are 9g − 9 specific homotopy classes of
simple closed curves on Sg with the property that any hyperbolic metric
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on Sg is determined up to isotopy by the lengths of the geodesics in these
homotopy classes.

The key to the proof of Theorem 10.7 is a convexity result for the function
“length of a” (where a is an isotopy class of simple closed curves) consid-
ered as a function on Teich(Sg).

Chapter 11. After determining the topology of Teich(Sg), we turn to its
metric geometry. In order to do this, we first explain how one can think of
Teich(Sg) as the space of complex structures on Sg.

Given a pair of points X,Y ∈ Teich(Sg), one associates a pair of Rie-
mann surfaces X,Y and a homeomorphism f : X → Y well defined up
to homotopy. While f is in general not conformal, it can always be chosen
to be quasiconformal. This means that f distorts angles by at most a fixed
bounded amount K(f).

A natural extremal mapping problem then arises:

Given a homeomorphism of Riemann surfaces f : X → Y , is
there a quasiconformal map X → Y that minimizes quasicon-
formal dilatation among all maps homotopic to f?

Teichmüller answered this question by finding a concrete, explicit mapping
now called the Teichmüller map. Away from a finite number of points, a
Teichmüller mapping locally looks like the linear map (x, y) 
→ (Kx, 1

K y)

for some K. In 1939 Teichmüller proved1 that his maps solve the above
extremal problem. What is more, he proved that his maps give the unique
solution.

Theorems 11.8 and 11.9 (Teichmüller’s existence and uniqueness theo-
rems) Let g ≥ 2 and let X,Y ∈ Teich(Sg). Let f : X → Y be the associ-
ated homeomorphism of Riemann surfaces. Then there exists a Teichmüller
mapping h : X → Y that is homotopic to f . The map h uniquely minimizes
the quasiconformal dilatation among all homeomorphisms homotopic to f .

The proof of Theorem 11.8 illustrates how the global point of view in-
forms the local. Namely, in the course of proving the existence statement
for a single Y ∈ Teich(Sg), we actually are led to proving the exis-
tence statement for all possible targets Y ∈ Teich(Sg) at the same time.
Specifically, this is accomplished by proving the surjectivity of a certain
map QD(X) → Teich(Sg), where QD(X) is the space of holomorphic
quadratic differentials on a Riemann surface X. To prove this surjectivity,

1Actually, Ahlfors is usually credited with the first complete, understandable proof of this
fact.
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we use the global topology of Teich(Sg) via an application of the invari-
ance of domain theorem. This proof is an example of the so-called method
of continuity.

The solution to the extremal problem can be used to define a metric on
Teich(Sg) called the Teichmüller metric. Let h : X → Y be the Teichmüller
map associated to X,Y ∈ Teich(Sg) and letK(h) be its dilatation. We prove
that

dTeich(Sg)(X,Y) =
1

2
log(K(h))

defines a complete metric on Teich(Sg). This is called the Teichmüller met-
ric. In order to describe the geodesics in this metric, we explain the funda-
mental connection between Teichmüller’s theorems, holomorphic quadratic
differentials, and measured foliations. This description is a crucial ingredi-
ent in the proof of the Nielsen–Thurston classification theorem that we give
later in the book.

Chapter 12. Let g ≥ 2. The moduli space M(Sg) of genus g Riemann
surfaces is defined to be

M(Sg) = Teich(Sg)/Mod(Sg).

The space M(Sg) parameterizes many different kinds of structures on
Sg. It can be viewed as any one of the following sets:

1. Isometry classes of constant curvature metrics on Sg

2. Conformal classes of Riemannian metrics on Sg

3. Biholomorphism classes of complex structures on Sg

4. Isomorphism classes of smooth, complex algebraic structures on Sg.

The natural bijective correspondences between these sets are derived from
deep theorems, namely, the uniformization theorem and the Kodaira em-
bedding theorem. As such, the bijections between the sets above are very
difficult to access explicitly. The interplay between these different incarna-
tions is one reason the study ofM(Sg) is rich and often difficult.

The group Mod(Sg) and the space M(Sg) are tied together closely be-
cause of the following theorem due to Fricke.

Theorem 12.2 Mod(Sg) acts properly discontinuously on Teich(Sg).

In order to prove Theorem 12.2, we consider the raw length spectrum
rls(X) of a hyperbolic surface X ≈ Sg. The set rls(X) is defined to be
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the set of lengths of all closed geodesics in X. The crucial property is that
rls(X) is a closed, discrete subset of [0,∞). The Wolpert lemma then tells
us that nearby points in Teich(Sg) have nearly equal length spectra. From
these two facts Theorem 12.2 follows easily.

Since Mod(Sg) acts properly discontinuously on Teich(Sg), the quotient
space M(Sg) is an orbifold. By Theorem 6.9, M(Sg) is finitely covered
by a manifold. Since Teich(Sg) is contractible (Theorem 10.6), we have the
following.

Theorem 12.3 For g ≥ 1, the spaceM(Sg) is an aspherical orbifold and
is finitely covered by an aspherical manifold.

It is not hard to see that M(Sg) is not compact. Understanding this non-
compactness is a central issue. The most basic theorem in this direction is
the Mumford compactness criterion, which we think of as a generalization
of the Mahler compactness criterion for lattices in Rn. For a hyperbolic sur-
face X we denote by �(X) the length of the shortest essential closed curve
in X.

Theorem 12.6 (Mumford’s compactness criterion) Let g ≥ 1. For each
ε > 0, the space

Mε(Sg) = {X ∈M(Sg) : �(X) ≥ ε}

is compact.

Since the sets Mε(Sg) exhaust M(Sg), Theorem 12.6 tells us that the
only way to leave every compact set in M(Sg) is to decrease the length of
some closed geodesic. Mumford’s compactness criterion leads us to study
the topology of M(Sg) at infinity. Combining a number of ingredients, in-
cluding connectedness of C(Sg) for g ≥ 2, we prove the following.

Corollaries 12.11 and 12.12 Let g ≥ 2. ThenM(Sg) has one end, and ev-
ery loop inM(Sg) can be homotoped outside every compact set inM(Sg).

We end the chapter by explaining one more of the (many) reasons for the
importance ofM(Sg) in mathematics:M(Sg) is very close to being a clas-
sifying space for Sg-bundles. By “very close” we mean that an analogous
statement holds for any finite manifold cover of M(Sg). In particular, we
prove that the rational cohomology of the spaceM(Sg) is isomorphic to the
rational cohomology of the group Mod(Sg).

Part 3
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Chapter 13. The main goal of Part 3 is to understand what individual el-
ements of Mod(Sg) look like, in the same way that the Jordan canonical
form of a matrix gives us a geometric picture of what a linear transforma-
tion looks like. The precise statement is the following.

Theorem 13.2 (Nielsen–Thurston classification) Let g ≥ 2. Each f ∈
Mod(Sg) has a representative φ ∈ Homeo+(Sg) of one of the following
types.

1. Periodic: φm = Id for somem > 0.

2. Reducible: φ leaves invariant a finite collection of pairwise disjoint
simple closed curves in Sg.

3. Pseudo-Anosov: there are transverse measured foliations (Fs, µs)
and (Fu, µu) on Sg, and a real number λ > 1 so that

φ · (Fu, µu) = (Fu, λµu) and φ · (Fs, µs) = (Fs, λ−1µs).

Case 3 is exclusive from cases 1 and 2. The number λ associated to a
pseudo-Anosov homeomorphism φ is called the stretch factor of φ. Away
from a finite number of points, a pseudo-Anosov homeomorphism locally
looks like the linear map (x, y) 
→ (λx, 1

λy), just like a Teichmüller map-
ping.

Type 1 mapping classes are relatively easy to understand. For type 2 we
can cut along the invariant collection of curves and reapply the theorem to
each component of the cut surface. By doing this we obtain a “canonical
form” for mapping classes: any mapping class can be reduced into finite
order and pseudo-Anosov pieces. Thus the more we know about pseudo-
Anosov homeomorphisms, the more we know about arbitrary homeomor-
phisms. Chapter 14 is completely devoted to studying properties of pseudo-
Anosov homeomorphisms.

We present Bers’ proof of Theorem 13.2. The proof uses many of the
ideas and results proved earlier in the book, such as the proper discontinuity
of the action of Mod(Sg) on Teich(Sg), the Mumford compactness crite-
rion, and the structure of Teichmüller geodesics. The main idea is to prove
that if a mapping class f is not of type 1 or type 2, then there is an f -invariant
Teichmüller geodesic which one then interprets, using Teichmüller’s theo-
rems, to show that f is pseudo-Anosov.

Chapter 14. In this chapter we begin the study of pseudo-Anosov home-
omorphisms in earnest. Although in some sense the typical mapping class
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is pseudo-Anosov, it is actually rather nontrivial to construct explicit exam-
ples. We begin by presenting five constructions of pseudo-Anosov homeo-
morphisms.

The simplest invariant of a pseudo-Anosov mapping class is its stretch
factor λ, which is analogous to the largest eigenvalue of a linear map. The
next theorem tells us that the set of pseudo-Anosov stretch factors is quite
constrained.

Theorem 14.8 Let g ≥ 2. Let λ be the stretch factor associated to a pseudo-
Anosov element of Mod(Sg). Then λ is an algebraic integer with degree
bounded above by 6g − 6.

Each pseudo-Anosov mapping class has an invariant axis in Teich(S)
and thus gives a geodesic loop in M(S). The length of this loop is the
logarithm of the corresponding stretch factor. Thus the set of logarithms of
stretch factors of pseudo-Anosov elements of Mod(S) can be thought of as
the length spectrum of M(S). The following theorem of Arnoux–Yoccoz
and Ivanov can thus be interpreted as implying that the length spectrum of
M(S) is discrete.

Theorem 14.9 Let g ≥ 2. For any C ≥ 1, there are only finitely many con-
jugacy classes inMod(Sg) of pseudo-Anosov mapping classes with stretch
factor at most C .

Pseudo-Anosov homeomorphisms have a number of remarkable dynam-
ical properties. Among them, we prove:

• Every pseudo-Anosov homeomorphism has a dense orbit.

• The periodic points of a pseudo-Anosov homeomorphism are dense.

• A pseudo-Anosov homeomorphism has the minimum number of pe-
riodic points, for each period, in its homotopy class.

In analogy with the behavior of the lengths of vectors under iteration
of a linear transformation with a dominant eigenvalue, we also prove the
following.

Theorem 14.23 Let g ≥ 2. Let f ∈ Mod(Sg) be pseudo-Anosov with stretch
factor λ. If ρ is any Riemannian metric on Sg, and if a is any isotopy class
of simple closed curves in Sg, then

lim
n→∞

n

√
�ρ(fn(a)) = λ.
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Chapter 15. The final chapter begins with a description of Thurston’s orig-
inal path of discovery to the Nielsen–Thurston classification theorem. As
Thurston wrote in his famous paper [207]:

The nicest aspects of this theory I have been trying to sketch
are not formal, but intuitive. If you draw pictures of a pseudo-
Anosov diffeomorphism, you can understand geometrically
what it does, something which has puzzled me for several years.
. . . it is pleasant to see something of this abstract origin made
very concrete.

We begin by illustrating Thurston’s approach via a beautiful and fun-
damental example. Thurston’s first idea is that one can understand f ∈
Mod(Sg) by iterating f on an isotopy class of essential simple closed curves
c. In general, the sequence fn(c) gets very complicated very quickly. This
is where the next idea comes in: one can encode a very complicated simple
closed curve in a surface with a small amount of data called a train track.
A train track in Sg is an embedded graph with some extra data attached,
for example, each edge is labeled by a nonnegative integer. Under certain
conditions, f preserves a train track (up to a certain equivalence) and acts
linearly on its labels. When f is pseudo-Anosov, the corresponding matrix is
a Perron–Frobenius matrix, and all of the information attached to f (stretch
factor, stable foliation, etc.) can be easily determined by linear algebra.

Thus in this example the combinatorial device of train tracks converts
the nonlinear problem of understanding a homeomorphism of a surface to a
simple linear algebra problem. Thurston’s remarkable discovery is that this
linearization process works for all pseudo-Anosov homeomorphisms, and
in fact it can be used to prove the Nielsen–Thurston classification.

We give a sketch of how all of this works in general and how Thurston
proves the Nielsen–Thurston classification in this way. The idea is that the
space PMF(Sg) of all projective classes of measured foliations on Sg can
be used to give a compactification of Teich(Sg) that is homeomorphic to a
closed ball. Each element of Mod(Sg) induces a homeomorphism on this
ball, and so the Brouwer fixed point theorem can be applied. Analyzing
the various possibilities for fixed points leads to the various cases of the
classification theorem. As Thurston says:

And there is a great deal of natural geometric structure on
PMF , relating to the structure on S, beautiful to contemplate.
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Chapter One

Curves, Surfaces, and Hyperbolic Geometry

A linear transformation of a vector space is determined by, and is best un-
derstood by, its action on vectors. In analogy with this, we shall see that an
element of the mapping class group of a surface S is determined by, and is
best understood by, its action on homotopy classes of simple closed curves
in S. We therefore begin our study of the mapping class group by obtaining
a good understanding of simple closed curves on surfaces.

Simple closed curves can most easily be studied via their geodesic repre-
sentatives, and so we begin with the fact that every surface may be endowed
with a constant-curvature Riemannian metric, and we study the relation be-
tween curves, the fundamental group, and geodesics. We then introduce the
geometric intersection number, which we think of as an “inner product” for
simple closed curves. A second fundamental tool is the change of coordi-
nates principle, which is analogous to understanding change of basis in a
vector space. After explaining these tools, we conclude this chapter with
a discussion of some foundational technical issues in the theory of surface
topology, such as homeomorphism versus diffeomorphism, and homotopy
versus isotopy.

1.1 SURFACES AND HYPERBOLIC GEOMETRY

We begin by recalling some basic results about surfaces and hyperbolic ge-
ometry that we will use throughout the book. This is meant to be a brief
review; see [208] or [119] for a more thorough discussion.

1.1.1 SURFACES

A surface is a 2-dimensional manifold. The following fundamental result
about surfaces, often attributed to Möbius, was known in the mid-nineteenth
century in the case of surfaces that admit a triangulation. Radò later proved,
however, that every compact surface admits a triangulation. For proofs of
both theorems, see, e.g., [204].

THEOREM 1.1 (Classification of surfaces) Any closed, connected, ori-
entable surface is homeomorphic to the connect sum of a 2-dimensional
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sphere with g ≥ 0 tori. Any compact, connected, orientable surface is ob-
tained from a closed surface by removing b ≥ 0 open disks with disjoint
closures. The set of homeomorphism types of compact surfaces is in bijec-
tive correspondence with the set {(g, b) : g, b ≥ 0}.

The g in Theorem 1.1 is the genus of the surface; the b is the number
of boundary components. One way to obtain a noncompact surface from a
compact surface S is to remove n points from the interior of S; in this case,
we say that the resulting surface has n punctures.

Unless otherwise specified, when we say “surface” in this book, we will
mean a compact, connected, oriented surface that is possibly punctured (of
course, after we puncture a compact surface, it ceases to be compact). We
can therefore specify our surfaces by the triple (g, b, n). We will denote by
Sg,n a surface of genus g with n punctures and empty boundary; such a sur-
face is homeomorphic to the interior of a compact surface with n boundary
components. Also, for a closed surface of genus g, we will abbreviate Sg,0
as Sg. We will denote by ∂S the (possibly disconnected) boundary of S.

Recall that the Euler characteristic of a surface S is

χ(S) = 2− 2g − (b+ n).

It is a fact that χ(S) is also equal to the alternating sum of the Betti numbers
of S. Since χ(S) is an invariant of the homeomorphism class of S, it follows
that a surface S is determined up to homeomorphism by any three of the four
numbers g, b, n, and χ(S).

Occasionally, it will be convenient for us to think of punctures as marked
points. That is, instead of deleting the points, we can make them distin-
guished. Marked points and punctures carry the same topological informa-
tion, so we can go back and forth between punctures and marked points as
is convenient. On the other hand, all surfaces will be assumed to be without
marked points unless explicitly stated otherwise.

If χ(S) ≤ 0 and ∂S = ∅, then the universal cover S̃ is homeomorphic to
R2 (see, e.g., [199, Section 1.4]). We will see that, when χ(S) < 0, we can
take advantage of a hyperbolic structure on S̃.

1.1.2 THE HYPERBOLIC PLANE

Let H2 denote the hyperbolic plane. One model for H2 is the upper half-
plane model, namely, the subset of C with positive imaginary part (y > 0),
endowed with the Riemannian metric

ds2 =
dx2 + dy2

y2
,
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where dx2 + dy2 denotes the Euclidean metric on C. In this model the
geodesics are semicircles and half-lines perpendicular to the real axis.

It is a fact from Riemannian geometry that any complete, simply con-
nected Riemannian 2-manifold with constant sectional curvature −1 is iso-
metric to H2.

For the Poincaré disk model of H2, we take the open unit disk in C with
the Riemannian metric

ds2 = 4
dx2 + dy2

(1− r2)2 .

In this model the geodesics are circles and lines perpendicular to the unit
circle in C (intersected with the open unit disk).

Any Möbius transformation from the upper half-plane to the unit disk is
an isometry between the upper half-plane model for H2 and the Poincaré
disk model of H2. The group of orientation-preserving isometries of H2 is
(in either model) the group of Möbius transformations taking H2 to itself.
This group, denoted Isom+(H2), is isomorphic to PSL(2,R). In the upper
half-plane model, this isomorphism is given by the following map:

±
(
a b
c d

)

→

(
z 
→ az + b

cz + d

)
.

The boundary of the hyperbolic plane. One of the central objects in the
study of hyperbolic geometry is the boundary at infinity of H2, denoted by
∂H2. A point of ∂H2 is an equivalence class [γ] of unit-speed geodesic rays
where two rays γ1, γ2 : [0,∞) → H2 are equivalent if they stay a bounded
distance from each other; that is, there exists D > 0 so that

dH2(γ1(t), γ2(t)) ≤ D for all t ≥ 0.

Actually, if γ1 and γ2 are equivalent, then they can be given unit-speed pa-
rameterizations so that

lim
t→∞

dH2(γ1(t), γ2(t)) = 0.

We denote the union H2 ∪ ∂H2 by H2. The set H2 is topologized via the
following basis. We take the usual open sets of H2 plus one open set UP for
each open half-plane P in H2. A point of H2 lies in UP if it lies in P , and
a point of ∂H2 lies in UP if every representative ray γ(t) eventually lies in
P , i.e., if there exists T ≥ 0 so that γ(t) ∈ P for all t ≥ T .

In this topology ∂H2 is homeomorphic to S1, and the union H2 is home-
omorphic to the closed unit disk. The space H2 is a compactification of H2
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and is called the compactification of H2. In the Poincaré disk model of H2,
the boundary ∂H2 corresponds to the unit circle in C, and H2 is identified
with the closed unit disk in C.

Any isometry f ∈ Isom(H2) takes geodesic rays to geodesic rays, clearly
preserving equivalence classes. Also, f takes half-planes to half-planes. It
follows that f extends uniquely to a map f : H2 → H2. As any pair of dis-
tinct points in ∂H2 are the endpoints of a unique geodesic in H2, it follows
that f maps distinct points to distinct points. It is easy to check that in fact
f is a homeomorphism.

Classification of isometries of H2. We can use the above setup to clas-
sify nontrivial elements of Isom+(H2). Suppose we are given an arbitrary
nontrivial element f ∈ Isom+(H2). Since f is a self-homeomorphism of a
closed disk, the Brouwer fixed point theorem gives that f has a fixed point
in H2. By considering the number of fixed points of f in H2, we obtain a
classification of isometries of H2 as follows.

Elliptic. If f fixes a point p ∈ H2, then f is called elliptic, and it is a rotation
about p. Elliptic isometries have no fixed points on ∂H2. They correspond
to elements of PSL(2,R) whose trace has absolute value less than 2.

Parabolic. If f has exactly one fixed point in ∂H2, then f is called parabolic.
In the upper half-plane model, f is conjugate in Isom+(H2) to z 
→ z ± 1.
Parabolic isometries correspond to those nonidentity elements of PSL(2,R)
with trace ±2.

Hyperbolic. If f has two fixed points in ∂H2, then f is called hyperbolic
or loxodromic. In this case, there is an f -invariant geodesic axis γ; that is,
an f -invariant geodesic in H2 on which f acts by translation. On ∂H2 the
fixed points act like a source and a sink, respectively. Hyperbolic isometries
correspond to elements of PSL(2,R) whose trace has absolute value greater
than 2.

It follows from the above classification that if f has at least three fixed
points in H2, then f is the identity.

Also, since commuting elements of Isom+(H2) must preserve each
other’s fixed sets in H2, we see that two nontrivial elements of Isom+(H2)

commute if and only if they have the same fixed points in H2.

1.1.3 HYPERBOLIC SURFACES

The following theorem gives a link between the topology of surfaces and
their geometry. It will be used throughout the book to convert topological
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problems to geometric ones, which have more structure and so are often
easier to solve.

We say that a surface S admits a hyperbolic metric if there exists a com-
plete, finite-area Riemannian metric on S of constant curvature −1 where
the boundary of S (if nonempty) is totally geodesic (this means that the
geodesics in ∂S are geodesics in S). Similarly, we say that S admits a Eu-
clidean metric, or flat metric if there is a complete, finite-area Riemannian
metric on S with constant curvature 0 and totally geodesic boundary.

If S has empty boundary and has a hyperbolic metric, then its universal
cover S̃ is a simply connected Riemannian 2-manifold of constant curvature
−1. It follows that S̃ is isometric to H2, and so S is isometric to the quotient
of H2 by a free, properly discontinuous isometric action of π1(S). If S has
nonempty boundary and has a hyperbolic metric, then S̃ is isometric to a
totally geodesic subspace of H2. Similarly, if S has a Euclidean metric, then
S̃ is isometric to a totally geodesic subspace of the Euclidean plane E2.

THEOREM 1.2 Let S be any surface (perhaps with punctures or bound-
ary). If χ(S) < 0, then S admits a hyperbolic metric. If χ(S) = 0, then S
admits a Euclidean metric.

A surface endowed with a fixed hyperbolic metric will be called a hyper-
bolic surface. A surface with a Euclidean metric will be called a Euclidean
surface or flat surface.

Note that Theorem 1.2 is consistent with the Gauss–Bonnet theorem
which, in the case of a compact surface S with totally geodesic boundary,
states that the integral of the curvature over S is equal to 2πχ(S).

One way to get a hyperbolic metric on a closed surface Sg is to construct
a free, properly discontinuous isometric action of π1(Sg) on H2 (as above,
this requires g ≥ 2). By covering space theory and the classification of
surfaces, the quotient will be homeomorphic to Sg. Since the action was by
isometries, this quotient comes equipped with a hyperbolic metric. Another
way to get a hyperbolic metric on Sg, for g ≥ 2, is to take a geodesic 4g-gon
in H2 with interior angle sum 2π and identify opposite sides (such a 4g-gon
always exists; see Section 10.4 below). The result is a surface of genus g
with a hyperbolic metric and, according to Theorem 1.2, its universal cover
is H2.

We remark that while the torus T 2 admits a Euclidean metric, the once-
punctured torus S1,1 admits a hyperbolic metric.

Loops in hyperbolic surfaces. Let S be a hyperbolic surface. A neigh-
borhood of a puncture is a closed subset of S homeomorphic to a once-
punctured disk. Also, by a free homotopy of loops in S we simply mean an
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unbased homotopy. If a nontrivial element of π1(S) is represented by a loop
that can be freely homotoped into the neighborhood of a puncture, then it
follows that the loop can be made arbitrarily short; otherwise, we would find
an embedded annulus whose length is infinite (by completeness) and where
the length of each circular cross section is bounded from below, giving in-
finite area. The deck transformation corresponding to such an element of
π1(S) is a parabolic isometry of the universal cover H2. This makes sense
because for any parabolic isometry of H2, there is no positive lower bound
to the distance between a point in H2 and its image. All other nontrivial el-
ements of π1(S) correspond to hyperbolic isometries of H2 and hence have
associated axes in H2.

We have the following fact, which will be used several times throughout
this book:

If S admits a hyperbolic metric, then the centralizer of any non-
trivial element of π1(S) is cyclic. In particular, π1(S) has a
trivial center.

To prove this we identify π1(S) with the deck transformation group of S
for some covering map H2 → S. Whenever two nontrivial isometries of
H2 commute, it follows from the classification of isometries of H2 that they
have the same fixed points in ∂H2. So if α ∈ π1(S) is centralized by β, it
follows that α and β have the same fixed points in ∂H2. By the discrete-
ness of the action of π1(S), we would then have that the centralizer of α
in π1(S) is infinite cyclic. If π1(S) had nontrivial center, it would then fol-
low that π1(S) ≈ Z. But then S would necessarily have infinite volume, a
contradiction.

1.2 SIMPLE CLOSED CURVES

Our study of simple closed curves in a surface S begins with the study of all
closed curves in S and the usefulness of geometry in understanding them.

1.2.1 CLOSED CURVES AND GEODESICS

By a closed curve in a surface S we will mean a continuous map S1 → S.
We will usually identify a closed curve with its image in S. A closed curve
is called essential if it is not homotopic to a point, a puncture, or a boundary
component.

Closed curves and fundamental groups. Given an oriented closed curve
α ∈ S, we can identify α with an element of π1(S) by choosing a path from
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the basepoint for π1(S) to some point on α. The resulting element of π1(S)
is well defined only up to conjugacy. By a slight abuse of notation we will
denote this element of π1(S) by α as well.

There is a bijective correspondence:⎧⎨⎩ Nontrivial
conjugacy classes

in π1(S)

⎫⎬⎭←→
⎧⎨⎩ Nontrivial free

homotopy classes of oriented
closed curves in S

⎫⎬⎭
An element g of a groupG is primitive if there does not exist any h ∈ G so

that g = hk, where |k| > 1. The property of being primitive is a conjugacy
class invariant. In particular, it makes sense to say that a closed curve in a
surface is primitive.

A closed curve in S is a multiple if it is a map S1 → S that factors

through the map S1 ×n−→ S1 for n > 1. In other words, a curve is a multiple
if it “runs around” another curve multiple times. If a closed curve in S is a
multiple, then no element of the corresponding conjugacy class in π1(S) is
primitive.

Let p : S̃ → S be any covering space. By a lift of a closed curve α to S̃
we will always mean the image of a lift R → S̃ of the map α ◦ π, where
π : R → S1 is the usual covering map. For example, if S is a surface with
χ(S) ≤ 0, then a lift of an essential simple closed curve in S to the universal
cover is a copy of R. Note that a lift is different from a path lift, which is
typically a proper subset of a lift.

Now suppose that S̃ is the universal cover and α is a simple closed curve
in S that is not a nontrivial multiple of another closed curve. In this case, the
lifts of α to S̃ are in natural bijection with the cosets in π1(S) of the infinite
cyclic subgroup 〈α〉. (Any nontrivial multiple of α has the same set of lifts
as α but more cosets.) The group π1(S) acts on the set of lifts of α by deck
transformations, and this action agrees with the usual left action of π1(S) on
the cosets of 〈α〉. The stabilizer of the lift corresponding to the coset γ〈α〉
is the cyclic group 〈γαγ−1〉.

When S admits a hyperbolic metric and α is a primitive element of π1(S),
we have a bijective correspondence:{

Elements of the conjugacy
class of α in π1(S)

}
←→

{
Lifts to S̃ of the
closed curve α

}
More precisely, the lift of the curve α given by the coset γ〈α〉 corresponds
to the element γαγ−1 of the conjugacy class [α]. That this is a bijective
correspondence is a consequence of the fact that, for a hyperbolic surface S,
the centralizer of any element of π1(S) is cyclic.
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If α is any multiple, then we still have a bijective correspondence between
elements of the conjugacy class of α and the lifts of α. However, if α is
not primitive and not a multiple, then there are more lifts of α than there
are conjugates. Indeed, if α = βk, where k > 1, then β〈α〉 �= 〈α〉 while
βαβ−1 = α.

Note that the above correspondence does not hold for the torus T 2. This
is so because each closed curve has infinitely many lifts, while each element
of π1(T

2) ≈ Z2 is its own conjugacy class. Of course, π1(T
2) is its own

center, and so the centralizer of each element is the whole group.

Geodesic representatives. A priori the combinatorial topology of closed
curves on surfaces has nothing to do with geometry. It was already real-
ized in the nineteenth century, however, that the mere existence of constant-
curvature Riemannian metrics on surfaces has strong implications for the
topology of the surface and of simple closed curves in it. For example, it
is easy to prove that any closed curve α on a flat torus is homotopic to a
geodesic: one simply lifts α to R2 and performs a straight-line homotopy.
Note that the corresponding geodesic is not unique.

For compact hyperbolic surfaces we have a similar picture, and in fact the
free homotopy class of any closed curve contains a unique geodesic. The
existence is indeed true for any compact Riemannian manifold. Here we
give a more hands-on proof of existence and uniqueness for any hyperbolic
surface.

Proposition 1.3 Let S be a hyperbolic surface. If α is a closed curve in S
that is not homotopic into a neighborhood of a puncture, then α is homo-
topic to a unique geodesic closed curve γ.

Proof. Choose a lift α̃ of α to H2. As above, α̃ is stabilized by some element
of the conjugacy class of π1(S) corresponding to α; let φ be the correspond-
ing isometry of H2. By the assumption on α, we have that φ is a hyperbolic
isometry and so has an axis of translation A; see Figure 1.1.

Consider the projection of A to S and let γ0 be a geodesic closed curve
that travels around this projection once. Any equivariant homotopy from α̃
to A projects to a homotopy between α and a multiple of γ0, which is the
desired γ. One way to get such a homotopy is to simply take the homotopy
that moves each point of α̃ along a geodesic segment to its closest-point
projection in A. This completes the proof of the existence of γ. Note that
we do not need to worry that the resulting parameterization of γ is geodesic
since any two parameterizations of the same closed curve are homotopic as
parameterized maps.

To prove uniqueness, suppose we are given a homotopy S1 × I → S
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A

α̃

x

φ(x)

φ2(x)

Figure 1.1 A lift eα of a closed curve α and the axis A for the corresponding isometry φ.

from α to a multiple γ′ of some simple closed geodesic γ′0. By compact-
ness of S1 × I , there exists a constant C ≥ 0 such that no point of α is
moved a distance greater than C by the homotopy. In the universal cover
H2, the homotopy lifts to a homotopy from the lift α̃ of α to a geodesic lift
γ̃′0 of γ′0, and points of α̃ are moved a distance at most C . It follows that
the endpoints of α̃ in ∂H2 are the same as those of γ̃′0. Since a geodesic
in H2 is uniquely determined by its endpoints in ∂H2, this proves that the
geodesic closed curve γ′0 is the same as γ0 up to sign. The closed curve γ′

is then specified by which multiple of γ0 it is. But different multiples of γ0

correspond to conjugacy classes in Isom+(H2) that have different transla-
tion lengths and/or translation directions. Conjugacy classes with differing
translation lengths are distinct, and so distinct multiples of γ0 do not lie in
the same free homotopy class. �

It follows from Proposition 1.3 that for a compact hyperbolic surface we
have a bijective correspondence:

{
Conjugacy classes

in π1(S)

}
←→

{
Oriented geodesic
closed curves in S

}

1.2.2 SIMPLE CLOSED CURVES

A closed curve in S is simple if it is embedded, that is, if the map S1 →
S is injective. Among the reasons for the particular importance of simple
closed curves is that we can easily classify them up to homeomorphism
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of S (see Section 1.3), we can cut along them (see Section 1.3), and we
can twist along them (see Section 3.1). As mentioned above, we will study
homeomorphisms of surfaces via their actions on simple closed curves.

Any closed curve α can be approximated by a smooth closed curve, and a
close enough approximation α′ of α is homotopic to α. What is more, if α is
simple, then α′ can be chosen to be simple. Smooth curves are advantageous
for many reasons. For instance, smoothness allows us to employ the notion
of transversality (general position). When convenient, we will assume that
our curves are smooth, sometimes without mention.

Simple closed curves are also natural to study because they represent
primitive elements of π1(S).

Proposition 1.4 Let α be a simple closed curve in a surface S. If α is not
null homotopic, then each element of the corresponding conjugacy class in
π1(S) is primitive.

Proof. We give the proof for the case when S is hyperbolic. Fix a covering
map H2 → S and let φ ∈ Isom+(H2) be the hyperbolic isometry corre-
sponding to some element of the conjugacy class of α. The primitivity of
the elements of the conjugacy class of α is equivalent to the primitivity of φ
in the deck transformation group.

Assume that φ = ψn, where ψ is another element of the deck transforma-
tion group and n ∈ Z. In any group, powers of the same element commute,
and so φ commutes with ψ. Thus φ and ψ have the same set of fixed points
in ∂H2.

Let α̃ be the lift of the closed curve α that has the same endpoints in ∂H2

as the axis for φ. We claim that ψ(α̃) = α̃. We know that ψ(α̃) is some lift
of α. Since α is simple, all of its lifts are disjoint and no two lifts of α have
the same endpoints in ∂H2. Thus ψ(α̃) and α̃ are disjoint and have distinct
endpoints. Now, we know that ψn−1(ψ(α̃)) = φ(α̃) = α̃. Since the fixed
points in ∂H2 of ψn−1 are the same as the endpoints of α̃, the only way
ψn−1(ψ(α̃)) can have the same endpoints at infinity as α̃ is if ψ(α̃) does.
This is to say that ψ(α̃) = α̃, and the claim is proven.

Thus the restriction of ψ to α̃ is a translation. As φ = ψn, the closed
curve α travels n times around the closed curve in S given by α̃/〈ψ〉. Since
α is simple, we have n = ±1, which is what we wanted to show. �

Simple closed curves in the torus. We can classify the set of homotopy
classes of simple closed curves in the torus T 2 as follows. Let R2 → T 2 be
the usual covering map, where the deck transformation group is generated
by the translations by (1, 0) and (0, 1). We know that π1(T

2) ≈ Z2, and if
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we base π1(T
2) at the image of the origin, one way to get a representative

for (p, q) as a loop in T 2 is to take the straight line from (0, 0) to (p, q) in
R2 and project it to T 2.

Let γ be any oriented simple closed curve in T 2. Up to homotopy, we
can assume that γ passes through the image in T 2 of (0, 0) in R2. Any path
lifting of γ to R2 based at the origin terminates at some integral point (p, q).
There is then a homotopy from γ to the standard straight-line representative
of (p, q) ∈ π1(T

2); indeed, the straight-line homotopy from the lift of γ to
the straight line through (0, 0) and (p, q) is equivariant with respect to the
group of deck transformations and thus descends to the desired homotopy.

Now, if a closed curve in T 2 is simple, then its straight-line representative
is simple. Thus we have the following fact.

Proposition 1.5 The nontrivial homotopy classes of oriented simple closed
curves in T 2 are in bijective correspondence with the set of primitive ele-
ments of π1(T

2) ≈ Z2.

An element (p, q) of Z2 is primitive if and only if (p, q) = (0,±1),
(p, q) = (±1, 0), or gcd(p, q) = 1.

We can classify homotopy classes of essential simple closed curves in
other surfaces. For example, in S2, S0,1, S0,2, and S0,3, there are no essential
simple closed curves. The homotopy classes of simple closed curves in S1,1

are in bijective correspondence with those in T 2. In Section 2.2 below, we
will show that there is a natural bijection between the homotopy classes of
essential simple closed curves in S0,4 and the homotopy classes in T 2.

Closed geodesics. For hyperbolic surfaces geodesics are the natural repre-
sentatives of each free homotopy class in the following sense.

Proposition 1.6 Let S be a hyperbolic surface. Let α be a closed curve in
S not homotopic into a neighborhood of a puncture. Let γ be the unique
geodesic in the free homotopy class of α guaranteed by Proposition 1.3. If
α is simple, then γ is simple.

Proof. We begin by applying the following fact.

A closed curve β in a hyperbolic surface S is simple if and only
if the following properties hold:

1. Each lift of β to H2 is simple.

2. No two lifts of β intersect.
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3. β is not a nontrivial multiple of another closed curve.

Thus if α is simple, then no two of its lifts to H2 intersect. It follows that
for any two such lifts, their endpoints are not linked in ∂H2. But each lift
of γ shares both endpoints with some lift of α. Thus no two lifts of γ have
endpoints that are linked in ∂H2. Since these lifts are geodesics, it follows
that they do not intersect. Further, by Proposition 1.4, any element of π1(S)
corresponding to α is primitive. The same is then true for γ, and so γ cannot
be a multiple. Since geodesics in H2 are always simple, we conclude that γ
is simple. �

1.2.3 INTERSECTION NUMBERS

There are two natural ways to count the number of intersection points be-
tween two simple closed curves in a surface: signed and unsigned. These
correspond to the algebraic intersection number and geometric intersection
number, respectively.

Let α and β be a pair of transverse, oriented, simple closed curves in S.
Recall that the algebraic intersection number î(α, β) is defined as the sum
of the indices of the intersection points of α and β, where an intersection
point is of index +1 when the orientation of the intersection agrees with the
orientation of S and is−1 otherwise. Recall that î(α, β) depends only on the
homology classes of α and β. In particular, it makes sense to write î(a, b) for
a and b, the free homotopy classes (or homology classes) of closed curves
α and β.

The most naive way to count intersections between homotopy classes of
closed curves is to simply count the minimal number of unsigned intersec-
tions. This idea is encoded in the concept of geometric intersection number.
The geometric intersection number between free homotopy classes a and b
of simple closed curves in a surface S is defined to be the minimal number
of intersection points between a representative curve in the class a and a
representative curve in the class b:

i(a, b) = min{|α ∩ β| : α ∈ a, β ∈ b}.

We sometimes employ a slight abuse of notation by writing i(α, β) for the
intersection number between the homotopy classes of simple closed curves
α and β.

We note that geometric intersection number is symmetric, while al-
gebraic intersection number is skew-symmetric: i(a, b) = i(b, a), while
î(a, b) = −î(b, a). While algebraic intersection number is well defined on
homology classes, geometric intersection number is well defined only on
free homotopy classes. Geometric intersection number is a useful invariant
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but, as we will see, it is more difficult to compute than algebraic intersection
number.

Observe that i(a, a) = 0 for any homotopy class of simple closed curves
a. If α separates S into two components, then for any β we have î(α, β) = 0
and i(α, β) is even. In general, i and î have the same parity.

Intersection numbers on the torus. As noted above, the nontrivial free
homotopy classes of oriented simple closed curves in T 2 are in bijective cor-
respondence with primitive elements of Z2. For two such homotopy classes
(p, q) and (p′, q′), we have

î((p, q), (p′, q′)) = pq′ − p′q

and

i((p, q), (p′, q′)) = |pq′ − p′q|.

To verify these formulas, one should first check the case where (p, q) =
(1, 0) (exercise). For the general case, we note that if (p, q) represents an
essential oriented simple closed curve, that is, if it is primitive, then there
is a matrix A ∈ SL(2,Z) with A((p, q)) = (1, 0). Since A is a linear,
orientation-preserving homeomorphism of R2 preserving Z2, it induces an
orientation-preserving homeomorphism of the torus T 2 = R2/Z2 whose
action on π1(T

2) ≈ Z2 is given by A. Since orientation-preserving homeo-
morphisms preserve both algebraic and geometric intersection numbers, the
general case of each formula follows.

Minimal position. In practice, one computes the geometric intersection
number between two homotopy classes a and b by finding representatives α
and β that realize the minimal intersection in their homotopy classes, so that
i(a, b) = |α ∩ β|. When this is the case, we say that α and β are in minimal
position.

Two basic questions now arise.

1. Given two simple closed curves α and β, how can we tell if they are
in minimal position?

2. Given two simple closed curves α and β, how do we find homotopic
simple closed curves that are in minimal position?

While the first question is a priori a minimization problem over an infinite-
dimensional space, we will see that the question can be reduced to a finite
check—the bigon criterion given below. For the second question, we will see
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that geodesic representatives of simple closed curves are always in minimal
position.

1.2.4 THE BIGON CRITERION

We say that two transverse simple closed curves α and β in a surface S form
a bigon if there is an embedded disk in S (the bigon) whose boundary is the
union of an arc of α and an arc of β intersecting in exactly two points; see
Figure 1.2.

Figure 1.2 A bigon.

The following proposition gives a simple, combinatorial condition for de-
ciding whether or not two simple closed curves are in minimal position. It
therefore gives a method for determining the geometric intersection number
of two simple closed curves.

Proposition 1.7 (The bigon criterion) Two transverse simple closed
curves in a surface S are in minimal position if and only if they do not form
a bigon.

One immediate and useful consequence of the bigon criterion is the fol-
lowing:

Any two transverse simple closed curves that intersect exactly
once are in minimal position.

Before proving Proposition 1.7, we need a lemma.

Lemma 1.8 If transverse simple closed curves α and β in a surface S do
not form any bigons, then in the universal cover of S, any pair of lifts α̃ and
β̃ of α and β intersect in at most one point.

Proof. Assume χ(S) ≤ 0, so the universal cover S̃ is homeomorphic to R2

(the case of χ(S) > 0 is an exercise). Let p : S̃ → S be the covering map.
Suppose the lifts α̃ and β̃ of α and β intersect in at least two points. It

follows that there is an embedded disk D0 in S̃ bounded by one subarc of α̃
and one subarc of β̃.
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By compactness and transversality, the intersection (p−1(α)∪ p−1(β))∩
D0 is a finite graph if we think of the intersection points as vertices. Thus
there is an innermost disk, that is, an embedded disk D in S̃ bounded by
one arc of p−1(α) and one arc of p−1(β) and with no arcs of p−1(α) or
p−1(β) passing through the interior of the D (see Figure 1.3). Denote the
two vertices of D by v1 and v2, and the two edges of D by α̃1 and β̃1.

Figure 1.3 An innermost disk between two lifts.

We first claim that the restriction of p to ∂D is an embedding. The points
v1 and v2 certainly map to distinct points in S since α̃ and β̃ intersect with
opposite orientations at these points. If a point of α̃1 and a point of β̃1 have
the same image in S, then both points would be an intersection of p−1(α)
with p−1(β), violating the assumption that D is innermost. If two points of
α̃1 (or two points of β̃1) map to the same point in S, then there is a lift of
p(v1) between these two points, also contradicting the assumption that D is
innermost.

We can now argue that D projects to an embedded disk in S. Indeed, if
x and y in D project to the same point in S, then x = φ(y) for some deck
transformation φ. Since ∂D embeds under the covering map, φ(∂D) ∩ ∂D
is either empty or all of ∂D (in the case that φ is the identity). By the Jordan
curve theorem, we then see that either φ(D) or φ−1(D) must be contained
in D. Now, by the Brouwer fixed point theorem, φ has a fixed point, which
is a contradiction unless φ is the identity. �

We give two proofs of the bigon criterion. One proof uses hyperbolic
geometry, and one proof uses only topology. We give both proofs since each
of the techniques will be important later in this book.

First proof of Proposition 1.7. First suppose that two curves α and β form
a bigon. It should be intuitive that there is a homotopy of α that reduces
its intersection with β by 2, but here we provide a formal proof. We can
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choose a small closed neighborhood of this bigon that is homeomorphic to
a disk, and so the intersection of α ∪ β with this disk looks like Figure 1.2.
More precisely, the intersection of α∪β with this closed disk consists of one
subarc α′ of α and one subarc β′ of β intersecting in precisely two points.
Since the disk is simply connected and since the endpoints of α′ lie on the
same side of β′, we may modify α by a homotopy in the closed disk so that,
inside this disk, α and β are disjoint. This implies that the original curves
were not in minimal position.

For the other direction, we treat only the case χ(S) < 0. The case χ(S) =
0 is similar, and the case χ(S) > 0 is easy. Assume that simple closed
curves α and β form no bigons. Let α̃ and β̃ be nondisjoint lifts of α and β.
By Lemma 1.8, α̃ intersects β̃ in exactly one point x.

It cannot be that the axes of the hyperbolic isometries corresponding to α̃
and β̃ share exactly one endpoint at ∂H2 because this would violate the dis-
creteness of the action of π1(S) on H2; indeed, in this case the commutator
of these isometries is parabolic and the conjugates of this parabolic isometry
by either of the original hyperbolic isometries have arbitrarily small transla-
tion length. Further, these axes cannot share two endpoints on ∂H2, for then
the corresponding hyperbolic isometries would have the same axis, and so
they would have to have a common power φ (otherwise the action of π1(S)
on this axis would be nondiscrete). But then φn(x) would be an intersection
point between α̃ and β̃ for each n.

We conclude that any lift of α intersects any lift of β at most once and
that any such lifts have distinct endpoints on ∂H2. But we can now see that
there is no homotopy that reduces intersection. Indeed, if α̃ is a particular
lift of α, then each fundamental domain of α̃ intersects the set of lifts of β in
|α∩β| points. Now, any homotopy of β changes this π1-equivariant picture
in an equivariant way, so since the lifts of α and β are already intersecting
minimally in H2, there is no homotopy that reduces intersection. �

Second proof of Proposition 1.7. We give a different proof that two curves
not in minimal position must form a bigon. Let α and β be two simple closed
curves in S that are not in minimal position and let H : S1 × [0, 1] → S
be a homotopy of α that reduces intersection with β (this is possible by the
definition of minimal position). We may assume without loss of generality
that α and β are transverse and that H is transverse to β (in particular, all
maps are assumed to be smooth). Thus the preimage H−1(β) in the annulus
S1 × [0, 1] is a 1-submanifold.

There are various possibilities for a connected component of H−1(β): it
could be a closed curve, an arc connecting distinct boundary components,
or an arc connecting one boundary component to itself. Since H reduces the
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intersection of α with β, there must be at least one component δ connecting
S1 × {0} to itself. Together with an arc δ′ in S1 × {0}, the arc δ bounds a
disk ∆ in S1× [0, 1]. Now,H(δ∪δ′) is a closed curve in S that lies in α∪β.
This closed curve is null homotopic—indeed, H(∆) is the null homotopy.
It follows thatH(δ∪δ′) lifts to a closed curve in the universal cover S̃; what
is more, this lift has one arc in a lift of α and one arc in a lift of β. Thus
these lifts intersect twice, and so Lemma 1.8 implies that α and β form a
bigon. �

Geodesics are in minimal position. Note that if two geodesic segments on
a hyperbolic surface S together bounded a bigon, then, since the bigon is
simply connected, one could lift this bigon to the universal cover H2 of S.
But this would contradict the fact that the geodesic between any two points
of H2 is unique. Hence by Proposition 1.7 we have the following.

Corollary 1.9 Distinct simple closed geodesics in a hyperbolic surface are
in minimal position.

The bigon criterion gives an algorithmic answer to the question of how to
find representatives in minimal position: given any pair of transverse simple
closed curves, we can remove bigons one by one until none remain and
the resulting curves are in minimal position. Corollary 1.9, together with
Proposition 1.3, gives a qualitative answer to the question.

Multicurves. A multicurve in S is the union of a finite collection of dis-
joint simple closed curves in S. The notion of intersection number extends
directly to multicurves. A slight variation of the proof of the bigon criterion
(Proposition 1.7) gives a version of the bigon criterion for multicurves: two
multicurves are in minimal position if and only if no two component curves
form a bigon.

Proposition 1.3 and Corollary 1.9 together have the consequence that,
given any number of distinct homotopy classes of essential simple closed
curves in S, we can choose a single representative from each class (e.g. the
geodesic) so that each pair of curves is in minimal position.

1.2.5 HOMOTOPY VERSUS ISOTOPY FOR SIMPLE CLOSED CURVES

Two simple closed curves α and β are isotopic if there is a homotopy

H : S1 × [0, 1] → S

from α to β with the property that the closed curve H(S1 × {t}) is simple
for each t ∈ [0, 1].
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In our study of mapping class groups, it will often be convenient to think
about isotopy classes of simple closed curves instead of homotopy classes.
One way to explain this is as follows. If H : S1 × I → S is an isotopy of
simple closed curves, then the pair (S,H(S1 × {t})) “looks the same” for
all t (cf. Section 1.3).

When we appeal to algebraic topology for the existence of a homotopy,
the result is in general not an isotopy. We therefore want a method for con-
verting homotopies to isotopies whenever possible.

We already know i(a, b) is realized by geodesic representatives of a and b.
Thus, in order to apply the above results on geometric intersection numbers
to isotopy classes of curves, it suffices to prove the following fact originally
due to Baer.

Proposition 1.10 Let α and β be two essential simple closed curves in a
surface S. Then α is isotopic to β if and only if α is homotopic to β.

Proof. One direction is vacuous since an isotopy is a homotopy. So suppose
that α is homotopic to β. We immediately have that i(α, β) = 0. By per-
forming an isotopy of α, we may assume that α is transverse to β. If α and
β are not disjoint, then by the bigon criterion they form a bigon. A bigon
prescribes an isotopy that reduces intersection. Thus we may remove bigons
one by one by isotopy until α and β are disjoint.

In the remainder of the proof, we assume χ(S) < 0; the case χ(S) = 0

is similar, and the case χ(S) > 0 is easy. Choose lifts α̃ and β̃ of α and β
that have the same endpoints in ∂H2. There is a hyperbolic isometry φ that
leaves α̃ and β̃ invariant and acts by translation on these lifts. As α̃ and β̃ are
disjoint, we may consider the region R between them. The quotient R′ =
R/〈φ〉 is an annulus; indeed, it is a surface with two boundary components
with an infinite cyclic fundamental group. A priori, the image R′′ of R in
S is a further quotient of R′. However, since the covering map R′ → R′′ is
single-sheeted on the boundary, it follows that R′ ≈ R′′. The annulus R′′

between α and β gives the desired isotopy. �

1.2.6 EXTENSION OF ISOTOPIES

An isotopy of a surface S is a homotopy H : S × I → S so that, for each
t ∈ [0, 1], the map H(S, t) : S × {t} → S is a homeomorphism. Given
an isotopy between two simple closed curves in S, it will often be useful to
promote this to an isotopy of S, which we call an ambient isotopy of S.

Proposition 1.11 Let S be any surface. If F : S1 × I → S is a smooth
isotopy of simple closed curves, then there is an isotopy H : S × I → S so
that H|S×0 is the identity and H|F (S1×0)×I = F .
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Proposition 1.11 is a standard fact from differential topology. Suppose
that the two curves are disjoint. To construct the isotopy, one starts by find-
ing a smooth vector field that is supported on a neighborhood of the closed
annulus between the two curves and that carries one curve to the other. One
then obtains the isotopy of the surface S by extending this vector field to S
and then integrating it. For details of this argument see, e.g., [95, Chapter 8,
Theorem 1.3].

1.2.7 ARCS

In studying surfaces via their simple closed curves, we will often be forced
to think about arcs. For instance, many of our inductive arguments involve
cutting a surface along some simple closed curve in order to obtain a “sim-
pler” surface. Simple closed curves in the original surface either become
simple closed curves or collections of arcs in the cut surface. Much of the
discussion about curves carries over to arcs, so here we take a moment to
highlight the necessary modifications.

We first pin down the definition of an arc. This is one place where marked
points are more convenient than punctures. So assume S is a compact sur-
face, possibly with boundary and possibly with finitely many marked points
in the interior. Denote the set of marked points by P.

A proper arc in S is a map α : [0, 1] → S such that α−1(P ∪ ∂S) =
{0, 1}. As with curves, we usually identify an arc with its image; in partic-
ular, this makes an arc an unoriented object. The arc α is simple if it is an
embedding on its interior. The homotopy class of a proper arc is taken to be
the homotopy class within the class of proper arcs. Thus points on ∂S cannot
move off the boundary during the homotopy; all arcs would be homotopic
to a point otherwise. But there is still a choice to be made: a homotopy (or
isotopy) of an arc is said to be relative to the boundary if its endpoints stay
fixed throughout the homotopy. An arc in a surface S is essential if it is
neither homotopic into a boundary component of S nor a marked point of
S.

The bigon criterion (Proposition 1.7) holds for arcs, except with one extra
subtlety illustrated in Figure 1.4. If we are considering isotopies relative to
the boundary, then the arcs in the figure are in minimal position, but if we
are considering general isotopies, then the half-bigon shows that they are
not in minimal position.

Corollary 1.9 (geodesics are in minimal position) and Proposition 1.3 (ex-
istence and uniqueness of geodesic representatives) work for arcs in surfaces
with punctures and/or boundary. Here we switch back from marked points
to punctures to take advantage of hyperbolic geometry. Proposition 1.10
(homotopy versus isotopy for curves) and Theorem 1.13 (extension of iso-
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Figure 1.4 The shaded region is a half-bigon.

topies) also work for arcs.

1.3 THE CHANGE OF COORDINATES PRINCIPLE

We now describe a basic technique that is used quite frequently in the theory
of mapping class groups, often without mention. We call this technique the
change of coordinates principle. One example of this principle is that, in or-
der to prove a topological statement about an arbitrary nonseparating simple
closed curve, we can prove it for any specific simple closed curve. We will
see below that this idea applies to any configuration of simple closed curves
that is given by topological data.

1.3.1 CLASSIFICATION OF SIMPLE CLOSED CURVES

As a prelude to our explanation of the change of coordinates principle, we
present a classification of simple closed curves in a surface.

We first need to introduce an essential concept. Given a simple closed
curve α in a surface S, the surface obtained by cutting S along α is a
compact surface Sα equipped with a homeomorphism h between two of
its boundary components so that

1. the quotient Sα/(x ∼ h(x)) is homeomorphic to S, and

2. the image of these distinguished boundary components under this
quotient map is α.

It also makes sense to cut a surface with boundary or marked points along a
simple proper arc; the definition is analogous. Similarly, one can cut along a
finite collection of curves and arcs. There are several distinct situations for
cutting along a single arc, depending on whether the endpoints of the arc lie
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on a boundary component or a puncture, for instance, and the cut surface is
allowed to have marked points on its boundary.

We remark that the cutting procedure is one place where it is convenient
to assume that all curves under consideration are smooth. Indeed, if γ is a
smooth simple closed curve in a surface S, then the pair (S, γ) is locally
diffeomorphic to (R2,R), and one can immediately conclude that the sur-
face obtained from S by cutting along γ is again a surface, now with two
additional boundary components. Hence the classification of surfaces can
be applied to the cut surface.

We say that a simple closed curve α in the surface S is nonseparating if
the cut surface Sα is connected. We claim the following.

If α and β are any two nonseparating simple closed curves in
a surface S, then there is a homeomorphism φ : S → S with
φ(α) = β.

In other words, up to homeomorphism, there is only one nonseparating sim-
ple closed curve in S. This statement follows from the classification of
surfaces, as follows. The cut surfaces Sα and Sβ each have two bound-
ary components corresponding to α and β, respectively. Since Sα and Sβ
have the same Euler characteristic, number of boundary components, and
number of punctures, it follows that Sα is homeomorphic to Sβ. We can
choose a homeomorphism Sα → Sβ that respects the equivalence relations
on the distinguished boundary components. Such a homeomorphism gives
the desired homeomorphism of S taking α to β. If we want an orientation-
preserving homeomorphism, we can ensure this by postcomposing by an
orientation-reversing homeomorphism fixing β if necessary.

A simple closed curve β is separating in S if the cut surface Sβ is not
connected. Note that when S is closed, β is separating if and only if it is
the boundary of some subsurface of S. This is equivalent to the vanishing of
the homology class of β in H1(S,Z). By the “classification of disconnected
surfaces,” we see that there are finitely many separating simple closed curves
in S up to homeomorphism.

The above arguments give the following general classification of simple
closed curves on a surface:

There is an orientation-preserving homeomorphism of a sur-
face taking one simple closed curve to another if and only if the
corresponding cut surfaces (which may be disconnected) are
homeomorphic.

The existence of such a homeomorphism is clearly an equivalence relation.
The equivalence class of a simple closed curve or a collection of simple
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closed curves is called its topological type. For example, a separating sim-
ple closed curve in the closed surface Sg divides Sg into two disjoint sub-
surfaces of, say, genus k and g−k. The minimum of {k, g−k} is called the
genus of the separating simple closed curve. By the above, the genus of a
curve determines and is determined by its topological type. Note that there
are �g2� topological types of essential separating simple closed curves in a
closed surface.

The uninitiated may have trouble visualizing separating simple closed
curves that are not the obvious ones. We present a few in Figure 1.5, and
we encourage the reader to draw even more complicated separating simple
closed curves.

Figure 1.5 Some nonobvious separating simple closed curves.

1.3.2 THE CHANGE OF COORDINATES PRINCIPLE

The change of coordinates principle is a kind of change of basis for curves
in a surface S. It roughly states that any two collections of simple closed
curves in S with the same intersection pattern can be taken to each other
via an orientation-preserving homeomorphism of S. In this way an arbitrary
configuration can be transformed into a standard configuration. The clas-
sification of simple closed curves in surfaces given above is the simplest
example.

We illustrate the principle with two sample questions. Suppose α is any
nonseparating simple closed curve α on a surface S.

1. Is there a simple closed curve γ in S so that α and γ fill S, that is, α
and γ are in minimal position and the complement of α∪ γ is a union
of topological disks?

2. Is there a simple closed curve δ in S with i(α, δ) = 0? i(α, δ) = 1?
i(α, δ) = k?

Even for the genus 2 surface S2, it is not immediately obvious how to
answer either question for the nonseparating simple closed curve α shown
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α

Figure 1.6 A simple closed curve on a genus 2 surface.

in Figure 1.6. However, we claim that Figure 1.7 gives proof that the answer
to the first question is yes in this case, as we now show. The curves β and
γ in Figure 1.7 fill the surface (check this!). By the classification of simple
closed curves in a surface, there is a homeomorphism φ : S2 → S2 with
φ(β) = α. Since filling is a topological property, it follows that φ(γ) is the
curve we are looking for since it together with α = φ(β) fills S2.

β

γ

Figure 1.7 Two simple closed curves that fill a genus 2 surface.

We think of φ as changing coordinates so that the complicated curve α
becomes the easy-to-see curve β. The second question can be answered sim-
ilarly.

1.3.3 EXAMPLES OF THE CHANGE OF COORDINATES PRINCIPLE

The change of coordinates principle applies to more general situations. We
give several examples here. Most of the proofs are minor variations of the
above arguments and so are left to the reader.

1. Pairs of simple closed curves that intersect once. Suppose that α1 and β1

form such a pair in a surface S. Let Sα1
be the surface obtained by cutting

S along α1. There are two boundary components of Sα1
corresponding to

the two sides of α1. The image of β1 in Sα1
is a simple arc connecting these

boundary components to each other. We can cut Sα1
along this arc to obtain
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a surface (Sα1
)β1

. The latter is a surface with one boundary component
that is naturally subdivided into four arcs—two coming from α1 and two
coming from β1. The equivalence relation coming from the definition of a
cut surface identifies these arcs in order to recover the surface S with its
curves α1 and β1.

If α2 and β2 are another such pair, there is an analogous cut surface
(Sα2

)β2
. By the classification of surfaces, (Sα2

)β2
is homeomorphic to

(Sα1
)β1

, and moreover there is a homeomorphism that preserves equiva-
lence classes on the boundary. Any such homeomorphism descends to a
homeomorphism of S taking the pair {α1, β1} to the pair {α2, β2}.
2. Bounding pairs of a given genus. A bounding pair is a pair of disjoint,
homologous, nonseparating simple closed curves in a closed surface. Fig-
ure 1.8 shows one example, but we again encourage the reader to find more
complicated examples. The genus of a bounding pair in a closed surface is
defined similarly to the genus of a separating simple closed curve.

Figure 1.8 A genus 1 bounding pair.

3. Pairs (or k-tuples) of disjoint simple closed curves whose union does not
separate.

4. Pairs of simple closed curves {α, β} with i(α, β) = |α ∩ β| = 2 and
î(α, β) = 0 and whose union does not separate.

5. Nonseparating simple proper arcs in a surface S that meet the same num-
ber of components of ∂S.

6. Chains of simple closed curves. A chain of simple closed curves in a
surface S is a sequence α1, . . . , αk with the properties that i(αi, αi+1) = 1
for each i and i(αi, αj) = 0 whenever |i− j| > 1. A chain is nonseparating
if the union of the curves does not separate the surface.

Any two nonseparating chains of simple closed curves with the same
number of curves are topologically equivalent. This can be proved by in-
duction. The starting point is the case of nonseparating simple closed curves,
and the inductive step is example 5: cutting along the first few arcs, the next
arc becomes a nonseparating arc on the cut surface. Note that example 1



CURVES, SURFACES, AND HYPERBOLIC GEOMETRY 41

is the case k = 2. One can also prove by induction that every chain in Sg
of even length is nonseparating, and so such chains must be topologically
equivalent.

We remark that the homeomorphism representing the change of coor-
dinates in each of the six examples above can be taken to be orientation-
preserving.

1.4 THREE FACTS ABOUT HOMEOMORPHISMS

In this subsection we collect three useful facts from surface topology. Each
allows us to replace one kind of map with a better one: a homotopy of home-
omorphisms can be improved to an isotopy; a homeomorphism of a surface
can be promoted to a diffeomorphism; and Homeo0(S) is contractible, so
in particular any isotopy from the identity homeomorphism to itself is ho-
motopic to the constant isotopy.

1.4.1 HOMOTOPY VERSUS ISOTOPY FOR HOMEOMORPHISMS

When are two homotopic homeomorphisms isotopic? Let us look at two of
the simplest examples: the closed disk D2 and the closed annulus A. On
D, any orientation-reversing homeomorphism f induces a degree −1 map
on S1 = ∂D2, and from this follows that f is not isotopic to the identity.
However, the straight-line homotopy gives a homotopy between f and the
identity. On A = S1 × I , the orientation-reversing map that fixes the S1

factor and reflects the I factor is homotopic but not isotopic to the identity.
It turns out that these two examples are the only examples of homotopic

homeomorphisms that are not isotopic. This was proved in the 1920s by
Baer using Proposition 1.10 (see [8, 9] and also [56]).

THEOREM 1.12 Let S be any compact surface and let f and g be homo-
topic homeomorphisms of S. Then f and g are isotopic unless they are one
of the two examples described above (on S = D2 and S = A). In particular,
if f and g are orientation-preserving, then they are isotopic.

In fact, a stronger, relative result holds: if two homeomorphisms are ho-
motopic relative to ∂S, then they are isotopic relative to ∂S. Theorem 1.12
can be proven using ideas from the proof of Proposition 2.8.

Theorem 1.12 also holds when S has finitely many marked points. In that
case, we need to expand our list of counterexamples to include a sphere with
one or two marked points.
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1.4.2 HOMEOMORPHISMS VERSUS DIFFEOMORPHISMS

It is sometimes convenient to work with homeomorphisms and sometimes
convenient to work with diffeomorphisms. For example, it is easier to con-
struct the former, but we can apply differential topology to the latter. The
following theorem will allow us to pass back and forth between homeomor-
phisms and diffeomorphisms of surfaces.

THEOREM 1.13 Let S be a compact surface. Then every homeomorphism
of S is isotopic to a diffeomorphism of S.

It is a general fact that any homeomorphism of a smooth manifold can be
approximated arbitrarily well by a smooth map. By taking a close enough
approximation, the resulting smooth map is homotopic to the original home-
omorphism. However, this general fact, which is easy to prove, is much
weaker than Theorem 1.13 because the resulting smooth map might not be
smoothly invertible; indeed, it might not be invertible at all.

Theorem 1.13 was proven in the 1950s by Munkres [167, Theorem
6.3], Smale, and Whitehead [213, Corollary 1.18]. In part, this work was
prompted by Milnor’s discovery of the “exotic” (nondiffeomorphic) smooth
structures on S7.

Theorem 1.13 gives us a way to replace homeomorphisms with diffeo-
morphisms. We can also replace isotopies with smooth isotopies. In other
words, if two diffeomorphisms are isotopic, then they are smoothly isotopic;
see, for example, [30].

In this book, we will switch between the topological setting and the
smooth setting as is convenient. For example, when defining a map of a
surface to itself (either by equations or by pictures), it is often easier to
write down a homeomorphism than a smooth map. On the other hand, when
we need to appeal to transversality, extension of isotopy, and so on, we will
need to assume we have a diffeomorphism.

One point to make is that we will actually be forced to consider self-maps
of a surface that are not smooth; pseudo-Anosov homeomorphisms, which
are central to the theory, are special maps of a surface that are never smooth
(cf. Chapter 13).

1.4.3 CONTRACTIBILITY OF COMPONENTS OF Homeo(S)

The following theorem was proven by Hamstrom in a series of papers
[77, 78, 79] in the 1960s. In the statement, Homeo0(S) is the connected
component of the identity in the space of homeomorphisms of a surface S.
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THEOREM 1.14 Let S be a compact surface, possibly minus a finite num-
ber of points from the interior. Assume that S is not homeomorphic to
S2, R2, D2, T 2, the closed annulus, the once-punctured disk, or the once-
punctured plane. Then the space Homeo0(S) is contractible.

The fact that Homeo0(S) is simply connected is of course an immediate
consequence of Theorem 1.14. This fact will be used, among other places,
in Section 4.2 in the proof of the Birman exact sequence. There is a smooth
version of Theorem 1.14; see [53] or [73].



Chapter Two

Mapping Class Group Basics

In this chapter we begin our study of the mapping class group of a surface.
After giving the definition, we compute the mapping class group in essen-
tially all of the cases where it can be computed directly. This includes the
case of the disk, the annulus, the torus, and the pair of pants. An important
method, which we call the Alexander method, emerges as a tool for such
computations. It answers the fundamental question: how can one prove that
a homeomorphism is or is not homotopically trivial? Equivalently, how can
one decide when two homeomorphisms are homotopic or not?

2.1 DEFINITION AND FIRST EXAMPLES

Let S be a surface. As in Chapter 1, we assume that S is the connect
sum of g ≥ 0 tori with b ≥ 0 disjoint open disks removed and n ≥ 0
points removed from the interior. Let Homeo+(S, ∂S) denote the group of
orientation-preserving homeomorphisms of S that restrict to the identity on
∂S. We endow this group with the compact-open topology.

The mapping class group of S, denoted Mod(S), is the group

Mod(S) = π0(Homeo+(S, ∂S)).

In other words, Mod(S) is the group of isotopy classes of elements of
Homeo+(S, ∂S), where isotopies are required to fix the boundary point-
wise. If Homeo0(S, ∂S) denotes the connected component of the identity
in Homeo+(S, ∂S), then we can equivalently write

Mod(S) = Homeo+(S, ∂S)/Homeo0(S, ∂S).

The mapping class group was first studied by Dehn. He gave a lecture on
this topic to the Breslau Mathematics Colloquium on February 22, 1922; see
[49]. The notes from this lecture have been translated to English by Stillwell
[51, Chapter 7].

There are several possible variations in the definition of Mod(S). For ex-
ample, we could consider diffeomorphisms instead of homeomorphisms, or
homotopy classes instead of isotopy classes. By the theorems in Section 1.4,
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these definitions would result in isomorphic groups. To summarize, we have

Mod(S) = π0(Homeo+(S, ∂S))
≈ Homeo+(S, ∂S) / homotopy
≈ π0(Diff+(S, ∂S))
≈ Diff+(S, ∂S) / ∼,

where Diff+(S, ∂S) is the group of orientation-preserving diffeomorphisms
of S that are the identity on the boundary and ∼ can be taken to be either
smooth homotopy relative to the boundary or smooth isotopy relative to the
boundary.

The terminology Mod(S) is meant to stand for “modular group.” Fricke
called the mapping class group the “automorphic modular group” since, as
we will later see, it can be viewed as a generalization of the classical modu-
lar group SL(2,Z) of 2× 2 integral matrices with determinant 1.

Elements of Mod(S) are called mapping classes. We use the convention
of functional notation, namely,

Elements of the mapping class group are applied right to left.

Other definitions and notations. In the literature, there are various other
notations for the mapping class group, for instance: MCG(S), Map(S),
M(S), and Γg,n. As a general rule, the term “mapping class group” refers to
the group of homotopy classes of homeomorphisms of a surface, but there
are plenty of variations: one can consider homeomorphisms that do not nec-
essarily preserve the orientation of the surface or that do not act as the iden-
tity on the boundary or that fix each puncture individually, and so on.

Punctures versus marked points. If S is a surface with punctures, then it
is sometimes more convenient to think of (some of) the punctures as marked
points on S. Then, Mod(S) is the group of homeomorphisms of S that leave
the set of marked points invariant, modulo isotopies that leave the set of
marked points invariant. Here, one has to be careful when using homotopies
instead of isotopies: a homotopy of surfaces with marked points must not
only send marked points to marked points at all times but must also send
unmarked points to unmarked points at all times.

Punctures versus boundary. One difference between a surface with punc-
tures and a surface with boundary is that, as an artifact of our definitions, a
mapping class is allowed to permute punctures on a surface, but it must pre-
serve the individual boundary components pointwise. Also, isotopies must
fix each boundary component pointwise, while on the other hand, isotopies
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Figure 2.1 An order 5 element of Mod(S5).

can rotate a neighborhood of a puncture.

Exceptional surfaces. Recall from Section 1.4 that there are four surfaces
for which homotopy is not the same as isotopy: the disk D2, the annulus A,
the once-punctured sphere S0,1, and the twice-punctured sphere S0,2. Also
recall that in these cases, homotopy is the same as isotopy for orientation-
preserving homeomorphisms. Thus, even in these cases, the various defini-
tions of Mod(S) are still equivalent.

2.1.1 FIRST EXAMPLES OF MAPPING CLASSES

As a first example of a nontrivial element of Mod(Sg), one can take the
order g homeomorphism φ of Sg indicated in Figure 2.1 for g = 5. The
mapping class represented by φ also has order g. To see this, look for a sim-
ple closed curve α in Sg so that α, φ(α), φ2(α), . . . , φg−1(α) are pairwise
nonisotopic.

If we represent Sg as a (4g + 2)-gon with opposite sides identified (Fig-
ure 2.2 shows the case g = 2), we can get elements of Mod(Sg) by rotating
the (4g + 2)-gon by any number of “clicks.” For example, if we rotate by
an angle π (i.e., 2g + 1 clicks) we get an important example of a mapping
class called a hyperelliptic involution (see Sections 7.4 and 9.4 for further
discussion of hyperelliptic involutions).

It is possible to realize a hyperelliptic involution as a rigid rotation of Sg
in R3, namely, the rotation by π about the axis indicated in Figure 2.3 (it is
not obvious that this is indeed a hyperelliptic involution). Other elements of
Mod(Sg) obtained by rotating a (4g + 2)-gon are less easy to visualize; for
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a1
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a2
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a3

a3a4

a4

a5

a5

Figure 2.2 Rotation by 2π/10 gives an order 10 element of Mod(S2).

...

Figure 2.3 The rotation by π about the indicated axis is a hyperelliptic involution.

example, what does an order 5 symmetry of S2 look like with respect to the
standard picture of S2 embedded in R3?

Unlike the preceding examples, most elements of the mapping class group
have infinite order. The simplest such elements are Dehn twists, which are
defined and studied in detail in Chapter 3.

2.2 COMPUTATIONS OF THE SIMPLEST MAPPING CLASS GROUPS

In this section we give complete descriptions of the mapping class groups
of the simplest surfaces, working directly from the definitions.

2.2.1 THE ALEXANDER LEMMA

Our first computation is the mapping class group Mod(D2) of the closed
disk D2. This simple result underlies most computations of mapping class
groups.

Lemma 2.1 (Alexander lemma) The groupMod(D2) is trivial.

In other words, Lemma 2.1 states that given any homeomorphism φ of
D2 that is the identity on the boundary ∂D2, there is an isotopy of φ to the
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identity through homeomorphisms that are the identity on ∂D2.

Proof. Identify D2 with the closed unit disk in R2. Let φ : D2 → D2 be a
homeomorphism with φ|∂D2 equal to the identity. We define

F (x, t) =

{
(1− t)φ

(
x

1−t
)

0 ≤ |x| < 1− t
x 1− t ≤ |x| ≤ 1

for 0 ≤ t < 1, and we define F (x, 1) to be the identity map of D2. The
result is an isotopy F from φ to the identity. �

We can think of combining the {F (x, t)} from the proof into a level-
preserving homeomorphism of a cylinder whose support is a cone; see Fig-
ure 2.4. The individual F (�, t) homeomorphisms appear at horizontal slices.

Figure 2.4 The Alexander trick.

The isotopy given by the proof can be thought of as follows: at time t, do
the original map φ on the disk of radius 1 − t and apply the identity map
outside this disk. This clever proof is called the Alexander trick.

The reader will notice that the Alexander trick works in all dimensions.
However, this is one place where it is convenient to think about homeomor-
phisms instead of diffeomorphisms. The smooth version of the Alexander
lemma in dimension 2 is not nearly as simple, although in this case Smale
proved the stronger statement that Diff(D2, ∂D2) is contractible [197]. In
higher dimensions, the situation is worse: it is not known if Diff(D4, ∂D4)
is connected, and for infinitely many n we have that Diff(Dn, ∂Dn) is not
connected.

The proof of Lemma 2.1 also holds withD2 replaced by a once-punctured
disk (take the puncture/marked point to lie at the origin), and hence we also
have the following:

The mapping class group of a once-punctured disk is trivial.
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The sphere and the once-punctured sphere. There are two other mapping
class groups Mod(Sg,n) that are trivial, namely, Mod(S0,1) and Mod(S2).
For the former, we can identify S0,1 with R2 and use that fact that every
orientation-preserving homeomorphism of R2 is homotopic to the identity
via the straight-line homotopy. For S2, any homeomorphism can be mod-
ified by isotopy so that it fixes a point, and so we can apply the previous
example.

2.2.2 THE MAPPING CLASS GROUP OF THE THRICE-PUNCTURED SPHERE

Our next example, the mapping class group of S0,3, illustrates an impor-
tant idea in the theory of mapping class groups. The way we will compute
Mod(S0,3) is to understand its action on some fixed arc in S0,3. The surface
obtained by cutting S0,3 along this arc is a punctured disk, and so we will
be able to apply the Alexander lemma. This is in general how we use the
cutting procedure for surfaces in order to perform inductive arguments.

In this section it will be convenient to think of S0,3 as a sphere with three
marked points (instead of three punctures). In order to determine Mod(S0,3)
we first need to understand simple proper arcs in S0,3.

Proposition 2.2 Any two essential simple proper arcs in S0,3 with the same
endpoints are isotopic. Any two essential arcs that both start and end at the
same marked point of S0,3 are isotopic.

Proof. Let α and β be two simple proper arcs in S0,3 connecting the same
two distinct marked points. We can modify α by isotopy so that it has gen-
eral position intersections with β. By thinking of the third marked point as
being the point at infinity, we can think of α and β as arcs in the plane. As
in the proof of Lemma 1.8, if α and β are not disjoint, then we can find
an innermost disk bounded by an arc of α and an arc of β. Pushing α by
isotopy across such disks, we may reduce intersection until α and β have
disjoint interiors. At this point, we can cut S0,3 along α∪ β. By the classifi-
cation of surfaces, the resulting surface is the disjoint union of a disk (with
two marked points on the boundary) and a once-marked disk (with two ad-
ditional marked points on the boundary). Thus α and β bound an embedded
disk in S0,3, and so they are isotopic.

The case where α and β are essential simple proper arcs where all four
endpoints lie on the same marked point of S0,3 is similar. �

We are now ready to compute Mod(S0,3). Let Σ3 denote the group of
permutations of three elements.



50 CHAPTER 2

Proposition 2.3 The natural map

Mod(S0,3)→ Σ3

given by the action of Mod(S0,3) on the set of marked points of S0,3 is an
isomorphism.

Proof. The map in the statement is obviously a surjective homomorphism.
Thus it suffices to show that if a homeomorphism φ of S0,3 fixes the three
marked points—call them p, q, and r—then φ is homotopic to the iden-
tity. Choose an arc α in S0,3 with distinct endpoints, say p and q. Since φ
fixes the marked points p, q, and r, the endpoints of φ(α) are again p and
q. By Proposition 2.2, we have that φ(α) is isotopic to α. It follows that φ
is isotopic to a map (which we also call φ) that fixes α pointwise (Proposi-
tion 1.11).

We can cut S0,3 along α so as to obtain a disk with one marked point
(the boundary comes from α, and the marked point comes from r). Since φ
preserves the orientations of S0,3 and of α, it follows that φ induces a home-
omorphism φ of this disk which is the identity on the boundary (the map φ is
the unique set map on the cut-open surface inducing φ). By Lemma 2.1, the
mapping class group of a once-marked disk is trivial, and so φ is homotopic
to the identity. The homotopy induces a homotopy from φ to the identity. �

Pairs of pants. The surface S0,3 is homeomorphic to the interior of a pair of
pants1 P , which is the compact surface obtained from S2 by removing three
open disks with embedded, disjoint closures. Pairs of pants are important
because all compact hyperbolic surfaces can be built from pairs of pants (cf.
Section 10.5). In Section 3.6, we will apply Proposition 2.3 to show that
Mod(P ) ≈ Z3.

The twice-punctured sphere. There is a homomorphism Mod(S0,2) →
Z/2Z given by the action on the two marked points. An analogous proof to
that of Proposition 2.3 gives that Mod(S0,2) ≈ Z/2Z.

2.2.3 THE MAPPING CLASS GROUP OF THE ANNULUS

We now come to the simplest infinite-order mapping class group, that of the
annulus A. The basic procedure we use to compute Mod(A) is similar to
the one we used for S0,3. That is, we find an arc in A so that when we cut

1Möbius used the term “trinion” for a pair of pants (he called an annulus a “binion” and
a disk a “union”).
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A along that arc, we obtain a closed disk. If we can understand the action
of a homeomorphism on the arc, then we can completely understand the
homeomorphism up to homotopy.

Proposition 2.4 Mod(A) ≈ Z.

Proof. First we construct a map ρ : Mod(A) → Z. Let f ∈ Mod(A)
and let φ : A → A be any homeomorphism representing f . The universal
cover of A is the infinite strip Ã ≈ R × [0, 1], and φ has a preferred lift
φ̃ : Ã → Ã fixing the origin. Let φ̃1 : R → R denote the restriction of φ̃ to
R × {1}, which is canonically identified with R. Since φ̃1 is a lift to R of
the identity map on one of the boundary components of A, it is an integer
translation. We define ρ(f) to be φ̃1(0). If we identify Z with the group of
integer translations of R, then the map φ̃1 itself is an element of Z, and we
can write ρ(f) = φ̃1 ∈ Z. From this point of view, it is clear that ρ is a
homomorphism since compositions of maps of A are sent to compositions
of translations of R.

We can give an equivalent definition of ρ as follows. Let δ be an oriented
simple proper arc that connects the two boundary components of A. Given
f and φ as above, the concatenation φ(δ) ∗ δ−1 is a loop based at δ(0), and
ρ(f) equals [φ(δ) ∗ δ−1] ∈ π1(A, δ(0)) ≈ Z. Yet another equivalent way to
define ρ is to let δ̃ be the unique lift of δ to Ã based at the origin and to set
ρ(f) to be the endpoint of φ̃(δ̃) in R× {1} ≈ R.

We now show that ρ is surjective. The linear transformation of R2 given
by the matrix

M =

(
1 n
0 1

)
preserves R × [0, 1] and is equivariant with respect to the group of deck
transformations. Thus the restriction of the linear map M to R × [0, 1] de-
scends to a homeomorphism φ of A. The action of this homeomorphism on
δ is depicted in Figure 2.5 for the case n = −1. It follows from the definition
of ρ that ρ([φ]) = n.

It remains to show that ρ is injective. Let f ∈ Mod(A) be an element of
the kernel of ρ and say that f is represented by a homeomorphism φ. Let φ̃
be the preferred lift of φ. Since ρ(f) = 0, we have that φ̃ acts as the identity
on ∂Ã. We claim that the straight-line homotopy from φ̃ to the identity map
of Ã is equivariant. For this, it suffices to show that

φ̃(τ · x) = τ · φ̃(x)
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δ φ

φ(δ)

Figure 2.5 A generator for Mod(A).

for any deck transformation τ and for any x ∈ Ã. It follows from general
covering space theory that

φ̃(τ · x) = φ∗(τ) · φ̃(x).

But because φ fixes ∂A pointwise, it follows that φ∗ is the identity automor-
phism of π1(A) ≈ Z, and so φ∗(τ) = τ , and the claim is proven.

We have that the straight-line homotopy from φ̃ to the identity is equiv-
ariant and it fixes the boundary of Ã, so it descends to a homotopy between
φ and the identity map of A that fixes the boundary of A pointwise. Thus f
is the identity, and so ρ is injective. �

We remark that in the proof of Proposition 2.4 we took advantage of the
fact that we can conflate homotopy with isotopy.

The homeomorphism of A induced by the matrix(
1 −1
0 1

)
is called a Dehn twist. Since any surface contains an annulus, we can per-
form a Dehn twist in any surface. Dehn twists are important elements of the
mapping class group. In fact, the next chapter is entirely devoted to their
study.

2.2.4 THE MAPPING CLASS GROUP OF THE TORUS

The torus T 2 acts as a guidepost in the study of mapping class groups. While
it has an explicit description as a group of integral matrices, and while it
is much easier to understand than mapping class groups of higher-genus
surfaces, it still exhibits enough richness to give us a hint of what to expect
in the higher-genus case. This is a recurring theme in this book.
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THEOREM 2.5 The homomorphism

σ : Mod(T 2) −→ SL(2,Z)

given by the action on H1(T ; Z) ≈ Z2 is an isomorphism.

Proof. Any homeomorphism φ of T 2 induces a map φ∗ : H1(T
2; Z) →

H1(T
2; Z). Since φ is invertible, φ∗ is an automorphism of H1(T

2; Z) ≈
Z2. Homotopic maps induce the same map on homology, and so the map
φ 
→ φ∗ induces a map σ : Mod(T 2) → Aut(Z2) ≈ GL(2,Z) (the
exact identification of σ(f) with a 2 × 2 matrix depends on the particu-
lar identification of H1(T

2; Z) with Z2). The fact that σ(f) is an element
of SL(2,Z) can be seen directly from the fact that the algebraic intersec-
tion numbers in T 2 correspond to determinants (see Section 1.2) and the
fact that orientation-preserving homeomorphisms preserve algebraic inter-
section number.

We next prove that σ is surjective. Any elementM of SL(2,Z) induces an
orientation-preserving linear homeomorphism of R2 that is equivariant with
respect to the deck transformation group Z2 and thus descends to a linear
homeomorphism φM of the torus T 2 = R2/Z2. Because of our identifi-
cation of primitive vectors in Z2 with homotopy classes of oriented simple
closed curves in T 2, it follows that σ([φM ]) = M , and so σ is surjective.

Finally, we prove that σ is injective. Since T 2 is a K(G, 1)-space, there
is a correspondence:{

Homotopy classes of
based maps T 2 → T 2

}
←→

{
Homomorphisms

Z2 → Z2

}
(see [91, Proposition 1B.9]). What is more, any element f of Mod(T 2) has
a representative φ that fixes a basepoint for T 2. Thus, if f ∈ ker(σ), then
φ is homotopic (as a based map) to the identity, so σ is injective. Actually,
we can construct the homotopy of φ to the identity explicitly. As in the case
of the annulus, the straight-line homotopy between the identity map of R2

and any lift of φ is equivariant and hence descends to a homotopy between
φ and the identity. �

The annulus versus the torus. The reader will notice that our proof of the
injectivity of σ : Mod(T 2) → SL(2,Z) was actually easier than our proof
of the injectivity of ρ : Mod(A)→ Z. The reason for this is that if we apply
K(G, 1)-theory to two homeomorphisms of A that induce the same map on
π1(A), then the theory gives that the two homeomorphisms are homotopic
but not necessarily via a homotopy that fixes the boundary. That is why we
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needed to construct the homotopy by hand in the case of the annulus.

Hands-on proof of Theorem 2.5. We can give another, more hands-on
proof of the injectivity of σ : Mod(T 2) → SL(2,Z). Suppose that σ(f) is
the identity matrix in SL(2,Z) and let φ be a representative of f . If α and β
are simple closed curves corresponding to the elements (1, 0) and (0, 1) of
π1(T

2), then it follows that φ(α) is homotopic to α and φ(β) is homotopic
to β. We proceed in two steps to show that φ is isotopic to the identity.

1. By Proposition 1.10, we know that φ(α) is isotopic to α (as a map),
and by Proposition 1.11 any such isotopy can be extended to an iso-
topy of T 2. Thus, up to isotopy, we may assume that φ fixes α point-
wise. As φ is orientation-preserving, we also know that φ preserves
the two sides of α.

2. Let A be the annulus obtained from T 2 by cutting along α. Given that
φ fixes α pointwise and that φ preserves the two sides of α, we have
that φ induces a homeomorphism φ of A which represents an element
f of Mod(A). We can think of β and φ(β) as arcs in A. Since φ(β)
is isotopic to β in T 2, we see that ρ(f) = 0, where ρ : Mod(A)→ Z
is the map from Proposition 2.4.

3. At this point, we can simply quote Proposition 2.4, which gives that
f = 1. This means that φ is isotopic to the identity map of A via an
isotopy fixing ∂A pointwise. But then φ is also isotopic to the identity.

In the last step, instead of quoting Proposition 2.4 one can continue the line
of thought to give a hands-on proof of that proposition. As we shall see
in Section 2.3, these hands-on proofs lead to a method for understanding
mapping classes of arbitrary surfaces.

The once-punctured torus. For the once-punctured torus S1,1, we have
H1(S1,1; Z) ≈ H1(T

2; Z) ≈ Z2. Therefore, as in the case of T 2, there is a
homomorphism σ : Mod(S1,1) → SL(2,Z). The map σ is surjective since
any element of SL(2,Z) can be realized as a map of R2 that is equivari-
ant with respect to Z2 and that fixes the origin; such a map descends to a
homeomorphism of S1,1 with the desired action on homology.

To prove that σ is injective, we can apply a version of the hands-on proof
we used in the case of the torus, as follows. Let α and β be simple closed
curves in S1,1 that intersect in one point. If f ∈ ker(σ) is represented by
φ, then φ(α) and φ(β) are isotopic to α and β. We can then modify φ by
isotopy so that it fixes α and β pointwise. If we cut S1,1 along α ∪ β, we
obtain a once-punctured disk, and φ induces a homeomorphism of this disk
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fixing the boundary. By the Alexander trick, this homeomorphism of the
punctured disk is homotopic to the identity by a homotopy that fixes the
boundary. It follows that φ is homotopic to the identity, as desired.

2.2.5 THE MAPPING CLASS GROUP OF THE FOUR-TIMES-PUNCTURED
SPHERE

In the theory of mapping class groups, there is a strong relationship between
the torus and the sphere with four punctures. Recall that if we think of the
torus as a square (or hexagon) with opposite sides identified, then the hy-
perelliptic involution ι is the map that rotates about the center of the square
(or hexagon) by an angle of π. The map ι has four fixed points, and so the
quotient, which is topologically a sphere, has four distinguished points. We
identify this quotient with S0,4. Since every linear map of T 2 (fixing the im-
age of the origin in R2) commutes with ι, each element of Mod(T 2) induces
an element of Mod(S0,4). We will now exploit this relationship in order to
compute Mod(S0,4).

We begin by classifying simple closed curves in S0,4 up to homotopy.

Proposition 2.6 The hyperelliptic involution induces a bijection between
the set of homotopy classes of essential simple closed curves in T 2 and the
set of homotopy classes of essential simple closed curves in S0,4.

Proof. Proposition 1.5 gives a bijection between the set of homotopy classes
of essential simple closed curves in T 2 and the set of primitive elements of
Z2. Given a primitive element of Z2, we obtained a (p, q)-curve by project-
ing a line of slope q/p to T 2.

We will give a different construction of (p, q)-curves in T 2, and we will
give a construction of (p, q)-curves in S0,4, and then we will observe that
the lift of a (p, q)-curve in S0,4 to T 2 is a (p, q)-curve in T 2.

Let α and β be two simple closed curves in T 2 that intersect each other in
one point. We identify α with (1, 0) ∈ Z2 and β with (0, 1) ∈ Z2. Let (p, q)
be a primitive element of Z2. A simple closed curve γ in T 2 is a (p, q)-
curve if we have (̂i(γ, β), î(γ, α)) = ±(p, q). To construct the (p, q)-curve,
we start by taking p parallel copies of α, and we modify this collection by a
2π/q twist along β.

Up to homotopy in T 2, we may assume that α and β project via ι to simple
closed curves ᾱ and β̄ in S0,4 that intersect in two points, as in Figure 2.6.
We can then perform an analogous construction of a (p, q)-curve in S0,4. We
take p parallel copies of ᾱ and twist along β̄ by π/q.

We need to check that every homotopy class of essential simple closed
curves in S0,4 comes from our construction. Let γ be an arbitrary essential
simple closed curve in S0,4. Up to homotopy, we may assume that γ is in
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minimal position with respect to α. If we cut S0,4 along β, we obtain two
twice-punctured disks, and γ and α both give collections of disjoint arcs on
each. By the assumptions on minimal position, these arcs are all essential.
By Proposition 2.2, the arcs coming from α and the arcs coming from γ are
freely homotopic. It follows that the homotopy class of γ comes from our
construction.

The preimage of a (p, q)-curve in S0,4 in T 2 is a (2p, 2q)–curve, that is,
two parallel copies of a (p, q)-curve in T 2. That is to say, the identification
of (p, q)-curves in the two surfaces is induced by ι. �

Proposition 2.7 Mod(S0,4) ≈ PSL(2,Z) � (Z/2Z × Z/2Z).

Proof. We first construct a homomorphism σ : Mod(S0,4) → PSL(2,Z)
together with a right inverse. Then we will show that the kernel is isomor-
phic to Z/2Z× Z/2Z.

Let φ be a homeomorphism representing a given f ∈ Mod(S0,4).
There are two lifts of φ to Homeo+(T 2), say φ̃ and ιφ̃. We define σ(f)

to be the element of PSL(2,Z) represented by the matrix σ([φ̃]), where
σ : Mod(T 2)→ SL(2,Z) is the homomorphism from Theorem 2.5. This is
well defined since the two lifts of φ differ by ι, and σ(ι) = −I .

Next we construct the right inverse of σ. An element of PSL(2,Z) in-
duces an orientation-preserving, linear homeomorphism of T 2 that is well
defined up to multiplication by ι. Any such map of T 2 commutes with ι and
hence induces an orientation-preserving homeomorphism of S0,4. In this
way we have defined a map PSL(2,Z) → Mod(S0,4); it is a right inverse
of σ by construction.

The order 2 homeomorphisms of S0,4 indicated in Figure 2.6 are called
hyperelliptic involutions of S0,4. The corresponding mapping classes ι1 and
ι2 generate a subgroup of Mod(S0,4) isomorphic to Z2 × Z2. The hyper-
elliptic involutions each lift to a homeomorphism of T 2 ≈ S1 × S1 that
rotates one of the factors by π. Hence 〈ι1, ι2〉 is contained in the kernel of
σ.

We will show that 〈ι1, ι2〉 is the entire kernel of σ. Let f ∈ ker(σ). By
definition of σ, any lift of a representative of f to Homeo+(T 2) acts by ±I
onH1(T

2; Z) and hence acts trivially on the set of homotopy classes of sim-
ple closed curves in T 2. By the natural bijection given by Proposition 2.6, it
follows that f acts trivially on the set of homotopy classes of simple closed
curves in S0,4. In particular, f fixes the homotopy classes of α and β. It fol-
lows that we can precompose f with an element of k ∈ 〈ι1, ι2〉 so that fk
fixes the four marked points of S0,4.

Our goal now is to show that fk is the identity. Say that fk is represented
by a homeomorphism φ. As in the proof of Theorem 2.5, we can modify φ
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Figure 2.6 The hyperelliptic involutions of S0,4.

so that it fixes α and β. Since φ fixes the four marked points, we have that φ
induces relative homeomorphisms of the four once-marked disks obtained
when we cut S0,4 along α and β. At this point, we can once again apply the
Alexander lemma to show that fk is the identity. �

Two splittings ofMod±(S0,4). Let Mod±(S0,4) denote a group of ho-
motopy classes of all homeomorphisms of S0,4, including the orientation-
reversing ones (see Chapter 8 for more about this group). It follows from
Theorem 2.5 and the argument of Proposition 2.7 that

Mod±(S0,4) ≈ PGL(2,Z) � (Z/2Z × Z/2Z).

We can give another description of Mod±(S0,4) as a semidirect product.
There is a short exact sequence

1→ PMod±(S0,4)→ Mod±(S0,4)→ Σ4 → 1,

where Σ4 is the symmetric group on the four punctures, the map
Mod±(S0,4) → Σ4 is given by the action on the punctures, and
PMod±(S0,4) is the subgroup of Mod±(S0,4) consisting of those ele-
ments fixing each of the punctures (one is tempted to write a sequence
with Mod(S0,4) surjecting onto the alternating group A4, but the image of
Mod(S0,4) is all of Σ4). Thinking of S0,4 as the 2-skeleton of a tetrahe-
dron minus its vertices, we see that there is a section Σ4 → Mod±(S0,4),
and so the group Mod±(S0,4) is isomorphic to the semidirect product
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PMod±(S0,4) � Σ4. It follows from the results in Section 4.2 below that
PMod±(S0,4) ≈ F2 � Z/2Z, and so

Mod±(S0,4) ≈ (F2 � Z/2Z) � Σ4.

2.3 THE ALEXANDER METHOD

Our computations of the mapping class groups of S0,3, S0,2, A, T 2, S1,1,
and S0,4 all follow the same general scheme: find a collection of curves
and/or arcs that cut the surface into disks and apply the Alexander lemma
in order to say that the action of the mapping class group on the surface is
completely determined by the action on the isotopy classes of these curves
and arcs.

It turns out that this basic setup works for a general surface. The Alexan-
der method (given below) states that, for any S, an element of Mod(S) is
often determined by its action on a well-chosen collection of curves and arcs
in S. Thus, there is a concrete way to determine when two homeomorphisms
f, g ∈ Homeo+(S) represent the same element of Mod(S).

Before we give the precise statement, we point out that the situation is
more subtle than one might think at first. It is simply not true in general
that if a homeomorphism of a surface S fixes a collection of curves and
arcs that cut S into disks, then it represents the trivial mapping class. For
instance, the hyperelliptic involution of Sg fixes the 2g + 1 simple closed
curves shown in Figure 2.7; on the other hand, we know that the hyperellip-
tic involution represents a nontrivial mapping class since it acts nontrivially
on H1(Sg; Z). Even worse, the hyperelliptic involutions in Mod(T 2) and
Mod(S2) fix every isotopy class of simple closed curves (cf. Section 3.4).
What is happening in the case of the hyperelliptic involution, and what can
happen in general, is that a homeomorphism of a surface can fix a collection
of curves while still permuting or rotating the complementary disks.

...

Figure 2.7 A collection of simple closed curves that is fixed by the hyperelliptic involution.

In view of the example of the hyperelliptic involution, one is tempted to
simply add the hypothesis that the curves and arcs are fixed with their orien-
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tations. But this is still not right: the hyperelliptic involution in Mod(S2)
fixes the orientation of every isotopy class of separating simple closed
curves in S2, and certainly there are enough of these curves to cut S2 into
disks; see Figure 2.8 for such a configuration.

Figure 2.8 The hyperelliptic involution fixes the isotopy class of every simple closed curve
in S2 and even fixes the orientation of each separating isotopy class. However, it
is a nontrivial mapping class.

We finally arrive at the following statement, which we call the Alexander
method. To simplify the discussion we consider only compact surfaces, pos-
sibly with finitely many marked points in the interior. Again, for all intents
and purposes, marked points play the same role as punctures in the theory
of mapping class groups. For a surface S with marked points, we say that a
collection {γi} of curves and arcs fills S if the surface obtained from S by
cutting along all γi is a disjoint union of disks and once-marked disks.

Proposition 2.8 (Alexander method) Let S be a compact surface, possi-
bly with marked points, and let φ ∈ Homeo+(S, ∂S). Let γ1, . . . , γn be a
collection of essential simple closed curves and simple proper arcs in S with
the following properties.

1. The γi are pairwise in minimal position.

2. The γi are pairwise nonisotopic.

3. For distinct i, j, k, at least one of γi ∩ γj , γi ∩ γk, or γj ∩ γk is empty.
(1) If there is a permutation σ of {1, . . . , n} so that φ(γi) is isotopic to

γσ(i) relative to ∂S for each i, then φ(∪γi) is isotopic to ∪γi relative to ∂S.
If we regard ∪γi as a (possibly disconnected) graph Γ in S, with vertices

at the intersection points and at the endpoints of arcs, then the composition
of φ with this isotopy gives an automorphism φ∗ of Γ.

(2) Suppose now that {γi} fills S. If φ∗ fixes each vertex and each edge
of Γ with orientations, then φ is isotopic to the identity. Otherwise, φ has a
nontrivial power that is isotopic to the identity.
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The power of the Alexander method is that it converts the computation
of a mapping class into a finite combinatorial problem. We will use this
frequently, for example:

1. to compute the center of the mapping class group (see Section 3.3)

2. to prove the Dehn–Nielsen–Baer theorem (see Chapter 8)

3. to show that Mod(S) has a solvable word problem (see Chapter 4)

4. to verify that certain relations hold in Mod(S) (see, e.g., Proposi-
tion 5.1).

We leave it as an exercise to check that every compact surface S has a col-
lection {γi} as in the statement of Proposition 2.8.

A priori the Alexander method allows us to determine a mapping class
only up to a finite power. However, on almost every surface, it is possible
to choose the {γi} so that mapping classes are determined uniquely by their
action on the {γi}; that is, on almost every surface one can choose the γi so
that whenever a homeomorphism φ fixes each γi up to homotopy, then the
induced map φ∗ of the graph Γ is necessarily the identity. One example of
such a collection is used in the proof of Theorem 3.10.

One would like to strengthen statement 2 of the Alexander method to
say that φ is isotopic to a nontrivial finite-order homeomorphism. Indeed,
it is a general fact that if a homeomorphism of a surface has a power that
is isotopic to the identity, then the homeomorphism itself is isotopic to a
finite-order homeomorphism. This fact is stated precisely in Chapter 7 and
is proven in Section 13.2.

The condition on triples in the statement of the Alexander method is cru-
cial. This is because there is not, in general, a canonical minimal position
configuration for a triple of curves that intersect pairwise. Therefore, there
is no canonical way to construct the graph Γ. Consider, for instance, the
configuration shown in Figure 2.9; the three arcs are individually isotopic,
but there is no isotopy from the first union of arcs to the second.

We point out the following slight (but useful) improvement of the Alexan-
der method. Consider the graph2

Γ′ = (∪γi) ∪ ∂S ∪ {marked points}.

Since Γ′ is in general larger than Γ, it gives more information. For instance,
say Γ is a chain of three simple closed curves γ1, γ2, and γ3 in S1,2. By the
Alexander method, if f ∈ Mod(S) fixes the isotopy classes of each γi, then

2Technically, if some component of ∂S does not meet ∪γi, then we need to add a marked
point on that component in order to obtain a graph.
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one can deduce that f is either the identity or the hyperelliptic involution
(see Figure 3.8 below). If we know that f also fixes the two marked points
of S1,2, then it is immediate from the action of f on Γ′ that f = 1.

Figure 2.9 There is no canonical way to arrange these three arcs without creating a triple
point.

Statement 1 of the Alexander method is an immediate consequence of the
following lemma which, in addition to being slightly more general, is also
notationally simpler.

Lemma 2.9 Let S be a compact surface, possibly with marked points, and
let γ1, . . . , γn be a collection of essential simple closed curves and simple
proper arcs in S that satisfy the three properties from Proposition 2.8. If
γ′1, . . . , γ

′
n is another such collection so that γ

′
i is isotopic to γi relative to

∂S for each i, then there is an isotopy of S relative to ∂S that takes γ′i to γi
for all i simultaneously and hence takes ∪γi to ∪γ′i.

Our proof of this lemma was greatly simplified by Allen Hatcher.

Proof. We will work by induction on n; that is, we assume that we can
construct an isotopy of S that takes γ′i to γi for i = 1, . . . , k−1, and we will
construct a relative homotopy of S that fixes the set ∆k−1 = γ1∪· · ·∪γk−1

throughout the isotopy and takes γ′k to γk. We can take the base case to be
k = 0, which is vacuous.

First we perform a relative isotopy of S that fixes ∆k−1 and perturbs γ′k
to have general position intersections with γk as follows. By the hypothesis
on triples {γ′i, γ′j , γ′k} and the fact that ∆k−1 is equal to γ′1 ∪ · · · ∪ γ′k−1,
we have that γ′k is disjoint from the vertices of the graph ∆k−1. Thus there
is a relative isotopy of S that fixes ∆k−1 and makes γ′k disjoint from γk
along the edges of ∆k−1. Finally, we perform a relative isotopy of S that
is the identity in a neighborhood of ∆k−1 and perturbs γ′k to intersect γk
transversely in the complement of ∆k−1.

Next we perform a relative isotopy of S that fixes ∆k−1 and takes γ′k to
be disjoint from γk. If γk and γ′k are not already disjoint, then by the bigon
criterion they form a bigon (since γk and γ′k are isotopic relative to ∂S, they
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γk

γ′k

∆k−1

Figure 2.10 The intersection of ∆k−1 with a bigon formed by γk and γ′
k.

have the same endpoints and hence cannot form any half-bigons). By the hy-
pothesis on triples, the intersection of ∆k−1 with this bigon is a collection
of disjoint arcs. By the assumption on minimal position, each such arc con-
nects one boundary arc of the bigon to the other; see Figure 2.10. It follows
that there is an isotopy of S that fixes ∆k−1 as a set and pushes γ′k across
this bigon, thus reducing its intersection with γk. Repeating this process a
finite number of times, we obtain the desired isotopy.

Finally, we are in the situation that γ′k is disjoint from γk. As in the proof
of Proposition 1.10, the region between γk and γ′k is either an annulus or a
disk, depending on whether γk and γ′k are simple closed curves or simple
proper arcs. The intersection of ∆k−1 with this region, if nonempty, is again
a collection of disjoint arcs, each connecting γk to γ′k. Thus, as above, there
is a relative isotopy of S that fixes ∆k−1 and takes γ′k to γk. �

We can now complete the proof of the Alexander method.

Proof of Proposition 2.8. Let {γ1, . . . , γn} be as in statement 1, and for
each i let γ′i be the simple closed curve φ(γσ−1(i)). Applying Lemma 2.9
to the collections {γi} and {γ′i}, we can construct an isotopy of S that takes
γ′i to γi for each i and hence takes ∪γ′i to ∪γi. This proves statement 1.

It now follows, as in the statement of the proposition, that φ induces an au-
tomorphism φ∗ of Γ = ∪γi. Since the automorphism group of a finite graph
is necessarily finite, we may choose a power r so that φr∗ is the identity auto-
morphism, that is, it fixes each vertex, and fixes each edge with orientation.
Since φ is orientation-preserving, it follows that φ also preserves the sides
in S of each edge of Γ. It follows that φr, after possibly modifying it by an
isotopy, fixes Γ pointwise and sends each complementary region into itself;
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indeed, a complementary region is completely determined by the oriented
edges of Γ that make up its boundary.

Now assume that the γi fill S, as in statement 2. In other words, the sur-
face obtained by cutting S along Γ is a collection of closed disks, each possi-
bly with one marked point. By applying the Alexander lemma (Lemma 2.1)
to each of these disks, we see that φr is isotopic to the identity homeomor-
phism of S. Obviously, in the case r = 1 we have that φ is isotopic to the
identity. In the case r > 1, we have only obtained that φr is isotopic to the
identity. This proves statement 2. �



Chapter Three

Dehn Twists

In this chapter we study a particular type of mapping class called a Dehn
twist. Dehn twists are the simplest infinite-order mapping classes in the
sense that they have representatives with the smallest possible supports.
Dehn twists play the role for mapping class groups that elementary matrices
play for linear groups. We begin by defining Dehn twists in S and proving
that they have infinite order in Mod(S). We determine many of the basic
properties of Dehn twists by studying their action on simple closed curves.
As one consequence, we compute the center of Mod(S). At the end of the
chapter, we determine all relations that can occur between two Dehn twists.

3.1 DEFINITION AND NONTRIVIALITY

In this section we define Dehn twists and prove they are nontrivial elements
of the mapping class group.

3.1.1 DEHN TWISTS AND THEIR ACTION ON CURVES

Consider the annulus A = S1× [0, 1]. To orient A we embed it in the (θ, r)-
plane via the map (θ, t) 
→ (θ, t+1) and take the orientation induced by the
standard orientation of the plane.

Figure 3.1 Two views of a Dehn twist.

Let T : A→ A be the twist map of A given by the formula

T (θ, t) = (θ + 2πt, t).
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The map T is an orientation-preserving homeomorphism that fixes ∂A
pointwise. Note that instead of using θ + 2πt we could have used θ − 2πt.
Our choice is a left twist, while the other is a right twist.

Figure 3.1 gives two descriptions of the twist map T . We have seen the
picture on the left-hand side before in our proof of Proposition 2.4. Indeed,
the twist map T here is the same as the map used to show that Mod(A)
surjects onto Z.

Now let S be an arbitrary (oriented) surface and let α be a simple closed
curve in S. LetN be a regular neighborhood of α and choose an orientation-
preserving homeomorphism φ : A → N . We obtain a homeomorphism
Tα : S → S, called a Dehn twist about α, as follows:

Tα(x) =

{
φ ◦ T ◦ φ−1(x) if x ∈ N
x if x ∈ S \N.

In other words, the instructions for Tα are “perform the twist map T on the
annulus N and fix every point outside of N .”

The Dehn twist Tα depends on the choice of N and the homeomorphism
φ. However, by the uniqueness of regular neighborhoods, the isotopy class
of Tα does not depend on either of these choices. What is more, Tα does
not depend on the choice of the simple closed curve α within its isotopy
class. Thus, if a denotes the isotopy class of α, then Ta is well defined as
an element of Mod(S), called the Dehn twist about a. We will sometimes
abuse notation slightly and write Tα for the mapping class Ta.

The Dehn twist was introduced by Max Dehn. He originally used the term
Schraubungen, which can be translated as “screw map” [50, Section 2b].

Dehn twists on the torus. Via the isomorphism of Theorem 2.5, the Dehn
twists about the (1, 0)-curve and the (0, 1)-curve in T 2 map to the matrices(

1 −1
0 1

)
and

(
1 0
1 1

)
.

Thus these two Dehn twists generate Mod(T 2) ≈ SL(2,Z). We will see in
Chapter 4 that in fact for every g ≥ 0 the group Mod(Sg) is generated by a
finite number of Dehn twists.

Dehn twists via cutting and gluing. Here is another way to think about the
Dehn twist Tα. We can cut S along α, twist a neighborhood of one boundary
component through an angle of 2π, and then reglue; see Figure 3.2. This
procedure gives a well-defined homeomorphism of S which is equivalent to
Tα. If α is a separating simple closed curve, these instructions do not say
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a

b

Ta(b)

Ta

Figure 3.2 A Dehn twist via cutting and gluing.

to cut along α, twist one of the two pieces of the cut surface by 2π, and
then reglue; this would give the identity homeomorphism of S. The key is
to twist just the neighborhood of one boundary component.

Dehn twists via the inclusion homomorphism. In general, if S is a closed
subsurface of a surface S′, there is an induced homomorphism Mod(S) →
Mod(S′); see Theorem 3.18 below. Given any inclusion of the annulus A
into a surface S, we obtain a homomorphism Mod(A) → Mod(S). The
image of a generator of Mod(A) is a Dehn twist in Mod(S).

Action on simple closed curves. We can understand Ta by examining its
action on the isotopy classes of simple closed curves on S. If b is an isotopy
class with i(a, b) = 0, then Ta(b) = b. In the case that i(a, b) �= 0 the
isotopy class Ta(b) is determined by the following rule: given particular
representatives β and α of b and a, respectively, each segment of β crossing
α is replaced with a segment that turns left, follows α all the way around,
and then turns right. This is true no matter which way we orient β; the reason
that we can distinguish left from right is that the map φ used in the definition
of Ta is taken to be orientation-preserving.

Left versus right.We emphasize that, once an orientation of S is fixed, the
direction of a twist Ta does not depend on any sort of orientation on a. This
is because turning left is well defined on an oriented surface. (Similarly, a
left-handed screw is still a left-handed screw when it is turned upside-down.)
The inverse map T−1

a is simply the twist about a in the other direction; it is
defined similarly to Ta, with the twist map T replaced by its inverse T−1.
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The action on curves via surgery. If i(a, b) is large (say, more than 2),
it can be difficult to draw a picture of Ta(b) using the turn left–turn right
procedure given above. It is hard to plan ahead and leave enough room for
all of the strands of Ta(b) that run around a. A convenient way to draw Ta(b)
in practice is as follows. Start with one curve β in the class b and i(a, b)
parallel curves αi, each in the class a, each in minimal position with β (one
can also take the αi to not have minimal position with β, but then one must
take |αi ∩ β| parallel curves αi). Of course, the result is not a simple closed
curve. At each intersection point between β and some αi, we do surgery
as in Figure 3.3. The rule for the surgery is to resolve the intersection in
the unique way so that if we follow an arc of β toward the intersection, the
surgered arc turns left at the intersection. Again, this does not rely on any
orientation of αi or of β but rather on the orientation of the surface. After
performing this surgery at each intersection, the result is a simple closed
curve in the class Ta(b).

αi

β

Figure 3.3 Dehn twists via surgery.

3.1.2 NONTRIVIALITY OF DEHN TWISTS

If a is the isotopy class of a simple closed curve that is homotopic to a point
or a puncture, then Ta is trivial in Mod(S)—whatever twisting is done on
the annulus can be undone by untwisting the disk or once-punctured disk
inside. We can use the action of a Dehn twist on simple closed curves to
prove that all other Dehn twists are nontrivial.

Proposition 3.1 Let a be the isotopy class of a simple closed curve α in a
surface S. If α is not homotopic to a point or a puncture of S, then the Dehn
twist Ta is a nontrivial element ofMod(S).

Proof. If α is a nonseparating simple closed curve, then by change of coor-
dinates we can find a simple closed curve β with i(α, β) = 1. Denote the
isotopy class of β by b. As in Figure 3.2, one can draw a representative of
Ta(b) that intersects β once transversely. By the bigon criterion, i(Ta(b), b)
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is actually equal to 1 (a bigon requires two intersections). Therefore, Ta(b)
is not the same as b, and so Ta is nontrivial in Mod(S).

Perhaps a simpler way to phrase the proof in the case that a is nonsepa-
rating is to check that Ta acts nontrivially on H1(S; Z); see Chapter 6 for
more on this homology action. If α is a separating essential simple closed
curve, then the action of Ta on H1(S; Z) is trivial, and so we are forced to
use the more subtle machinery of the change of coordinates principle and
the bigon criterion.

By the change of coordinates principle, an essential separating curve α
is as depicted in Figure 3.4 (possibly with different genera and different
numbers of punctures/boundary on the two sides of α). We can thus choose
an isotopy class b with i(a, b) = 2, and we consider the isotopy class Ta(b).
We claim that Ta(b) �= b, from which it follows that Ta is nontrivial.

We now prove the claim. On the right-hand side of Figure 3.4, we show
representatives β and β′ of b and Ta(b); the given representatives intersect
four times. We will use the bigon criterion to check that all intersections are
essential and so i(Ta(b), b) = 4, from which it follows that Ta(b) �= b. To
do this, note that β cuts β′ into four arcs, β′1, β′2, β′3, and β′4, and similarly
β′ cuts β into four arcs β1, β2, β3, and β4. For each βi there is a unique β′j
that has the same pair of endpoints on β ∩ β′. This gives four candidates for
bigons. But each of these four candidate bigons βi ∪ β′j is a nonseparating
simple closed curve, and so none is an actual bigon. This proves the claim,
and so Ta is nontrivial.

The remaining case is that α is homotopic to a boundary component of
S and that α is neither homotopic to a point or a puncture. It follows that
S is some surface with boundary other than the disk or the once-punctured
disk. Let S denote the double of S, obtained by taking two copies of S
and identifying corresponding boundary components. In S, the curve α be-
comes essential. By our definition of the mapping class group for a surface
with boundary, if Ta were trivial in Mod(S), it would be trivial in Mod(S),
contradicting the previous cases. �

α

β

β′

Figure 3.4 Checking that a Dehn twist about a separating simple closed curve is nontrivial.
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3.2 DEHN TWISTS AND INTERSECTION NUMBERS

We have already seen the effectiveness of analyzing Dehn twists (and other
mapping classes) via their actions on simple closed curves. We now give
two explicit formulas for this action.

Proposition 3.2 Let a and b be arbitrary isotopy classes of essential simple
closed curves in a surface and let k be an arbitrary integer. We have

i(T ka (b), b) = |k|i(a, b)2.

We remark that, as an important consequence of Proposition 3.2, we have
the following:

Dehn twists have infinite order.

The only observation needed to prove this fact is that given an isotopy class
a of essential simple closed curves, one can find an isotopy class b with
i(a, b) > 0. As in the proof of Proposition 3.1, this is accomplished with the
change of coordinates principle. Thus Proposition 3.2 is a generalization of
Proposition 3.1. What is more, the proof of Proposition 3.2 is a generaliza-
tion of the proof of Proposition 3.1.

Proof. We choose representative simple closed curves α and β in minimal
position and form a simple closed curve β′ in the class of Ta(b) using the
surgical recipe given above. More specifically, we take k i(a, b) parallel
copies of α lying to one side of α and one copy of β lying parallel to β,
and then we surger as in Figure 3.3; see the left-hand side of Figure 3.5 for
the case of i(a, b) = 3 and k = 1.

ααα

β

β′
γ1 γ2

Figure 3.5 The simple closed curves in the proof of Proposition 3.2.

Simply by counting, we see that

|β ∩ β′| = |k|i(a, b)2.
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Thus it suffices to show that β and β′ are in minimal position. By the bigon
criterion, we only need to check that they do not form any bigons.

We cut β and β′ at the points of β ∩ β′ and call the resulting closed arcs
{βi} and {β′i}. We see that there are two types of candidate bigons, that
is, simple closed curves that can be formed from one arc βi and one arc
β′j : either the orientations of the two intersection points are the same, as for
the curve γ1 on the right-hand side of Figure 3.5, or the orientations of the
intersection points are different, as for γ2 in the same figure. In a true bigon,
the orientations at the two intersection points are different, and so the simple
closed curve γ1 in the first case cannot be a bigon. In the second case, if γ2

were a bigon, then since the vertical arcs of β′ are parallel to arcs of α, we
see that α and β form a bigon, contrary to assumption. �

Proposition 3.4 below is a useful generalization of Proposition 3.2. In
order to prove it, we require the following lemma.

Lemma 3.3 Let α and β be simple closed curves in a surface. Suppose that
α and β are in minimal position. Given a third simple closed curve γ, there
exists a simple closed curve γ′ that is homotopic to γ and that is in minimal
position with respect to both α and β.

Proof. By perturbing γ by isotopy if necessary, we may assume that γ is
transverse to both α and β. If γ is not in minimal position with α, say, then
by the bigon criterion α and γ form a bigon. We can take this bigon to be
innermost with respect to α and γ. By the assumption that α and β are in
minimal position, any arc of intersection of β with this bigon either connects
the α-side of the bigon to the γ-side, or the γ-side to itself. In the latter case,
we have a bigon formed by β and γ that is contained inside the original
bigon.

Continuing in this way, we can find either a bigon formed by α and γ or
a bigon formed by β and γ that is innermost among all such bigons. Say the
innermost bigon is formed by α and γ. As above, any intersection of β with
this bigon is an arc connecting one side to the other. Thus we can push γ
by homotopy across the bigon, reducing the number of intersection points
with α by 2 and preserving the number of intersection points with β. We can
repeat this process until all bigons are eliminated, and the lemma is proved.
�

Another approach to Lemma 3.3 is the following: one can show that there
exists a hyperbolic metric on the surface so that the curves α and β are
geodesics [61, Exposé 3, Proposition 10]. Then the curve γ′ can be taken to
be the geodesic in the free homotopy class of γ.
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Proposition 3.4 Let a1, . . . , an be a collection of pairwise disjoint isotopy
classes of simple closed curves in a surface S and let M =

∏n
i=1 T

ei
ai
.

Suppose that ei > 0 for all i or ei < 0 for all i. If b and c are arbitrary
isotopy classes of simple closed curves in S, then∣∣∣∣∣i(M(b), c) −

n∑
i=1

|ei|i(ai, b)i(ai, c)
∣∣∣∣∣ ≤ i(b, c).

Setting n = 1, e1 = k, and c = b gives Proposition 3.2 as a special
case. There is a version of Proposition 3.4 where the ei are allowed to have
arbitrary signs, but the proof is not as straightforward; we refer the reader to
[106, Lemma 4.2].

Proof. We start by forming a representative β′ of M(b) as in the proof of
Proposition 3.2. As in that proof, it follows from the bigon criterion that β
and β′ are in minimal position. This uses the fact that all of the twists are
in the same direction, that is, the ei all have the same sign. By Lemma 3.3,
there is a representative γ of c that is in minimal position with both β and β′.
By perturbing γ if necessary, we can assume that it does not pass through
β ∩ β′.

There is a continuous map of the disjoint union of
∑ |ei|i(ai, b) copies

of S1 into S with image β ∪β′ and where the images of |ei| copies of S1 lie
in the class ai. Each copy of ai intersects γ in at least i(ai, c) points, by the
definition of geometric intersection number. Since γ is in minimal position
with β and β′, we obtain∑

|ei|i(ai, b)i(ai, c) ≤ |(β ∪ β′) ∩ γ| = i(M(b), c) + i(b, c).

It remains to prove that

i(M(b), c) ≤
∑
|ei|i(ai, b)i(ai, c) + i(b, c).

For this it suffices to find representatives of M(b) and c whose intersection
consists of

∑ |ei|i(ai, b)i(ai, c) + i(b, c) points. The most natural represen-
tatives satisfy this property. Precisely, for M(b) we can choose a curve that
lies in the union of the curve β and small regular neighborhoods of disjoint
representatives αi of the ai. Then, for c, we take a curve that cuts across each
αi-annulus in i(ai, c) arcs and intersects β in i(b, c) points not contained in
the αi-annuli. �

Pairs of filling curves. We now give one useful consequence of Proposi-
tion 3.4. Say that a pair of isotopy classes {a, b} of simple closed curves
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in a surface S fill if any pair of minimal position representatives fill (i.e.,
the complement of the representatives in the surface is a collection of disks
and once-punctured disks). This is the same as saying that for every isotopy
class c of essential simple closed curves in the surface, either i(a, c) > 0 or
i(b, c) > 0.

Proposition 3.5 Let g, n ≥ 0 and assume that χ(Sg,n) < 0. There exists a
pair of simple closed curves in Sg,n that fill Sg,n.

Proof. Choose a maximal collection {α1, . . . , αk} of pairwise disjoint, non-
homotopic, essential simple closed curves in Sg,n. When we cut Sg,n along
the αi, we obtain a collection of surfaces. Each of these surfaces is a sphere
with b boundary components and p punctures with b + p = 3 (cf. Sec-
tion 8.3).

We claim that there is a simple closed curve β in Sg,n so that i(β, αi) > 0
for each i. We can construct β as follows. First, we cut Sg,n along the αi.
On each component of the cut surface, we then connect by an arc each pair
of distinct boundary components coming from the αi. We can take these
arcs to be disjoint. In Sg,n, these arcs can be pasted together in an arbitrary
fashion in order to obtain a collection β1, . . . , βk of pairwise disjoint simple
closed curves in Sg,n.

By the bigon criterion, each βj is in minimal position with respect to
each αi and each αi intersects either one or two of the βj . Suppose that βj
and βj′ intersect αi and that βj and βj′ are distinct. Then we can perform
a half-twist about αi so that βj and βj′ become a single curve. Since this
process does not create any bigons, the resulting collection {βj} is still in
minimal position with each αi. Continuing in this way, we obtain a single
simple closed curve β that intersects each αi and is in minimal position with
respect to each αi, as desired.

Let M = Tα1
· · · Tαk

. We claim that β and M(β) fill Sg,n. Indeed, let
γ be an arbitrary isotopy class of simple closed curves in Sg,n. We wish to
show that either i(β, γ) > 0 or i(M(β), γ) > 0. By Proposition 3.4, we
have ∣∣∣∣∣i(M(β), γ) −

k∑
i=1

i(αi, β)i(αi, γ)

∣∣∣∣∣ ≤ i(β, γ).

If i(β, γ) and i(M(β), γ) are both equal to zero, then this immediately im-
plies that i(αi, γ) = 0 for each i. This means that γ is isotopic to some αi.
But then i(γ, β) > 0 by the construction of β, and so we have a contradic-
tion. �
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3.3 BASIC FACTS ABOUT DEHN TWISTS

In this section we prove some fundamental facts about Dehn twists that will
be used repeatedly throughout this book. Throughout this section a and b
denote arbitrary (unoriented) isotopy classes of simple closed curves.

Fact 3.6 Ta = Tb ⇐⇒ a = b.

We have already addressed the reverse implication of Fact 3.6, which says
that Dehn twists are well-defined mapping classes. For the forward impli-
cation, we start by noting that the statement is not as obvious as it seems.
Indeed, suppose we know that Ta = Tb. Then we know that, given any two
representatives of Ta and Tb with annular supports (neighborhoods of sim-
ple closed curves in the classes a and b), there is an isotopy between the
representative homeomorphisms. One would then like to say that there is
an induced isotopy from one annular support to the other and hence an iso-
topy between curves. But partway through the isotopy of homeomorphisms,
the support might become something other than an annulus—perhaps the
whole surface, even—and we have lost any information we had about sim-
ple closed curves.

So assume now that a �= b. We will show that Ta �= Tb. We start by
finding an isotopy class c of simple closed curves so that i(a, c) = 0 and
i(b, c) �= 0. There are two cases. First, if i(a, b) �= 0, then we can take
c = a. If i(a, b) = 0, then one can use change of coordinates to easily
find c (there are several cases, depending on the separation properties of the
curves). Given any such choice of c, we apply Proposition 3.2 and find

i(Ta(c), c) = i(a, c)2 = 0 �= i(b, c)2 = i(Tb(c), c).

It follows that Ta(c) �= Tb(c), and so Ta �= Tb.

We have the following formula for the conjugate of a Dehn twist.

Fact 3.7 For any f ∈ Mod(S) and any isotopy class a of simple closed
curves in S we have

Tf(a) = fTaf
−1.

Fact 3.7 can be checked directly as follows. First, recall that we apply
elements of the mapping class group from right to left. Let φ denote a rep-
resentative of f , let α denote a representative of a, and let ψα denote a
representative of Ta whose support is an annulus. Note that φ−1 takes a reg-
ular neighborhood of φ(α) to a regular neighborhood of α (preserving the
orientation), then ψα twists the neighborhood of α, and φ takes this twisted
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neighborhood of α back to a neighborhood of φ(α) (again preserving the
orientation). So the net result is a Dehn twist about φ(α).

From the previous facts we obtain the following.

Fact 3.8 For any f ∈ Mod(S) and any isotopy class a of simple closed
curves in S, we have

f commutes with Ta ⇐⇒ f(a) = a.

Indeed, by Facts 3.7 and 3.6, we have

fTa = Taf⇐⇒ fTaf
−1 = Ta

⇐⇒Tf(a) = Ta

⇐⇒ f(a) = a.

By the classification of simple closed curves in S (see Section 1.3), given
any two nonseparating simple closed curves a and b in S, there exists h ∈
Mod(S) with h(a) = b. Hence Fact 3.7 also gives the following.

If a and b are nonseparating simple closed curves in S, then Ta
and Tb are conjugate inMod(S).

The last statement can be generalized, using change of coordinates, to twists
about any two simple closed curves of the same topological type.

The next fact follows from Proposition 3.2 and Fact 3.8.

Fact 3.9 For any two isotopy classes a and b of simple closed curves in a
surface S, we have

i(a, b) = 0 ⇐⇒ Ta(b) = b ⇐⇒ TaTb = TbTa.

The only nontrivial part of the proof of Fact 3.9 is that the second state-
ment implies the first. But if Ta(b) = b, then i(Ta(b), b) = i(b, b) = 0. By
Proposition 3.2, i(Ta(b), b) = i(a, b)2, and it follows that i(a, b) = 0.

Powers of Dehn twists. There are analogues of each of the above facts for
powers of Dehn twists. For f ∈ Mod(S), we have

fT jaf
−1 = T jf(a),
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and so f commutes with T ja if and only if f(a) = a. Also, for nontrivial
Dehn twists Ta, Tb and nonzero integers j, k, we have

T ja = T kb ⇐⇒a = b and j = k

T jaT
k
b = T kb T

j
a ⇐⇒ i(a, b) = 0.

In each case the proof is essentially the same as the cases when j = k = 1.
In the remainder of this section, we give three applications of the Alexan-

der method and our basic facts about Dehn twists: we compute the center
of the mapping class group, we derive some geometrically induced homo-
morphisms between mapping class groups, and we give computations of
mapping class groups of certain surfaces with boundary.

3.4 THE CENTER OF THE MAPPING CLASS GROUP

Recall that the center Z(G) of a group G is the subgroup of G consisting
of those elements that commute with every element of G. We will apply
Fact 3.8 and the Alexander method to compute the center of Mod(S).

THEOREM 3.10 For g ≥ 3, the group Z(Mod(Sg)) is trivial.

...

α2 α4 α6 α2g
α3 α5 α7

α1 α0

Figure 3.6 The simple closed curves used to determine the center of Mod(S).

Proof. By Fact 3.8, any central element f of Mod(Sg) must fix every iso-
topy class of simple closed curves in Sg. Consider the simple closed curves
α0, . . . , α2g shown in Figure 3.6. By statement 1 of the Alexander method,
f has a representative φ that fixes the graph ∪αi, and thus φ induces a map
φ∗ of this graph.

The graph ∪αi is isomorphic to the abstract graph Γ shown in Figure 3.7
for the case g = 4. For g ≥ 3, the only automorphisms of Γ come from
flipping the three edges that form loops and swapping pairs of edges that



76 CHAPTER 3

��
��
��
��

�
�
�
�

������

�
�
�
�

�� ������

Figure 3.7 The collection of simple closed curves in Figure 3.6 form a graph in S4 that is
abstractly isomorphic to the graph Γ shown here for the case g = 4.

form a loop. In particular, any automorphism of Γ must fix the three edges
coming from α4. Thus we see that φ preserves the orientation of α4, and
so since φ is orientation-preserving, it must also preserve the two sides of
α4. It follows that φ∗ does not flip the edge of Γ coming from α0, and it
does not interchange the two edges coming from α3 or the two coming from
α5. Inductively, we see that φ∗ fixes each edge of Γ with orientation. By
statement 2 of the Alexander method, plus the fact that the {αi} fill Sg, we
have that φ is isotopic to the identity; that is, f is the identity. �

The proof of Theorem 3.10 actually shows that the center of any finite
index subgroup of Mod(Sg) is trivial when g ≥ 3 since a finite-index sub-
group contains some power of each Dehn twist and since Fact 3.8 applies to
powers of Dehn twists.

Figure 3.8 Rotations by π about the indicated axes give hyperelliptic involutions of the
punctured surfaces S0,2, S0,4, S1,1, and S1,2.

By choosing appropriate configurations of simple closed curves on
other surfaces, the method of proof of Theorem 3.10 shows that the only
candidates for nontrivial central elements of (finite-index subgroups of)
Mod(Sg,n) are the hyperelliptic involutions of T 2 and S2, as well as the hy-
perelliptic involutions shown in Figure 3.8. So the order of Z(Mod(Sg,n))
is at most 2 when Sg,n is one of the punctured surfaces S0,2, S1,0, S1,1, S1,2,
or S2,0, the order of Z(Mod(S0,4)) is at most 4, and Z(Mod(Sg,n)) is triv-
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ial in all other cases. In the case of Mod(S0,4), the center is trivial since the
the subgroup generated by the hyperelliptic involutions acts faithfully on the
four punctures, and the symmetric group on the four punctures is centerless.

On the other hand, to show that a mapping class z really is an element of
Z(Mod(S)), it suffices to choose a generating set of Dehn twists and half-
twists for Mod(S) and show that z fixes each of the corresponding isotopy
classes of simple closed curves and simple arcs (see Corollary 4.15). In this
way, we find that Z(Mod(Sg,n)) ≈ Z/2Z when Sg,n is S0,2, S1,0, S1,1,
S1,2, or S2,0. By the same argument, for a surface with boundary, the Dehn
twist about any boundary component is central.

We summarize the results for punctured surfaces in the following table.

Surface (with punctures) Z(Mod(S))

S0,2, S1,0, S1,1, S1,2, S2,0 Z2

All other Sg,n 1

As stated in the proof of Theorem 3.10, these nontrivial central elements
have the property that they fix the isotopy class of every simple closed curve.

3.5 RELATIONS BETWEEN TWO DEHN TWISTS

The goal of this section is to answer the question: what algebraic relations
can occur between two Dehn twists? In fact, we answer the more general
question where powers of Dehn twists are allowed. We have already seen
that Dehn twists about disjoint curves commute in the mapping class group.
The next most basic relation between twists is the braid relation. Except in a
few cases, we will see that there are no other relations between Dehn twists.

3.5.1 THE BRAID RELATION

The following proposition gives a basic relation between Dehn twists in
Mod(S) called the braid relation.

Proposition 3.11 (Braid relation) If a and b are isotopy classes of simple
closed curves with i(a, b) = 1, then

TaTbTa = TbTaTb.

Proof. The relation

TaTbTa = TbTaTb
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TaTb(α)

Tb(α)
Tb

Ta

α

isotopy

β

β

Figure 3.9 The proof of Proposition 3.12.

is equivalent to the relation

(TaTb)Ta(TaTb)
−1 = Tb.

By Fact 3.7, this is equivalent to the relation

TTaTb(a) = Tb.

Applying Fact 3.6, this is equivalent to the equality

TaTb(a) = b.

By the change of coordinates principle, it suffices to check the last statement
for any two isotopy classes a and b with i(a, b) = 1. The computation is
shown in Figure 3.9, where α is some representative of a and β is some
representative of b. �

If a is the (1, 0)-curve and b is the (0, 1)-curve on the torus T 2, then
via the isomorphism of Theorem 2.5 the braid relation corresponds to the
familiar relation in SL(2,Z):(

1 −1
0 1

)(
1 0
1 1

)(
1 −1
0 1

)
=

(
1 0
1 1

)(
1 −1
0 1

)(
1 0
1 1

)
The next proposition records our rephrasing of the braid relation for use

in the proof of Theorem 4.1 below.
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Proposition 3.12 If a and b are isotopy classes of simple closed curves that
satisfy i(a, b) = 1, then TaTb(a) = b.

The braid relation gets its name from the analogous relation in the braid
group (see Section 9.4).

One can ask for a converse to the braid relation: if two Dehn twists satisfy
the braid relation algebraically, then do the corresponding curves necessarily
have intersection number one? McCarthy gave the following proof that the
answer is yes [144]. Theorem 3.14 below is a much more general fact; we
consider Proposition 3.13 as a warmup.

Proposition 3.13 If a and b are distinct isotopy classes of simple closed
curves and the Dehn twists Ta and Tb satisfy TaTbTa = TbTaTb, then
i(a, b) = 1.

Proof. As in the proof of Proposition 3.11, the relation TaTbTa = TbTaTb
is equivalent to the statement that TaTb(a) = b, which implies

i(a, TaTb(a)) = i(a, b).

Applying T−1
a to both curves on the left-hand side of the equation, we see

that

i(a, Tb(a)) = i(a, b).

Now, by Proposition 3.2, we have that

i(a, b)2 = i(a, b).

And so i(a, b) is either equal to 0 or 1. If i(a, b) were 0, an application of
Fact 3.9 reduces the relation to Ta = Tb, which, by Fact 3.6, contradicts the
assumption a �= b. Thus i(a, b) = 1. �

We note that the same proof really shows the stronger result that if a �= b
and T jaT kb T

j
a = T kb T

j
aT kb , then i(a, b) = 1 and j = k = ±1.

3.5.2 GROUPS GENERATED BY TWO DEHN TWISTS

Now that we know the braid relation it is natural to try to find other rela-
tions between two Dehn twists. In this subsection we will give a complete
classification of such relations. We begin with the following.

THEOREM 3.14 Let a and b be two isotopy classes of simple closed curves
in a surface S. If i(a, b) ≥ 2, then the group generated by Ta and Tb is
isomorphic to the free group F2 of rank 2.
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We can also say what happens in the other cases. If a = b, then 〈Ta, Tb〉 ≈
Z since T ja = T kb if and only if a = b and j = k. If a �= b and i(a, b) = 0,
then 〈Ta, Tb〉 is isomorphic to Z2 by Fact 3.9 plus the fact that T ja = T kb if
and only if a = b and j = k. When i(a, b) = 1, we have that

〈Ta, Tb〉 ≈ Mod(S1
1) ≈ 〈x, y |xyx = yxy〉,

where S1
1 is a torus with an open disk removed (see above).

We remark that the question of which groups can be generated by three
Dehn twists is completely open. See Section 5.1 for one relation between
three Dehn twists.

Below we give the proof of Theorem 3.14 published by Ishida and
Hamidi-Tehrani [76, 103]. The theorem, though, was apparently known to
Ivanov (and perhaps others) in the early 1980s. We first introduce the ping
pong lemma, which is a basic and fundamental tool from geometric group
theory. It is a method to prove that a group is free by understanding how it
acts on a set. Poincaré used this method to prove that if two hyperbolic trans-
lations have different axes, then sufficiently high powers of these elements
generate a free group of rank 2.

Lemma 3.15 (Ping pong lemma) Let G be a group acting on a set X. Let
g1, . . . , gn be elements of G. Suppose that there are nonempty, disjoint sub-
sets X1, . . . ,Xn of X with the property that, for each i and each j �= i, we
have gki (Xj) ⊂ Xi for every nonzero integer k. Then the group generated
by the gi is a free group of rank n.

Proof. We need to show that any nontrivial freely reduced word in the gi
represents a nontrivial element of G. First suppose that w is a freely reduced
word that starts and ends with a nontrivial power of g1. Then for any x ∈ X2,
we have w(x) ∈ X1, and so w(x) �= x since X1 ∩ X2 = ∅. Thus w
represents a nontrivial element of g. Since any other freely reduced word
in the gi is conjugate to a word that starts and ends with g1, every freely
reduced word in the gi represents an element of G that is conjugate to a
nontrivial element and hence is itself nontrivial. �

Proof of Theorem 3.14. Suppose that i(a, b) ≥ 2. Let G be the group gen-
erated by g1 = Ta and g2 = Tb and let X be the set of isotopy classes
of simple closed curves in S. The group G acts on X. With the ping pong
lemma in mind, we define sets Xa and Xb as follows:

Xa = {c ∈ X : i(c, b) > i(c, a)},
Xb = {c ∈ X : i(c, a) > i(c, b)}.



DEHN TWISTS 81

These sets are obviously disjoint, and they are nonempty since a ∈ Xa and
b ∈ Xb.

By the ping pong lemma, the proof is reduced to checking that T ka (Xb) ⊂
Xa and T kb (Xa) ⊂ Xb for k �= 0. By symmetry, we need to check only the
former inclusion.

Setting M = T ka in Proposition 3.4 yields∣∣∣i(T ka (c), b) − |k|i(a, b)i(a, c)
∣∣∣ ≤ i(b, c),

and so

−i(b, c) ≤ i(T ka (c), b) − |k|i(a, b)i(a, c) ≤ i(b, c).

If c ∈ Xb, then i(a, c) > i(b, c). Since k �= 0, the left-hand inequality
implies

i(T ka (c), b)≥ |k|i(a, b)i(a, c) − i(b, c)
≥ 2|k|i(a, c) − i(b, c)
> 2|k|i(a, c) − i(a, c)
= (2|k| − 1)i(a, c)

≥ i(a, c)
= i(T ka (a), T ka (c))

= i(a, T ka (c)).

Thus i(T ka (c), b) > i(T ka (c), a), and so T ka (c) ∈ Xa, as desired. �

A free group in SL(2, Z). The proof of Theorem 3.14 given above is
inspired by a proof that the matrices(

1 n
0 1

)
and

(
1 0
n 1

)
generate a free subgroup of SL(2,Z) for n ≥ 2 (this fact is originally due
to Magnus [136]). In this case, the sets used for the ping pong lemma are
{(x, y) ∈ Z2 : |x| > |y|} and {(x, y) ∈ Z2 : |y| > |x|}.

The classification of groups generated by two Dehn twists. With a little
more care, the method of proof of Theorem 3.14 can be applied to give the
stronger statement that 〈T ja , T kb 〉 ≈ F2 except if i(a, b) = 0 or if i(a, b) = 1
and the set {j, k} is equal to {1}, {1, 2}, or {1, 3}. When j = k = 1, we
already know that we have the braid relation. And in the other exceptional
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cases, there exist nontrivial relations as well. For instance, if i(a, b) = 1,
then T 2

a and Tb satisfy the relation

T 2
aTbT

2
aTb = TbT

2
aTbT

2
a

and T 3
a and Tb satisfy

T 3
aTbT

3
aTbT

3
aTb = TbT

3
aTbT

3
aTbT

3
a .

What is more, it turns out that these are the defining relations for the groups
〈T 2
a , Tb〉 and 〈T 3

a , Tb〉. The group 〈T 2
a , Tb〉 corresponds to a well-known

index 3 subgroup of B3 (the subgroup fixing the first strand). The group
〈T 3
a , Tb〉 does not seem to be a well-known subgroup of B3. Luis Paris has

explained to us that this is an index 8 subgroup of B3, and he has used the
Reidemeister–Schreier algorithm to give an elementary proof that the stated
relation is the unique defining relation; see [174].

Combining the results from this section, we can completely list all possi-
bilities for groups generated by powers of two Dehn twists. In the table we
assume that a and b are essential, that j ≥ k > 0, and that the underlying
surface is not T 2 or S1,1.

Group generated by T ja , T kb

i(a, b) = 0, a = b 〈T ja , T kb 〉 ≈ 〈x, y |x = y〉 ≈ Z

i(a, b) = 0, a �= b 〈T ja , T kb 〉 ≈ 〈x, y |xy = yx〉 ≈ Z2

i(a, b) = 1 〈Ta, Tb〉 ≈ 〈x, y |xyx = yxy〉
〈T 2
a , Tb〉 ≈ 〈x, y |xyxy = yxyx〉

〈T 3
a , Tb〉 ≈ 〈x, y |xyxyxy = yxyxyx〉

〈T ja , T kb 〉 ≈ 〈x, y | 〉 ≈ F2 otherwise

i(a, b) ≥ 2 〈T ja , T kb 〉 ≈ 〈x, y | 〉 ≈ F2

If the surface is T 2 or S1,1 and i(a, b) = 1, we have the added relations
(TaTb)

6 = 1, (T 2
aTb)

4 = 1, and (T 3
aTb)

3 = 1.

3.6 CUTTING, CAPPING, AND INCLUDING

In this section we apply our knowledge about Dehn twists to address a ba-
sic general question about mapping class groups: when does a geometric
operation on a surface induce an algebraic operation on the corresponding
mapping class group? We investigate three such operations: including a sur-
face into another surface, capping a boundary component of a surface with
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a punctured disk, and deleting a simple closed curve from a surface. We will
see that in each case there is indeed an induced homomorphism on the level
of mapping class groups.

The results in this section are somewhat technical but very useful. The
reader might consider skipping the proofs on a first reading.

3.6.1 THE INCLUSION HOMOMORPHISM

When S is a closed subsurface of a surface S′, there is a natural homomor-
phism η : Mod(S)→ Mod(S′). For f ∈ Mod(S), we represent it by some
φ ∈ Homeo+(S, ∂S). Then, if φ̂ is the element of Homeo+(S′, ∂S′) that
agrees with φ on S and is the identity outside of S, we define η(f) to be
the class of φ̂. The map η is well defined because any homotopy between
two elements of φ ∈ Homeo+(S, ∂S) gives a homotopy between the corre-
sponding elements of Homeo+(S′, ∂S′).

Our goal in this subsection is to describe the kernel of η (Theorem 3.18
below). We begin with a simple lemma.

Lemma 3.16 Let α1, . . . , αn be a collection of homotopically distinct sim-
ple closed curves in a surface S, each not homotopic to a point in S. Let β
and β′ be simple closed curves in S that are both disjoint from ∪αi and are
homotopically distinct from each αi. If β and β′ are isotopic in S, then they
are isotopic in S − ∪αi.

Proof. It suffices to find an isotopy from β to β′ in S that avoids ∪αi. First,
we may modify β so that it is transverse to β′ and is still disjoint from ∪αi.
If β ∩ β′ = ∅, then β and β′ form the boundary of an annulus A in S. Since
β (and β′) is not homotopic to any αi, it cannot be that any αi are contained
in A. The annulus A gives the desired isotopy from β to β′.

If β ∩ β′ �= ∅, then by the bigon criterion they form a bigon. Since the αi
are not homotopic to a point and (∪αi) ∩ (β ∪ β′) = ∅, the intersection of
∪αi with the bigon is empty. We can thus push β across the bigon, keeping
β disjoint from ∪αi throughout the isotopy. By induction, we reduce to the
case where β and β′ are disjoint. This completes the proof. �

LEMMA 3.17 Let {a1, . . . , am} be a collection of distinct nontrivial iso-
topy classes of simple closed curves in a surface S and assume that
i(ai, aj) = 0 for all i, j. Let {b1, . . . , bn} be another such collection. Let
pi, qi ∈ Z− {0}. If

T p1a1 T
p2
a2 · · · T

pm
am

= T q1b1 T
q2
b2
· · ·T qnbn
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inMod(S), thenm = n and the sets {T pi
ai } and {T qibi } are equal. In partic-

ular,

〈Ta1 , Ta2 , . . . , Tam〉 ≈ Zm.

A mapping class
∏
T pi
ai as in Lemma 3.17 is called a multitwist.

Lemma 3.17 is a generalization of Fact 3.6, and in fact the proof is also
a straightforward generalization. Note that in the statement the ai and bi are
allowed to be peripheral.

THEOREM 3.18 (The inclusion homomorphism) Let S be a closed sub-
surface of a surface S′. Assume that S is not homeomorphic to a closed
annulus and that no component of S′ − S is an open disk. Let η :
Mod(S) → Mod(S′) be the induced map. Let α1, . . . , αm denote the
boundary components of S that bound once-punctured disks in S′ − S and
let {β1, γ1}, . . . , {βn, γn} denote the pairs of boundary components of S
that bound annuli in S′ − S. Then the kernel of η is the free abelian group

ker(η) = 〈Tα1
, . . . , Tαm , Tβ1

T−1
γ1 , . . . , TβnT

−1
γn
〉.

In particular, if no connected component of S′ − S is an open annulus, an
open disk, or an open once-marked disk, then η is injective.

The annulus is a special case for Theorem 3.18 for the simple fact that it
has two boundary components that are isotopic. If S is an annulus, then η
is injective unless S′ is obtained from S by capping one or both boundary
components with disks or once-punctured disks.

Proof. Let f ∈ ker(η) and let φ ∈ Homeo+(S, ∂S) be a representa-
tive. As above, we may extend φ by the identity in order to obtain φ̂ ∈
Homeo+(S′, ∂S′). By definition, φ̂ represents η(f). Therefore, φ̂ lies in the
connected component of the identity in Homeo+(S′, ∂S′).

Let δ be an arbitrary oriented simple closed curve in S. Since φ̂ is isotopic
to the identity, we have that φ̂(δ) is isotopic to δ in S′. Since φ̂ agrees with
φ on S, we have that φ(δ) is isotopic to δ in S′. By Lemma 3.16 and the
assumption on S′ − S, we have that φ(δ) is isotopic to δ in S.

We can choose a collection of simple closed curves δ1, . . . , δk in S that
satisfy the three properties in the statement of the Alexander method (pair-
wise minimal position, pairwise nonisotopic, no triple intersections) and so
that the surface obtained from S by cutting along ∪δi is a collection of disks,
once-punctured disks, and closed annular neighborhoods Ni of the bound-
ary components. Moreover, we can choose {δi} so that any homeomorphism
that fixes ∪δi ∪ ∂S necessarily preserves the complementary regions.
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By the first statement of the Alexander method, φ is isotopic (in S) to
a homeomorphism of S that fixes ∪δi ∪ ∂S. Since Mod(D2) = 1 and
Mod(D2 − point) = 1 (Lemma 2.1), it follows that f has a representa-
tive that is supported in the Ni. Since Mod(A) ≈ Z (Proposition 2.4), it
follows that f is a product of Dehn twists about boundary components. By
Lemma 3.17, f must become the trivial multitwist in S′. The theorem fol-
lows. �

The proof of Theorem 3.18 extends to the case where S is disconnected
and Mod(S) is taken to be the direct product of the mapping class groups
of its connected components.

3.6.2 THE CAPPING HOMOMORPHISM

One particularly useful special case of Theorem 3.18 is the case where S′−S
is a once-punctured disk. We say that S′ is the surface obtained from S
by capping one boundary component. In this case we have the following
statement.

Proposition 3.19 (The capping homomorphism) Let S′ be the surface
obtained from a surface S by capping the boundary component β with
a once-marked disk; call the marked point in this disk p0. Denote by
Mod(S, {p1, . . . , pk}) the subgroup ofMod(S) consisting of elements that
fix the punctures p1, . . . , pk, where k ≥ 0. Let Mod(S′, {p0, . . . , pk})
denote the subgroup of Mod(S′) consisting of elements that fix the
marked points p0, . . . , pk and then let Cap : Mod(S, {p1, . . . , pk}) →
Mod(S′, {p0, . . . , pk}) be the induced homomorphism. Then the following
sequence is exact:

1→ 〈Tβ〉 → Mod(S, {p1, . . . , pk})
Cap→ Mod(S′, {p0, . . . , pk})→ 1.

One might also wonder about the case where a boundary component of
S′ is capped by a (unmarked) disk. The kernel in that case is isomorphic to
the fundamental group of the unit tangent bundle of S′; see Section 4.2.

3.6.3 THE CUTTING HOMOMORPHISM

The next geometric operation we consider is the following. Let α be an
essential simple closed curve in a surface S. We can delete α from S in
order to obtain a surface S − α that has two more punctures than S does.
For example, if S has no boundary, then S − α can be identified with the
interior of the surface obtained by cutting S along α.
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Let a denote the isotopy class of α and let Mod(S, a) denote the sta-
bilizer in Mod(S) of a. We would like to show that there is a well-defined
homomorphism Mod(S, a)→ Mod(S−α). There is an obvious map: given
f ∈ Mod(S, a), choose a representative φ that fixesα. The homeomorphism
φ restricts to a homeomorphism of S − α and hence gives an element of
Mod(S−α). In order to show that this map ζ : Mod(S, a) → Mod(S−α)
is well defined, we need to show that if two homeomorphisms of the pair
(S,α) are homotopic as homeomorphisms of S, then they are homotopic
through homeomorphisms that fix α. We now show that this is indeed the
case.

Proposition 3.20 (The cutting homomorphism) Let S be a closed surface
with finitely many marked points. Let α1, . . . , αn be a collection of pairwise
disjoint, homotopically distinct essential simple closed curves in S. There is
a well-defined homomorphism

ζ : Mod(S, {[α1], . . . , [αn]}) → Mod(S − ∪αi)

with kernel 〈Tα1
, . . . , Tαn〉.

Proof. It is clear that the map ζ defined above is a homomorphism as long
as it is well defined. Thus, we only need to show that ζ is well defined.

LetN be an open regular neighborhood of∪αi. The inclusion S−N → S
induces a homomorphism η1 : Mod(S − N) → Mod(S). The map η1

surjects onto Mod(S, {[α1], . . . , [αn]}), and by Theorem 3.18 its kernel K1

is generated by elements Tα+

i
T−1
α−

i

, where α+
i and α−i are the two boundary

components of N that are isotopic to αi in S.
Let S −N denote the surface obtained from S − N by capping each

boundary component with a punctured disk. The surface S −N is naturally
homeomorphic to S − ∪αi, and thus there is a canonical isomorphism τ :
Mod(S −N)→ Mod(S −∪αi).

By Theorem 3.18, the kernel of the homomorphism η2 : Mod(S−N)→
Mod(S −N) is the group K2 generated by the Tα+

i
and Tα−

i
.

We consider the following diagram.
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K1

1 K2 Mod(S −N)
η2

η1

Mod(S −N)

τ≈

Mod(S, {[α1], . . . , [αn]})

�

ζ
Mod(S − ∪αi)

1

Since K1 < K2, it follows that τ ◦ η2 ◦ η−1
1 is well defined. But this com-

position is nothing other than the map ζ defined above, and so we are done.
�

3.6.4 COMPUTATIONS OF MAPPING CLASS GROUPS VIA CAPPING

We can use Proposition 3.19 to determine the mapping class groups of some
surfaces with boundary.

Let P denote a pair of pants, that is, a compact surface of genus 0 with
three boundary components (and no marked points). Recall from Proposi-
tion 2.3 that PMod(S0,3) = 1. Starting from this fact and applying Propo-
sition 3.19 three times, we obtain the isomorphism

Mod(P ) ≈ Z3.

Let S1
1 denote a torus minus an open disk. We will show that

Mod(S1
1) ≈ ˜SL(2,Z),

where ˜SL(2,Z) denotes the universal central extension of SL(2,Z). We will
need the following group presentations (see [195, Section 1.5]):

SL(2,Z)≈〈a, b | aba = bab, (ab)6 = 1〉
˜SL(2,Z)≈〈a, b | aba = bab〉.

From these presentations one sees that there is a surjective homomorphism
˜SL(2,Z) → SL(2,Z) sending a to a and b to b with kernel 〈(ab)6〉 ≈ Z.

There are also homomorphisms ˜SL(2,Z) → Mod(S1
1) and SL(2,Z) →

Mod(S1,1), where in each case the generators a and bmap to the Dehn twists
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about the latitude and longitude curves. These maps fit into the following
diagram of exact sequences, where each square commutes:

1 Z

≈

˜SL(2,Z) SL(2,Z)

≈

1

1 Z Mod(S1
1)

Cap
Mod(S1,1) 1

The desired isomorphism follows from the five lemma.

We mention that the group ˜SL(2,Z) is also isomorphic to the braid group
on three strands (see Chapter 9) and the fundamental group of the comple-
ment of the trefoil knot in S3, as well as the local fundamental group of the
ordinary cusp singularity, that is, the fundamental group of the complement
in C2 of the affine curve x2 = y3.



Chapter Four

Generating the Mapping Class Group

Is there a way to generate all (homotopy classes of) homeomorphisms of
a surface by compositions of simple-to-understand homeomorphisms? We
have already seen that Mod(T 2) is generated by the Dehn twists about the
latitude and longitude curves. Our next main goal will be to prove the fol-
lowing result.

THEOREM 4.1 (Dehn–Lickorish theorem) For g ≥ 0, the mapping class
group Mod(Sg) is generated by finitely many Dehn twists about nonsepa-
rating simple closed curves.

Theorem 4.1 can be likened to the theorem that for each n ≥ 2 the
group SL(n,Z) can be generated by finitely many elementary matrices. As
with the linear case, Theorem 4.1 is fundamental to our understanding of
Mod(Sg).

In 1938 Dehn proved that Mod(Sg) is generated by 2g(g−1) Dehn twists
[51]. Mumford, building on Dehn’s work, showed in 1967 that only Dehn
twists about nonseparating curves were needed [164]. In 1964 Lickorish, ap-
parently unaware of Dehn’s work, gave an independent proof that Mod(Sg)
is generated by the Dehn twists about the 3g−1 nonseparating curves shown
in Figure 4.5 below [131].

...

a1 a2 a3 ag
c1 c2 c3 cg−1

m1 m2

Figure 4.1 Dehn twists about these 2g + 1 simple closed curves generate Mod(Sg).

In 1979 Humphries [101] proved the surprising theorem that the twists
about the 2g + 1 curves in Figure 4.1 suffice to generate Mod(Sg). These
generators are often called the Humphries generators. Humphries further
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showed that any set of Dehn twist generators for Mod(Sg) must have at
least 2g + 1 elements; see Section 6.3 for a proof of this fact.

Punctures and pure mapping class groups. Theorem 4.1 is simply not
true for surfaces with multiple punctures since no composition of Dehn
twists can permute the punctures. Let PMod(Sg,n) denote the pure map-
ping class group of Sg,n, which is defined to be the subgroup of Mod(Sg,n)
consisting of elements that fix each puncture individually. The action of
Mod(Sg,n) on the punctures of Sg,n gives us a short exact sequence

1→ PMod(Sg,n)→ Mod(Sg,n)→ Σn → 1,

where Σn is the permutation group on the n punctures. We will show for
any surface Sg,n that PMod(Sg,n) is finitely generated by Dehn twists (see
Theorems 4.9 and 4.11). We will give a finite generating set for the full
group Mod(Sg,n) in Section 4.4.4.

In the case n = 1, we have PMod(Sg,1) = Mod(Sg,1). If we place a
marked point at the rightmost point of Sg in Figure 4.1, we obtain a collec-
tion of curves in Sg,1. A slight modification of our proof of Theorem 4.1
will show that the corresponding Dehn twists form a generating set for
Mod(Sg,1).

Outline of the proof of Theorem 4.1. In proving Theorem 4.1, we will ac-
tually need to prove a more general statement. Precisely, we will prove that
PMod(Sg,n) is generated by finitely many Dehn twists about nonseparating
simple closed curves for any g ≥ 1 and n ≥ 0 (Theorem 4.11 below).

We begin by giving a brief outline of the weaker statement that
PMod(Sg,n) is generated by the (infinite) collection of all Dehn twists about
nonseparating simple closed curves. We do this in order to motivate two im-
portant tools: the complex of curves and the Birman exact sequence. Each
of these tools is of independent interest and is introduced before the proof
of Theorem 4.1.

The argument is a double induction on g and n with base case S1,1.

Step 1: Induction on genus. Suppose g ≥ 2 and let f ∈ PMod(Sg,n). Let a
be an arbitrary isotopy class of nonseparating simple closed curves in Sg,n.
We want to show that there is a product h of Dehn twists about nonsepa-
rating curves in Sg,n that takes f(a) to a. For if this is the case, then we
can regard hf as an element of the mapping class group of Sg−1,n+2, the
surface obtained from Sg,n by deleting a representative of a. Then we can
apply induction on genus.

If we are fortunate enough that i(a, f(a)) = 1, then Proposition 3.12
gives that Tf(a)Ta takes f(a) to a, and we are done. In the general case, we
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just need to show that there is a sequence of isotopy classes of simple closed
curves a = c1, . . . , ck = f(a) in Sg,n so that i(ci, ci+1) = 1. This is exactly
the content of Lemma 4.5. In the language of Section 4.1, this lemma is
phrased in terms of the connectedness of a particular “modified complex of
nonseparating curves.”

Step 2: Induction on the number of punctures. Suppose g ≥ 1 and n ≥ 1.
The inductive step on n reads as follows. There is a natural map Sg,n →
Sg,n−1 where one of the punctures/marked points is “forgotten” and this
induces a surjective homomorphism PMod(Sg,n) → PMod(Sg,n−1). El-
ements of the kernel come from “pushing” the nth puncture around the
surface, and the Birman exact sequence (Theorem 4.6) identifies the ker-
nel with π1(Sg,n−1). We also show that generators for π1(Sg,n−1) cor-
respond to products of Dehn twists about nonseparating simple closed
curves; see Fact 4.7. In other words the difference between PMod(Sg,n)
and PMod(Sg,n−1) is (finitely) generated by products of Dehn twists about
nonseparating curves, and so this completes the inductive step on the num-
ber of punctures.

We give the details of the proof of Theorem 4.11 in Section 4.3.

The word problem. Aside from his seminal work on the mapping class
group, another of Max Dehn’s highly influential contributions to mathemat-
ics is the idea of the word problem for a finitely generated group Γ. The
word problem for Γ asks for an algorithm that takes as input any finite prod-
uct w of elements from a fixed generating set for Γ (and their inverses) and
as output tells whether or not w represents the identity element of Γ. It is
a difficult result of Adian from the 1950s that there are finitely presented
groups Γ with an unsolvable word problem; that is, no such algorithm for
Γ as above exists. It is not difficult to prove that the (un)solvability of the
word problem for a given group does not depend on the generating set.

Now consider Mod(S) with an explicit finite generating set, say for ex-
ample the Humphries generators (see below). Suppose we are given any
finite product w of these generators. We can choose a collection C of curves
and arcs that fill S, and we can apply each generator in w to each curve and
arc of C. We can then use the bigon criterion and the Alexander method to
determine whether the element of Mod(S) is trivial or not. Thus Mod(S)
has a solvable word problem.

THEOREM 4.2 Let S = Sg,n. The group Mod(S) has a solvable word
problem.
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4.1 THE COMPLEX OF CURVES

The complex of curves C(S), defined by Harvey [88], is an abstract simpli-
cial complex associated to a surface S. Its 1-skeleton is given by the follow-
ing data.

Vertices. There is one vertex of C(S) for each isotopy class of
essential simple closed curves in S.

Edges. There is an edge between any two vertices of C(S) cor-
responding to isotopy classes a and b with i(a, b) = 0.

More generally, C(S) has a k-simplex for each (k + 1)-tuple of vertices
where each pair of corresponding isotopy classes has geometric intersec-
tion number zero. In other words, C(S) is a flag complex, which means that
k + 1 vertices span a k-simplex of C(S) if and only if they are pairwise-
connected by edges.1 While we make use only of the 1-skeleton of C(S),
the higher-dimensional simplices are useful in a number of applications (see,
e.g., [107]).

Note that, as far as the complex of curves is concerned, a puncture has
the same effect as a boundary component (simple closed curves that are
homotopic to either a puncture or a boundary component are inessential).
Therefore, we will deal only with punctured surfaces.

4.1.1 CONNECTIVITY OF THE COMPLEX OF CURVES

The following theorem, first stated by Harvey, was essentially proved by
Lickorish (Figure 4.2 is his) [131]. Lickorish used it in the same way we
will: to show that Mod(S) is finitely generated.

THEOREM 4.3 If 3g + n ≥ 5, then C(Sg,n) is connected.

The hypothesis of Theorem 4.3 is equivalent to the condition that C(Sg,n)
has edges. In particular, Theorem 4.3 holds for every surface Sg,n except
when g = 0 and n ≤ 4, or g = 1 and n ≤ 1. We will discuss these sporadic
cases below.

Theorem 4.3 can be rephrased as stating that for any two isotopy classes a
and b of simple closed curves in Sg,n, there is a sequence of isotopy classes

a = c1, . . . , ck = b

so that i(ci, ci+1) = 0.

1In other words, every nonsimplex contains a nonedge.
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Proof. Suppose we are given two vertices a, b ∈ C(Sg,n); thus a and b are
isotopy classes of simple closed curves in Sg,n. We must find a sequence
a = c1, . . . , ck = b with i(ci, ci+1) = 0. We induct on i(a, b).

If i(a, b) = 0, then there is nothing to prove. If i(a, b) = 1, then we can
find representatives α and β that intersect in precisely one point. A closed
regular neighborhood of α ∪ β is a torus with one boundary component.
Denote by c the isotopy class of this boundary component. If c were not
essential, that would mean that either Sg,n ≈ S1,1 or Sg,n ≈ T 2, which
violates the condition 3g + n ≥ 5. Therefore, a, c, b gives the desired path
in C(Sg,n).

For the inductive step we assume that i(a, b) ≥ 2 and that any two simple
closed curves with intersection number strictly less than i(a, b) correspond
to vertices that are connected by a path in C(Sg,n). We now prove the induc-
tive step by giving a recipe for finding an isotopy class c with both i(c, a)
and i(c, b) less than i(a, b).

Let α and β be simple closed curves in minimal position representing
a and b. We consider two points of their intersection that are consecutive
along β. We orient α and β so that it makes sense to talk about the index of
an intersection point of α and β, be it +1 or −1.

α

α

β

γ
γ1 γ2

Figure 4.2 The surgered curves in the proof of Theorem 4.3.

If the two intersection points have the same index, then c can be chosen to
be the class of γ shown in bold on the left-hand side of Figure 4.2 (outside
the figure, γ follows along α). We see that γ is essential since |α∩γ| = 1. We
emphasize that we construct γ so that, outside the local picture indicated in
the figure, γ always lies just to the right of α; in particular, γ can be chosen
so that it intersects β fewer times than α does (it “skips” one of the two
intersections in the figure).

If the two intersection points have opposite indices, consider the (distinct)
simple closed curves γ1 and γ2 shown in bold on the right-hand side of
Figure 4.2. Neither γ1 nor γ2 can be null homotopic since that would mean
that α and β were not in minimal position. If both γ1 and γ2 are homotopic
to a puncture, it follows that α bounds a twice-punctured disk on one of its
sides (the side containing γ1 and γ2). In this case there are similarly defined
curves γ3 and γ4 on the other side of α. Again, neither γ3 nor γ4 can be null
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homotopic. Also, it cannot be that both γ3 and γ4 are peripheral because that
would imply that Sg,n ≈ S0,4, violating the condition 3g + n ≥ 5. Thus we
can choose c to be the class of either γ3 or γ4.

By construction, it is evident that i(c, b) < i(a, b) and i(c, a) < i(a, b) (in
fact, i(a, c) is either 0 or 1). By our inductive hypothesis, the vertices a and
c are connected by a path in C(Sg,n), and the vertices b and c are connected
by a path. The concatenation of these paths is a path between the vertices a
and b. �

We point the reader to Ivanov’s survey [107, Section 3.2], where he gives
a beautiful alternative proof of Theorem 4.3 using Morse–Cerf theory. The
key idea is that two simple closed curves that are level sets of the same
Morse function are necessarily disjoint.

Sporadic cases and the Farey complex. In the cases of S2, S0,1, S0,2, and
S0,3, the complex of curves is empty, and in the cases of T 2, S1,1, and S0,4

it a countable disjoint union of points. If we alter the definition of C(S) by
assigning an edge to each pair of distinct vertices that realizes the minimal
possible geometric intersection in the given surface, then the disconnected
complexes become connected. In each of the latter three cases above, C(S)
is isomorphic to the Farey complex, which is the ideal triangulation of H2

indicated in Figure 4.3.

Figure 4.3 The Farey complex.
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The more classical description of the Farey complex is as follows. It is
the flag complex where vertices correspond to cyclic subgroups of Z2, and
two vertices span an edge if the corresponding primitive vectors span Z2.

4.1.2 THE COMPLEX OF NONSEPARATING CURVES

Let N (S) denote the subcomplex of C(S) spanned by vertices correspond-
ing to nonseparating simple closed curves. This subcomplex is called the
complex of nonseparating curves. This is an intermediate complex between
the complex of curves and the modified complex of nonseparating curves
N̂ (S) (defined below), which is the complex that will actually be used in
the proof of Theorem 4.1.

THEOREM 4.4 If g ≥ 2, then N (Sg,n) is connected.

Proof. We first prove the theorem for g ≥ 2 and n ≤ 1 and then use in-
duction on n to obtain the rest of the cases. So let S be either Sg or Sg,1.
If a and b are arbitrary isotopy classes of simple closed nonseparating sim-
ple closed curves in S, then by Theorem 4.3 there is a sequence of isotopy
classes a = c1, . . . , cn = b with i(ci, ci+1) = 0.

We will alter the sequence {ci} so that it consists of isotopy classes of
nonseparating simple closed curves. Suppose ci is separating. Let γi be a
simple closed curve representing ci and let S′ and S′′ be the two components
of Sg,n − γi. By the assumption that g ≥ 2 and n ≤ 1, both S′ and S′′ have
positive genus. If ci−1 and ci+1 have representatives that lie in different
subsurfaces, then i(ci−1, ci+1) = 0 and we can simply remove ci from the
sequence. If ci−1 and ci+1 have representatives that both lie in S′, then we
replace ci with the isotopy class of a nonseparating simple closed curve in
S′′. We repeat the above process until each ci is nonseparating, at which
point we have obtained the desired path in N (S). This proves the theorem
in the case n ≤ 1.

For the induction on n we assume n ≥ 2 and proceed as above. The only
possible problem is that it might happen that representatives of ci−1 and
ci+1 lie on S′ and S′′ has genus 0. But then S′ has genus g ≥ 2 and has
fewer punctures than the original surface S, so by induction we can find a
path in N (S′) between the vertices corresponding to ci−1 and ci+1, and we
replace ci by the corresponding sequence of isotopy classes of curves in S.
�

Theorem 4.4 is not true for any surface of genus 1. Indeed, the map
S1,n → T 2 obtained by filling in the n punctures induces a surjective sim-
plicial map N (S1,n) → C(T 2), where the simplicial structure on C(T 2) is
the original simplicial structure, which is disconnected.
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4.1.3 A MODIFIED COMPLEX OF NONSEPARATING CURVES

Let N̂ (S) denote the 1-dimensional simplicial complex whose vertices are
isotopy classes of nonseparating simple closed curves in the surface S and
whose edges correspond to pairs of isotopy classes a, b with i(a, b) = 1.

LEMMA 4.5 If g ≥ 2 and n ≥ 0, then the complex N̂ (Sg,n) is connected.

Proof. Let a and b be two isotopy classes of simple closed curves in Sg,n.
By Theorem 4.4, there is a sequence of isotopy classes a = c1, . . . , ck = b

representing vertices of N̂ (Sg,n) with i(ci, ci+1) = 0. By the change of
coordinates principle, for each i one can find an isotopy class di of non-
separating simple closed curves with i(ci, di) = i(di, ci+1) = 1. The se-
quence a = c1, d1, c2, . . . , ck−1, dk−1, ck = b represents the desired path in
N̂ (Sg,n). �

The conclusion of Lemma 4.5 also holds for any S1,n with n ≥ 0.
This can be proved by induction. The base cases are T 2 and S1,1, where
N̂ (T 2) ≈ N̂ (S1,1) is the 1-skeleton of the Farey complex. The inductive
step on n is similar to the inductive step on punctures in the proof of Theo-
rem 4.4.

4.2 THE BIRMAN EXACT SEQUENCE

As mentioned above, the proof of Theorem 4.1 will be a double induction on
genus and the number of punctures. The Birman exact sequence will provide
the inductive step for the number of punctures. More generally, it is a basic
tool in the study of mapping class groups.

4.2.1 THE POINT-PUSHING MAP, THE FORGETFUL MAP, AND THE BIRMAN
EXACT SEQUENCE

Let S be any surface, possibly with punctures (but no marked points) and
let (S, x) denote the surface obtained from S by marking a point x in the
interior of S. There is a natural homomorphism

Forget : Mod(S, x)→ Mod(S)

called the forgetful map. This map is realized by forgetting that the point x is
marked. The forgetful map is clearly surjective: given any homeomorphism
of S, we can modify it by isotopy so that it fixes x.
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The group Mod(S, x) is isomorphic to the subgroup G of Mod(S − x)
preserving the puncture coming from x. The forgetful map can be inter-
preted as the map G → Mod(S) obtained by “filling in” the puncture x. In
other words, Forget is the map induced by the inclusion S − x→ S.

We would like to describe the kernel ofForget. Let f ∈ Mod(S, x) be an
element of the kernel ofForget and let φ be a homeomorphism representing
f . We can think of φ as a homeomorphism φ of S. Since Forget(f) = 1,
there is an isotopy from φ to the identity map of S. During this isotopy, the
image of the point x traces out a loop α in S based at x. What we will show
is that by pushing x along α−1 we can recover f ∈ Mod(S, x).

Now to make the idea of pushing more precise. Let α be a loop in S
based at x. We can think of α : [0, 1] → S as an “isotopy of points” from x
to itself, and this isotopy can be extended to an isotopy of the whole surface
S (this is the 0-dimensional version of Proposition 1.11). Let φα be the
homeomorphism of S obtained at the end of the isotopy. By regarding φα
as a homeomorphism of (S, x), and then taking its isotopy class, we obtain
a mapping class Push(α) ∈ Mod(S, x). The way we think of Push(α)
informally is that we place our finger on x and push x along α, dragging the
rest of the surface along as we go.

What one would like of course is for the mapping class Push(α) to be
well defined, that is, not to depend on the choice of the isotopy extension.
One would also want Push(α) to not be dependent on the choice of α
within its homotopy class. In other words, one hopes to have a well-defined
push map2

Push : π1(S, x) → Mod(S, x).

It turns out that this is indeed the case. But it is not obvious at all. To begin
with, there is no way in general to extend a homotopy of a loop to a homo-
topy of a surface (rather, only isotopies can be extended). More to the point,
what if we modify α by a homotopy that passes the loop over the marked
point x? There is certainly no obvious way to show that the corresponding
homeomorphisms of the marked surface (S, x) are homotopic.

The Birman exact sequence gives that the point-pushing map is indeed
well defined and that its image is exactly the kernel of the forgetful map.

THEOREM 4.6 (Birman exact sequence) Let S be a surface with χ(S) <
0, possibly with punctures and/or boundary. Let (S, x) be the surface ob-
tained from S by marking a point x in the interior of S. Then the following

2Birman’s original terminology was “spin map.”
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sequence is exact:

1 −→ π1(S, x)
Push−→ Mod(S, x)

Forget−→ Mod(S) −→ 1.

Once we know that Push is well defined, it follows immediately from the
definitions that its image is contained in the kernel of the map Forget and
that it surjects onto the kernel of Forget. Also, it is easy to see that Push is
injective for χ(S) < 0. Indeed, any representative Push(α) ∈ Mod(S, x)
can be thought of as a map of pairs (S, x) → (S, x) whose induced automor-
phism of π1(S, x) is the inner automorphism Iα. Since π1(S) is centerless,
we have that Iα is nontrivial whenever α is. Thus if α is nontrivial, then the
homeomorphism φα : (S, x) → (S, x) defined above is not homotopic to
the identity as a map of pairs, from which it is immediate that Push(α) is
nontrivial as an element of Mod(S, x). In summary, the entire content of
Theorem 4.6 is that Push is well defined.

We remark that Theorem 4.6 still holds if we replace Mod with Mod±,
the extended mapping class group (see Chapter 8).

Also, we can take the restriction of the sequence to any subgroup of
Mod(S, x). The most commonly used restriction is to PMod(S, x). In this
case, Mod(S) should be replaced with PMod(S). We can rephrase the Bir-
man exact sequence in this case as follows:

1→ π1(Sg,n)→ PMod(Sg,n+1)→ PMod(Sg,n)→ 1.

We will show in Section 5.5 that the Birman exact sequence does not split.

A small technical point. Since products in Mod(S, x) are usually writ-
ten right to left and products in π1(S, x) are usually written left to right,
we should define the map π1(S, x) → Mod(S, x) by sending α to the
map that pushes x along α−1, not α (otherwise we would obtain an anti-
homomorphism instead of a homomorphism). This issue will not play a role
in this book.

4.2.2 PUSH MAPS ALONG LOOPS IN TERMS OF DEHN TWISTS

For a simple loop α in S based at the point x, we can give an explicit rep-
resentative of Push(α) as follows. Identify a neighborhood of α with the
annulus S1 × [0, 2]. We orient S1 × [0, 2] via the standard orientations on
S1 and [0, 2]. Say the marked point x is at the point (0, 1) in this annulus.
There is an isotopy of the annulus given by

F ((θ, r), t) =

{
(θ + 2πrt, r) 0 ≤ r ≤ 1,

(θ + 2π(2 − r)t, r) 1 ≤ r ≤ 2.
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We can extend F by the identity to get an isotopy of S. When we restrict F
to {x} × [0, 1], we get

F ((0, 1), t) = (2πt, 1).

In other words, the isotopy F pushes x around the core of the annulus. Also,
the homeomorphism φ of (S, x) induced by F at t = 1 is a product of two
Dehn twists. More precisely, identifying the boundary curve S1×{0} of the
annulus as a simple closed curve a in (S, x) and identifying S1 × {2} as a
curve b in (S, x), we have that φ is (isotopic to) TaT

−1
b . A smooth represen-

tative of Push(α) is shown in Figure 4.4. We summarize this discussion as
follows.

Fact 4.7 Let α be a simple loop in a surface S representing an element of
π1(S, x). Then

Push([α]) = TaT
−1
b ,

where a and b are the isotopy classes of the simple closed curves in (S, x)
obtained by pushing α off itself to the left and right, respectively. The isotopy
classes a and b are nonseparating in (S, x) if and only if α is nonseparating
in S.

a

α

Push(α)

b

Figure 4.4 The point-pushing map Push from the Birman exact sequence.

Naturality. We record the following naturality property for the point-
pushing map.

Fact 4.8 For any h ∈ Mod(S, x) and any α ∈ π1(S, x), we have

Push(h∗(α)) = hPush(α)h−1.

Fact 4.8 follows immediately from the definitions.
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4.2.3 THE PROOF

We now give the proof of the existence of the Birman exact sequence.

Proof of Theorem 4.6. There is a fiber bundle

Homeo+(S, x)→ Homeo+(S)
E→ S (4.1)

with total space Homeo+(S), with base space S (i.e., the configuration
space of a single point in S), and with fiber the subgroup of Homeo+(S)
consisting of elements that fix the point x (technically, we should allow only
homeomorphisms that fix ∂S pointwise, but this does not affect the proof).
The map E is evaluation at the point x.

We now explain why E : Homeo+(S)→ S is a fiber bundle, that is, why
Homeo+(S) is locally homeomorphic to a product of an open set U of S
with Homeo+(S, x) so that the restriction of E is projection to the first fac-
tor. Let U be some open neighborhood of x in S that is homeomorphic to a
disk. Given u ∈ U , we can choose a φu ∈ Homeo+(U) so that φu(x) = u
and so that φu varies continuously as a function of u. We have a homeomor-
phism U ×Homeo+(S, x)→ E−1(U) given by

(u, ψ) 
→ φu ◦ ψ.

The inverse map is given by ψ 
→ (ψ(x), φ−1
ψ(x) ◦ ψ). For any other point

y ∈ S, we can choose a homeomorphism ξ of S taking x to y. Then there is
a homeomorphism E−1(U) → E−1(ξ(U)) given by ψ 
→ ξ ◦ ψ, and so we
have verified the fiber bundle property.

The theorem now follows from the long exact sequence of homotopy
groups associated to the above fiber bundle. The relevant part of the se-
quence is the following.

· · · → π1(Homeo+(S))→ π1(S)→ π0(Homeo+(S, x))

→ π0(Homeo+(S))→ π0(S)→ · · · .

By Theorem 1.14 the group π1(Homeo+(S)) is trivial, and of course π0(S)
is trivial. The remaining terms are isomorphic to the terms of the Birman
exact sequence.

Finally, the maps given by the long exact sequence of homotopy groups
are exactly the point-pushing map Push and the forgetful map Forget. �

There is a version of Theorem 4.6 where one forgets multiple punctures
instead of a single version; see Chapter 9. However, in most cases, one can
simply apply Theorem 4.6 iteratively in order to forget one puncture at a
time.
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Surfaces with χ(S) ≥ 0. In the proof of Theorem 4.6, we used the as-
sumption that χ(S) < 0 in order to say that π1(Homeo+(S)) = 1. But we
can still use the long exact sequence coming from the fiber bundle (4.1) for
other surfaces. For instance, for the torus T 2 we have π1(Homeo+(T 2)) ≈
π1(T

2) ≈ Z2, and the relevant part of the short exact sequence becomes

· · · → Z2 id→ Z2 0→ Mod(S1,1)→ Mod(T 2)→ 1→ · · · .

This gives another proof that Mod(S1,1) ≈ Mod(T 2).

4.2.4 GENERATINGMod(S0,n)

Let S0,n be a sphere with n punctures. As per Section 2.2, PMod(S0,n) = 1
for n ≤ 3. To understand the situation for more punctures, we can apply the
Birman exact sequence:

1→ π1(S0,3)→ PMod(S0,4)→ PMod(S0,3)→ 1.

Since π1(S0,3) ≈ F2, we obtain that PMod(S0,4) ≈ F2. Moreover, the Bir-
man exact sequence gives geometric meaning to this algebraic statement:
elements of π1(S0,3) represented by simple loops map to Dehn twists in
PMod(S0,4), and so the standard generating set for π1(S0,3) gives a gener-
ating set for PMod(S0,4) consisting of two Dehn twists about simple closed
curves with geometric intersection number 2.

We can increase the number of punctures using the Birman exact se-
quence:

1→ π1(S0,4)→ PMod(S0,5)→ PMod(S0,4)→ 1.

Since π1(S0,4) ≈ F3 and PMod(S0,4) ≈ F2, we obtain PMod(S0,5) ≈
F2 � F3. Inductively, we see that PMod(S0,n) is an iterated extension of
free groups. Applying Fact 4.7, plus the fact that π1(S0,n) is generated by
simple loops, we find the following.

THEOREM 4.9 For n ≥ 0, the group PMod(S0,n) is generated by finitely
many Dehn twists.

To generate all of Mod(S0,n), we again apply the following exact se-
quence:

1→ PMod(S0,n)→ Mod(S0,n)→ Σn → 1.

It follows that a generating set for Mod(S0,n) is obtained from a generating
set for PMod(S0,n) by adding lifts of generators for Σn. We know that Σn
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is generated by transpositions. A simple lift of a transposition is a half-twist,
defined in Chapter 9.

4.2.5 CAPPING THE BOUNDARY

By souping up the proof of the Birman exact sequence, we can give an-
other perspective on the boundary capping sequence (Proposition 3.19) that
unifies it with the Birman exact sequence.

Let S◦ be a surface with nonempty boundary and let Ŝ be the surface
obtained from S◦ by capping some component β of ∂S◦ with a disk. Let p
be some point in the interior of this disk. As in Proposition 3.19, we have a
short exact sequence

1→ 〈Tβ〉 → Mod(S◦)
Cap→ Mod(Ŝ, p)→ 1. (4.2)

Note that 〈Tβ〉 is central in Mod(S◦) since any element of Mod(S◦) has a
representative that is the identity in a neighborhood of ∂S◦.

We now give our second proof of Proposition 3.19 using the notation from
the sequence (4.2).

Second proof of Proposition 3.19. The proof has two steps. Step 1 is to
identify Mod(S◦) with a different group and to reinterpret the capping map
in the new context, and Step 2 is to apply the method of proof of the Birman
exact sequence to the corresponding fiber bundle.

Step 1. Let (p, v) be a point of the unit tangent bundle UT (Ŝ) that lies
in the fiber above p. Let Diff+(Ŝ, (p, v)) denote the group of orientation-
preserving diffeomorphisms of Ŝ fixing (p, v). The resulting mapping
class group, denoted Mod(Ŝ, (p, v)), is defined as π0(Diff+(Ŝ, (p, v))). We
claim that there is an isomorphism

Mod(S◦) ≈ Mod(Ŝ, (p, v)).

To prove this isomorphism we first identify Mod(S◦) with
π0(Diff+(Ŝ,D)), where D is the boundary capping disk, and diffeo-
morphisms are taken to fix D pointwise. This identification can be realized
by simply removing the interior of D. There is a fiber bundle

Diff+(Ŝ,D)→ Diff+(Ŝ, (p, v)) → Emb+((D, Ŝ), (p, v)),

where Emb+((D, Ŝ), (p, v)) is the space of smooth, orientation-preserving
embeddings of D into Ŝ taking some fixed unit tangent vector in D to the
tangent vector (p, v). As in the proof of the Birman exact sequence, we
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obtain a long exact sequence of homotopy groups that contains the sequence

· · · → π1(Emb+((D, Ŝ), (p, v))) → π0(Diff+(Ŝ,D))

→ π0(Diff+(Ŝ, (p, v))) → π0(Emb+((D, Ŝ), (p, v))) → · · · .

Since D is contractible, the space Emb+((D, Ŝ), (p, v))) is contractible,
and so we obtain the claimed isomorphism Mod(Ŝ, (p, v)) ≈ Mod(S◦)
(see [107, Theorem 2.6D] and [45]).

The projection map (p, v) 
→ p induces a map Mod(Ŝ, (p, v)) →
Mod(Ŝ, p) that makes the following diagram commute:

Mod(Ŝ, (p, v))

≈

Mod(S◦)
Cap

Mod(Ŝ, p)

Thus we have succeeded in writing the map Cap in terms of Mod(Ŝ, (p, v)).

Step 2.We have another fiber bundle

Diff+(Ŝ, (p, v)) → Diff+(Ŝ, p)→ UTp(Ŝ),

where the second map is the evaluation map onto the fiber over p of the
unit tangent bundle of Ŝ. As in the proof of the Birman exact sequence, we
obtain a long exact sequence, part of which is

· · · → π1(Diff+(Ŝ, p))→ π1(UTp(Ŝ))→ π0(Diff+(Ŝ, (p, v)))

→ π0(Diff+(Ŝ, p))→ π0(UTp(Ŝ))→ · · · .

These terms exactly give the desired short exact sequence. �

Not only is the last proof similar to the proof of the Birman exact se-
quence, but both proofs can actually be combined to give the following di-
agram, which encapsulates the two points of view. In the diagram all se-
quences are exact and all squares commute.
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1 1

Z
≈

Z

1 π1(UT (Ŝ)) Mod(S◦) Mod(Ŝ)

≈

1

1 π1(Ŝ) Mod(Ŝ, p) Mod(Ŝ) 1

1 1

To get the middle row directly, one can consider the fiber bundle

Diff+(Ŝ, (p, v)) → Diff+(Ŝ)→ UT (Ŝ).

4.3 PROOF OF FINITE GENERATION

To show that Mod(S) is finitely generated we consider its action on complex
N̂ (S). Note that Mod(S) indeed acts on N̂ (S) since homeomorphisms take
nonseparating simple closed curves to nonseparating simple closed curves
and homeomorphisms preserve geometric intersection number. It is a basic
principle from geometric group theory that if a group G acts cellularly on
a connected cell complex X and if D is a subcomplex of X whose G-
translates cover X, then G is generated by the set {g ∈ G : gD ∩D �= ∅}
(this idea will be echoed in our proof of Theorem 8.2 below). The next
lemma is a specialized version of this fact designed specifically so that we
can apply it to the action of Mod(S) on N̂ (S).

Lemma 4.10 Suppose that a group G acts by simplicial automorphisms
on a connected, 1-dimensional simplicial complex X. Suppose that G acts
transitively on the vertices ofX and that it also acts transitively on pairs of
vertices of X that are connected by an edge. Let v and w be two vertices of
X that are connected by an edge and choose h ∈ G so that h(w) = v. Then
the group G is generated by the element h together with the stabilizer of v
in G.

Proof. Let g ∈ G. We would like to show that g is contained in the subgroup
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H < G generated by the stabilizer of v together with the element h. Since
X is connected, there is a sequence of vertices

v = v0, . . . , vk = g(v)

where adjacent vertices are connected by an edge. Since G acts transitively
on the vertices of X, we can choose elements gi of G so that gi(v) = vi.
We take g0 to be the identity and gk to be g. We will prove by induction that
gi ∈ H . The base case g0 ∈ H clearly holds. Now assume that gi ∈ H . We
must prove that gi+1 ∈ H .

Applying the element g−1
i to the edge between vi = gi(v) and vi+1 =

gi+1(v), we obtain the edge between v and g−1
i gi+1(v). Since G acts transi-

tively on ordered pairs of vertices of X that are connected by an edge, there
is an element r ∈ G that takes the pair (v, g−1

i gi+1(v)) to the pair (v,w). In
particular, r lies in the stabilizer of v and rg−1

i gi+1(v) = w. We then have
that hrg−1

i gi+1(v) = v, which means that hrg−1
i gi+1 lies in the stabilizer

of v. In particular, hrg−1
i gi+1 ∈ H . Since h and r lie in H by the definition

of H and since gi lies in H by induction, we have that gi+1 lies in H . In
particular, gk = g lies in H , which is what we wanted to show. �

We are now ready to prove the following theorem, which contains Theo-
rem 4.1 as the special case n = 0.

THEOREM 4.11 Let Sg,n be a surface of genus g ≥ 1 with n ≥ 0 punc-
tures. Then the group PMod(Sg,n) is finitely generated by Dehn twists about
nonseparating simple closed curves in Sg,n.

Recall that we already showed that PMod(S0,n) is finitely generated by
Dehn twists for n ≥ 0 (Theorem 4.9).

Proof. We will use double induction on genus and the number of punctures
of S, with base cases T 2 = S1,0 and S1,1.

We start with the inductive step on the number of punctures. Let g ≥ 1
and let n ≥ 0. Assuming that PMod(Sg,n) is generated by finitely many
Dehn twists about nonseparating simple closed curves {αi} in Sg,n, we will
show that PMod(Sg,n+1) is generated by finitely many Dehn twists about
nonseparating curves in Sg,n+1. We may assume that (g, n) �= (1, 0) since
we know that Mod(S1,1) ≈ Mod(T 2) is generated by Dehn twists about
nonseparating simple closed curves.

We have the Birman exact sequence

1→ π1(Sg,n)→ PMod(Sg,n+1)→ PMod(Sg,n)→ 1.
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Since g ≥ 1, we have that π1(Sg,n) is generated by the classes of finitely
many simple nonseparating loops. By Fact 4.7, the image of each of these
loops is a product of two Dehn twists about nonseparating simple closed
curves. We begin building a generating set for PMod(Sg,n+1) by taking
each of these Dehn twists individually. In order to complete the generating
set, it remains to choose a lift to PMod(Sg,n+1) of each Dehn twist gen-
erator Tαi of PMod(Sg,n). But given the nonseparating simple curve αi in
Sg,n, there exists a nonseparating curve in Sg,n+1 that maps to αi under
the forgetful map Sg,n+1 → Sg,n. Thus the Dehn twist Tαi in PMod(Sg,n)
has a preimage in PMod(Sg,n+1) that is a Dehn twist about a nonseparat-
ing simple closed curve in Sg,n+1. This completes the inductive step on the
number of punctures.

Since we know that Mod(T 2) and Mod(S1,1) are each generated by two
Dehn twists about nonseparating simple closed curves (Section 2.2), it fol-
lows from the inductive step on the number of punctures that, for any n ≥ 0,
the group PMod(S1,n) is generated by finitely many Dehn twists about non-
separating simple closed curves.

We now attack the inductive step on the genus g. Let g ≥ 2 and assume
that PMod(Sg−1,n) is finitely generated by Dehn twists about nonseparating
simple closed curves for any n ≥ 0. Since N̂ (Sg) is connected (Lemma 4.5)
and since by the change of coordinates principle Mod(Sg) acts transitively
on ordered pairs of isotopy classes of simple closed curves with geomet-
ric intersection number 1, we may apply Lemma 4.10 to the case of the
Mod(Sg) action on N̂ (Sg).

Let a be an arbitrary isotopy class of nonseparating simple closed curves
in Sg and let b be an isotopy class with i(a, b) = 1. Let Mod(Sg, a) denote
the stabilizer in Mod(Sg) of a. By Proposition 3.12, we have TbTa(b) = a.
Thus, by Lemma 4.10, Mod(Sg) is generated by Mod(Sg, a) together with
Ta and Tb. Thus it suffices to show that Mod(Sg, a) is finitely generated by
Dehn twists about nonseparating simple closed curves.

Let Mod(Sg,�a) be the subgroup of Mod(Sg, a) consisting of elements
that preserve the orientation of a. We have the short exact sequence

1→ Mod(Sg,�a)→ Mod(Sg, a)→ Z/2Z→ 1.

Since TbT 2
aTb switches the orientation of a (use change of coordinates), it

represents the nontrivial coset of Mod(Sg,�a) in Mod(Sg, a). Thus it re-
mains to show that Mod(Sg,�a) is finitely generated by Dehn twists about
nonseparating simple closed curves in Sg.

By Proposition 3.20 we have a short exact sequence

1→ 〈Ta〉 → Mod(Sg,�a)→ PMod(Sg − α)→ 1,
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where Sg − α is the surface obtained from Sg by deleting a representa-
tive α of a. The surface Sg − α is homeomorphic to Sg−1,2. By our induc-
tive hypothesis, PMod(Sg − α) is generated by finitely many Dehn twists
about nonseparating simple closed curves. Since each such Dehn twist has a
preimage in Mod(Sg,�a) that is also a Dehn twist about a nonseparating sim-
ple closed curve, it follows that Mod(Sg,�a) is generated by finitely many
Dehn twists about nonseparating curves, and we are done. �

4.4 EXPLICIT SETS OF GENERATORS

The goal of this section is to find an explicit finite set of Dehn twist gen-
erators for Mod(S). Our strategy for accomplishing this is to sharpen our
proof that Mod(S) is generated by finitely many Dehn twists. More specif-
ically, we choose a candidate set of generators and check that each step of
the proof of finite generation can be achieved by using our candidate set.

4.4.1 THE CHAIN RELATION

In the very last step of our proof of Theorem 4.13 below, we will require the
following relation between Dehn twists. Recall that a sequence of isotopy
classes c1, . . . , ck in a surface S is called a chain if i(ci, ci+1) = 1 for all i
and i(ci, cj) = 0 for |i− j| > 1.

Proposition 4.12 (Chain relation) Let k ≥ 0 and let c1, · · · , ck be a chain
of curves in a surface S. If we take representatives for the ci that are in min-
imal position and then take a closed regular neighborhood of their union,
then the boundary of this neighborhood consists of one or two simple closed
curves, depending on whether k is even or odd. Denote the isotopy classes
of these boundary curves by d in the even case and by d1 and d2 in the odd
case. Then the following relations hold inMod(S):

(Tc1 · · ·Tck)2k+2 = Td k even,
(Tc1 · · ·Tck)k+1 = Td1Td2 k odd.

In each case the relation in Proposition 4.12 is called a chain relation,
or a k-chain relation. The chain relation can be proved via the Alexander
method. In Chapter 9, we will derive the chain relations as consequences of
relations in the braid group.

The 2-chain relation is a well-known example of the chain relation. In
this case, the relation says that if i(a, b) = 1, then

(TaTb)
6 = Td,
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where d is the boundary of a regular neighborhood of a ∪ b. If a and b lie in
T 2 or S1,1, then Td is trivial, and we have the relation (TaTb)

6 = 1. Via the
isomorphism of Theorem 2.5, this is simply the relation((

1 1
0 1

)(
1 0
−1 1

))6

= 1

in SL(2,Z).
There is another version of the chain relation that is sometimes useful. In

the above notation, this other version reads

(T 2
c1Tc2 · · ·Tck)2k = Td and (T 2

c1Tc2 · · ·Tck)k = Td1Td2 ,

for k even and odd, respectively.

Dehn twists have roots. A surprising consequence of the last relation is that
the Dehn twist about a nonseparating simple closed curve has a nontrivial
root in Mod(Sg) when g ≥ 2. If we consider a chain of simple closed
curves c1, . . . , c2g−1 in Sg, then the two boundary components of a regular
neighborhood of ∪ci are nonseparating simple closed curves in the same
isotopy class d, so we have

(T 2
c1Tc2 · · · Tc2g−1

)2g−1 = T 2
d .

Thus, since Td commutes with each Tci , we have

[(T 2
c1Tc2 · · ·Tc2g−1

)1−gTd]2g−1 = Td.

McCullough–Rajeevsarathy proved that 2g−1 is actually the largest order
of a root of Td for any g ≥ 2 [147]. It is not difficult to see that Dehn
twists about separating simple closed curves have roots: for example, if we
imagine fixing the subsurface of Sg to one side of a separating curve d and
twisting the other side by an angle π, then we get a square root of Td. A
more formal way to do this is to use the first chain relation with a chain of
even length.

4.4.2 THE LICKORISH GENERATORS

Our eventual goal is to show that the Humphries generating set (see the
beginning of the chapter) is indeed a generating set for Mod(Sg). As a first
step we show that the Dehn twists about the 3g − 1 simple closed curves
indicated in Figure 4.5 generate Mod(Sg). This specific generating set was
first found by Lickorish, and so we call these Dehn twists the Lickorish
generators [131].
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...

a1 a2 a3 ag
c1 c2 c3 cg−1

m1 m2 m3 mg

Figure 4.5 The Lickorish generating set for Mod(S).

THEOREM 4.13 (Lickorish generators) For g ≥ 1, the Dehn twists about
the isotopy classes

a1, . . . , ag,m1, . . . ,mg, c1, . . . , cg−1

shown in Figure 4.5 generate Mod(Sg).

In the proof of Theorem 4.13 we refer to the Dehn twists in the statement
of the theorem as Lickorish twists, so as not to confuse the issue that we will
be proving that they are indeed generators for Mod(S).

Proof. We proceed by induction on g. Since the Lickorish twists for the
torus T 2 ≈ S1 are the standard generators for Mod(T 2), the theorem is true
for the case of g = 1, and we may assume that g ≥ 2.

We again apply Lemma 4.10 to the action of Mod(Sg) on the 1-
dimensional simplicial complex N̂ (Sg) from Section 4.1. By Lemma 3.12,
we have Ta1Tm1

Ta1(m1) = a1. Thus by Lemma 4.10, it suffices to show
that Mod(Sg,m1), the stabilizer in Mod(Sg) of m1, lies in the group gen-
erated by Lickorish twists.

If Mod(Sg, �m1) is the subgroup of Mod(Sg) consisting of elements that
preserve the orientation of m1, then we have

1→ Mod(Sg, �m1)→ Mod(Sg,m1)→ Z/2Z→ 1.

Since the product of Lickorish twists Ta1T
2
m1
Ta1 reverses the orientation of

m1, it suffices to show that Mod(Sg, �m1) lies in the group generated by the
Lickorish twists.

By Proposition 3.20, we have the following exact sequence:

1→ 〈Tm1
〉 → Mod(Sg, �m1)→ PMod(Sm1

)→ 1,

where Sm1
≈ Sg−1,2 is the surface obtained by deleting a representative of

m1 from Sg (this is perhaps a slight abuse of notation since we usually write
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Sm1
to mean the surface obtained from a surface S by cutting along a curve

m1). Since Tm1
is a Lickorish twist, it is enough to show that PMod(Sm1

)
is generated by the images of the Lickorish twists.

...

...

a2

a2

a3

a3

ag

ag

c1

c1

c2

c2

c3

c3

cg−1

cg−1

m+

m+

m−

m2

m2

m3

m3

mg

mgSm1

S′m1

Figure 4.6 The images of the curves from Figure 4.5 in Sm1
and S′

m1
.

We apply the Birman exact sequence (Theorem 4.6) twice. Let S′m1
de-

note the surface obtained from Sm1
by forgetting the first puncture m− and

let S′′m1
be the surface obtained from S′m1

by forgetting the second punc-
ture m+. We then have the following maps of exact sequences where each
square commutes:

1 π1(S
′
m1
,m−) Push

≈

PMod(Sm1
)

≈

Mod(S′m1
)

≈

1

1 π1(Sg−1,1) PMod(Sg−1,2) Mod(Sg−1,1) 1
(4.3)

and

1 π1(S
′′
m1
,m+) Push

′

≈

Mod(S′m1
)

≈

Mod(S′′m1
)

≈

1

1 π1(Sg−1) Mod(Sg−1,1) Mod(Sg−1) 1.

(4.4)
In the discussion below, we use the notation Sm1

, S′m1
, and S′′m1

instead
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 ... ...

 ... ...

α1

β1

αk

βk

m+

m+

Figure 4.7 Standard generators for π1(S
′′
m1

, m+)

of the simpler notations Sg−1,2, Sg−1,1, and Sg−1 in order to emphasize the
point that each of these surfaces comes with fixed maps Sm1

→ S′m1
→

S′′m1
. In particular, there is no choice for the images of the Lickorish twists

in Mod(S′m1
) and Mod(S′′m1

).
We start with sequence (4.4). The goal is to show that Mod(S′m1

) is
generated by the images of the Lickorish twists in Mod(S′m1

); that is, we
want to show that Mod(S′m1

) is generated by the Dehn twists about the
simple closed curves shown at the bottom of Figure 4.6. By induction,
Mod(S′′m1

) ≈ Mod(Sg−1) is generated by the Dehn twists about the im-
ages of these curves in S′′m1

≈ Sg−1, and so by the exact sequence (4.4), it
suffices to show that each element of Push′(π1(S

′′
m1

)) is a product of the
Dehn twists given at the bottom of Figure 4.6.

Standard generators for π1(S
′′
m1

) ≈ π1(Sg−1) are shown in Figure 4.7.
The mapping class Push′(α1) is equal to the product Tc1T

−1
m2

(refer to Fig-
ure 4.6), so this element is a product of Lickorish twists.

We now explain how to write Push′(β1) as a product of Lickorish twists.
Using Lemma 3.12, we see that

Tm2
Ta2(α1) = β1.

Thus, by Fact 4.8, Push′(β1) is conjugate to Push′(α1) by a product of
Lickorish twists and hence itself is a product of Lickorish twists.

Repeating this conjugation trick, we see that the image of each standard
generator for π1(S

′′
m1

) under Push′ is a product of the images of the Lick-



112 CHAPTER 4

orish twists in Mod(S′m1
). The required formulas are

(T−1
ci T

−1
ai+1

)(T−1
ai
T−1
ci )(βi−1) =βi,

T−1
ai+1

T−1
mi+1

(βi) =αi.

We remark that the Lickorish twists seem to be exactly designed for com-
pleting this step.

...

m′2 m′3
Sm1

m+

m−

Figure 4.8 The Dehn twists Tm′

2
, . . . , Tm′

g−1

are all products of Lickorish twists.

Turning to sequence (4.3), it now remains to show that
Push(π1(S

′
m1
,m−)) lies in the group generated by the Dehn twists

about the simple closed curves shown at the top of Figure 4.6. The proof is
essentially the same as the previous argument. To facilitate the argument,
it is helpful to notice that each Tm′

i
is a product of Lickorish twists where

the m′2, . . . ,m
′
g−1 are the isotopy classes shown in Figure 4.8. This follows

from the chain relation

(TmgTagTcg−1
Tag−1

Tcg−2
· · ·Tak+1

Tck)2(g−k+1) = Tmk
Tm′

k
.

This completes the proof. �

4.4.3 THE HUMPHRIES GENERATORS

We can now give Humphries’ proof that the Humphries generators do indeed
form a generating set for Mod(Sg).

THEOREM 4.14 (Humphries generators) Let g ≥ 2. Then the group
Mod(Sg) is generated by the Dehn twists about the 2g + 1 isotopy classes
of nonseparating simple closed curves

a1, . . . , ag, c1, . . . , cg−1,m1,m2

shown in Figure 4.5.

In Proposition 6.5 below we show that Theorem 4.14 is sharp in the sense
that, for g ≥ 2, any generating set for Mod(Sg) consisting only of Dehn
twists must have at least 2g + 1 elements.
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Proof of Theorem 4.14. By Theorem 4.13 it suffices to show that the Licko-
rish twists Tm3

, . . . , Tmg can each be written in terms of the other Lickorish
twists.

For any 1 ≤ i ≤ g − 2, we will find a product h of Dehn twists about the
ai, ci, and mi+1 that takes mi to mi+2. It will then follow from Fact 3.7 in
Section 3.3 that

Tmi+2
= hiTmih

−1
i ,

and the theorem will be proved.

mimi mi+1 mi+2

ai ai+1

ai+2

ci ci+1

d

Figure 4.9 Taking mi to mi+2.

The top left of Figure 4.9 shows the simple closed curves we will
use. In the top right of the figure we see mi. The bottom right shows
Tmi+1

Tai+1
TciTai(mi), and the bottom left shows the image d of the lat-

ter under the product

Tci+1
Tai+1

Tai+2
Tci+1

.

Note that the last curve is symmetric with respect to the ith and (i + 2)nd
holes. It follows that we can use a similar product of Dehn twists h′ in order
to take d tomi+2. Since h used mi+1 and no othermj , it follows that h′ will
use mi+1 and no other mj . This completes the proof. �

4.4.4 SURFACES WITH PUNCTURES AND BOUNDARY

Given the Humphries generators for the mapping class group of a closed
surface, we can use the Birman exact sequence to find a finite set of gener-
ators for the mapping class group of any surface Sg,n of genus g ≥ 0 with
n ≥ 0 punctures.

The 2g+n twists about the simple closed curves indicated in Figure 4.10
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... ...

Figure 4.10 Twists about these simple closed curves generate PMod(Sg,n).

give a generating set for PMod(Sg,n) when n > 0. The argument in the last
step of Theorem 4.13, that is, the argument that the images of Push and
Push′ lie in the group generated by the Lickorish twists, applies in this case
to show that the given set of Dehn twists generates PMod(Sg,n).

To obtain a generating set for all of Mod(Sg,n), we can take a gener-
ating set for PMod(Sg,n) together with a set of elements of Mod(Sg,n)
that project to a generating set for the symmetric group Σn. One standard
generating set for Σn consists of n− 1 transpositions. The most natural ele-
ments of Mod(Sg,n) that map to transpositions in Σn are the half-twists dis-
cussed in Chapter 9. We thus have the following corollary of Theorems 4.9
and 4.11.

Corollary 4.15 For any g, n ≥ 0, the group Mod(Sg,n) is generated by a
finite number of Dehn twists and half-twists.

Finally, let S be a compact surface with boundary (and no marked points).
Recall that the elements of Mod(S) do not permute the boundary compo-
nents of S. By Proposition 3.19, we see that Mod(S) is generated by Dehn
twists about nonseparating simple closed curves if each Dehn twist about
a boundary curve is a product of Dehn twists about nonseparating simple
closed curves. It turns out that for g ≥ 2 this is possible. Consider the sim-
ple closed curves shown in Figure 4.11. A special case of the star relation
from Section 5.2 gives that

(Tc1Tc2Tc3Tb)
3T−1
d1
T−1
d2

is equal to the Dehn twist about the boundary curve d.
We thus have the following.

Corollary 4.16 Let S be any surface of genus g ≥ 2. The group PMod(S)
is generated by finitely many Dehn twists about nonseparating simple closed
curves in S.

In particular, for any surface S with punctures and/or boundary,
PMod(S) is generated by the Dehn twists about the simple closed curves
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c1

c2

c3b
d1

d2

d

Figure 4.11 Writing the Dehn twist about the boundary in terms of Dehn twists about non-
separating curves.

shown in Figure 4.10 (in the figure, one can interpret the small circles as
either boundary components or as punctures).

On the other hand, for a genus 1 surface S with more than one boundary
component, Mod(S) is not generated by Dehn twists about nonseparating
curves. In this case, there is a generating set consisting of finitely many Dehn
twists about nonseparating curves and b − 1 Dehn twists about boundary
curves, where b is the number of boundary components. It follows from the
computation of H1(Mod(S); Z) (Section 5.1 below) that all b − 1 Dehn
twists are needed.



Chapter Five

Presentations and Low-dimensional Homology

Having found a finite set of generators for the mapping class group, we now
begin to focus on relations. Indeed, one of our main goals in this chapter
is to give a finite presentation for Mod(S). In doing so, we will see some
beautiful topological ideas, as well as some useful techniques from geomet-
ric group theory.

The relations in a groupG are intimately related to the first and second ho-
mology groups ofG. Recall that the homology groups ofG are defined to be
the homology groups of any K(G, 1)-space. The first and second homology
groups have direct, group-theoretic interpretations. For example, H1(G; Z)
is just the abelianization of G. Also, Hopf’s formula, given below, gives an
explicit expression for H2(G; Z) in terms of the generators and relators for
G. In this chapter we will give explicit computations of the first and second
homology groups of the mapping class group.

5.1 THE LANTERN RELATION ANDH1(Mod(S); Z)

In the late 1970s D. Johnson discovered a remarkable relation among Dehn
twists. He called it the lantern relation since his diagram for the relation was
“lanternlike” [51, 115]. In the 1990s N. V. Ivanov pointed out that Dehn,
in his original paper on mapping class groups from 1938, had already dis-
covered the lantern relation. The existence of this relation has a number of
important implications for the structure of mapping class groups. As a first
example, we will use the lantern relation to show that Mod(S) has trivial
abelianization for most S.

5.1.1 THE LANTERN RELATION

The lantern relation is a relation in Mod(S) between seven Dehn twists,
all lying on a subsurface of S homeomorphic to S4

0 , a sphere with four
boundary components.

Proposition 5.1 (Lantern relation) Let x, y, z, b1, b2, b3, and b4 be sim-
ple closed curves in a surface S that are arranged as the curves shown in
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xx y

y

z

z

b1

b1

b2

b2

b3

b3

b4

b4

Figure 5.1 Two views of the lantern relation in S4
0 .

Figure 5.1. Precisely, this means that there is an orientation-preserving em-
bedding S4

0 ↪→ S and that each of the above seven curves is the image of the
curve with the same name in Figure 5.1. InMod(S) we have the relation

TxTyTz = Tb1Tb2Tb3Tb4 .

Proof. As discussed in Section 3.1, any embedding of a compact surface S′

into a surface S induces a homomorphism Mod(S′) → Mod(S). Since re-
lations are preserved by homomorphisms, it suffices to check that the stated
relation holds in Mod(S4

0).
To check the relation in Mod(S4

0), we cut S4
0 into a disk using three arcs

and apply the Alexander method (actually, two arcs would suffice). The
computation is carried out in Figure 5.2.

For the computation, it is important to keep track of three conventions:
Dehn twists are to the left, the simple closed curves x, y, and z are config-
ured clockwise on the surface, and the relation is written using functional
notation (i.e., elements on the right are applied first). �

Any surface S with χ(S) ≤ −2 contains an essential subsurface S′ home-
omorphic to S4

0 . Indeed, if x and y are any two simple closed curves in S
with i(x, y) = 2 and î(x, y) = 0, then S′ can be taken to be any closed
regular neighborhood of x∪ y. To see this, one can use the fact that if α and
β are any two simple closed curves in S, and N is any regular neighborhood
of α ∪ β, then |χ(N)| = |α ∩ β|. As such, we see that the lantern relation
occurs in any such S.
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Tx

Ty

Tz

Tb1Tb2Tb3Tb4

Figure 5.2 Proof of the lantern relation. The simple closed curves x, y, and z are shown in
Figure 5.1.

The lantern relation implies another relation that is simpler, yet still inter-
esting, namely,

TxTyTz = TyTzTx = TzTxTy.

This relation follows easily from the lantern relation plus the relation that
each Tbi commutes with each of Tx, Ty, and Tz. We can contrast this result
with Theorem 3.14, which states that there are no relations between Dehn
twists Ta and Tb with i(a, b) = 2. Note that TxTyTz is not equal to TzTyTx.

The lantern relation via the push map. There is another way to derive the
lantern relation that makes it much less mysterious. Let P be a pair of pants,
that is, a sphere with three boundary components. Embed P in the plane
and label the outer boundary component x and the inner components b1
and b2. We obtain an element of Mod(P ) by pushing b1 around b2, without
ever turning b1 (think about a “do-si-do”). From the Alexander method and
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Figure 5.3 we see that this map is equal to

TxT
−1
b1
T−1
b2
.

More formally, this push map is an element of the image of the homomor-
phism π1(UT (A)) → Mod(P ), where A is the annulus obtained by cap-
ping b1 by a closed disk (see Section 4.2).

x

b1

b2

isotopy

Figure 5.3 A push map.

Let S4
0 be a sphere with four boundary components. We have the follow-

ing easy-to-see relation in π1(UT (P )) < Mod(S4
0), depicted on the left-

hand side of Figure 5.4: pushing b2 around b3 and then pushing b2 around b1
is the same as pushing b2 around both b3 and b1. In other words, using the
simple closed curves shown on the right-hand side of Figure 5.4, we have

(TxT
−1
b1
T−1
b2

)(TyT
−1
b2
T−1
b3

) = Tb4T
−1
b2
T−1
z .
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Since the Tbi are central in this group, we can rewrite this as

TxTyTz = Tb1Tb2Tb3Tb4 .

And this is exactly the lantern relation.

αβ = γ

b1

b2

b3

b4

α

β

γ

x

y

z

Figure 5.4 A new view of the lantern relation.

5.1.2 FIRST HOMOLOGY OF THE MAPPING CLASS GROUP

It is a basic fact from algebraic topology that, for any path-connected space
X, the group H1(X; Z) is isomorphic to the abelianization of π1(X). Since
the homology of a group G is defined as the homology of any K(G, 1), we
have that the first homology group of G with integer coefficients is

H1(G; Z) ≈ G

[G,G]
≈ Gab,

where [G,G] is the commutator subgroup of G and Gab is the abelianization
of G.

THEOREM 5.2 For g ≥ 3, the group H1(Mod(Sg),Z) is trivial. More
generally, for any surface S with genus at least 3, we have that
H1(PMod(S); Z) is trivial.

In other words, if the genus of S is at least 3, then the group PMod(S)
is equal to its commutator subgroup, or equivalently, PMod(S)ab is triv-
ial. A group with this property is called perfect. As we will see below, the
statement of Theorem 5.2 is false for g ∈ {1, 2}.

The following proof is due to Harer [83].

Proof. Let S be a surface whose genus is at least 3. Since Dehn twists about
nonseparating simple closed curves are all conjugate (Fact 3.7), it follows
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that each of them maps to the same element under the natural quotient ho-
momorphism Mod(S) → H1(Mod(S); Z). Call this element h. Because
Mod(S) is generated by Dehn twists about nonseparating simple closed
curves (Corollary 4.16), it follows that H1(Mod(S); Z) is generated by h.

Figure 5.5 A copy of a sphere with four boundary components in a higher-genus surface,
which gives rise to a lantern relation between seven nonseparating simple closed
curves.

We now claim h is trivial. Since the genus of S is at least 3, it is possible
to embed S4

0 in S so that each of the seven simple closed curves in S4
0 in-

volved in the lantern relation is nonseparating; see Figure 5.5. The image of
this lantern relation under the homomorphism Mod(S)→ H1(Mod(S); Z)
gives the relation h4 = h3, from which we deduce that h is trivial, giving
the theorem. �

The search for the right relation. Mumford was the first to attack
the problem of finding the abelianization of Mod(Sg). He proved that
H1(Mod(Sg); Z) is a quotient of Z/10Z for g ≥ 2 [165]. In his paper, he
punctuated his result with a question-exclamation mark, ?!, an annotation
used in chess for a dubious move. As above, once you know that Mod(Sg)
is generated by Dehn twists about nonseparating simple closed curves, it is
a matter of using relations between Dehn twists to determine the abelian-
ization. Mumford used the 3-chain relation (TaTbTc)

4 = TdTe, hence his
result. Birman noticed that one could use a different relation to show that
the abelianization of Mod(Sg) is a quotient of Z/2Z for g ≥ 3 [21, 22].
Powell then produced a product of 15 nonseparating Dehn twists that equals
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the identity on Mod(Sg) for g ≥ 3, finally proving Theorem 5.2 [181].
Later, Harer [83] noticed that the lantern relation can be used to give a sim-
ple proof, as above.

For n > 1, the group Mod(Sg,n) is not perfect: if we take the sign of the
induced permutation on the punctures (or marked points), we get a surjective
homomorphism from Mod(Sg,n) to the abelian group Z/2Z.

a1

a2
a3

a4

a5

Figure 5.6 The Dehn twists about these simple closed curves generate Mod(S2).

5.1.3 LOW-GENUS CASES

In order to determine H1(Mod(S); Z) when S is a surface of genus 1 or 2,
we work directly from the known presentations of these groups.

Genus 2. The group Mod(S2) has the following presentation, due to
Birman–Hilden. In the presentation, we use ai to denote the Dehn twist
about the simple closed curve ai shown in Figure 5.6.

Mod(S2) = 〈a1, a2, a3, a4, a5 | [ai, aj ] = 1 |i− j| > 1,

aiai+1ai = ai+1aiai+1,

(a1a2a3)
4 = a2

5,

[(a5a4a3a2a1a1a2a3a4a5), a1] = 1,

(a5a4a3a2a1a1a2a3a4a5)
2 = 1〉.

The first relation is simply disjointness, the second is the braid rela-
tion, and the third is a special case of the 3-chain relation (the two simple
closed curves forming the boundary of the 3-chain are isotopic). The ele-
ment a5a4a3a2a1a1a2a3a4a5 appearing in the last two relations is exactly
the hyperelliptic involution. We give the Birman–Hilden proof of this pre-
sentation in Chapter 9, and we give a brief discussion of the hyperelliptic
relations later in this section.

To get a presentation for Mod(S2)
ab, we simply add the relations that
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all generators commute. This makes the first and fourth relations redundant.
The braid relations then tell us that all the ai represent the same element a
in the abelianization. The next relation becomes a12 = a2, or a10 = 1, and
the last relation becomes a20 = 1, which is redundant. Thus Mod(S2)

ab is
a cyclic group of order 10, as proved by Birman–Hilden [26].

It turns out that for any surface S2,n of genus 2 with n ≥ 0 punctures, we
have H1(Mod(S2,n); Z) ≈ Z/10Z; see [124].

Genus 1. Similarly, we can find that H1(Mod(T 2); Z) ≈ Z/12Z using the
classical presentation:

Mod(T 2) ≈ SL(2,Z) ≈ 〈a, b | aba = bab, (ab)6 = 1〉.

In Mod(T 2), the elements a and b are Dehn twists about simple closed
curves that intersect once. The relations are the braid relation and the 2-
chain relation.

In the genus 1 case, adding punctures does not change the first homology
of Mod(S), but adding boundary does. If S is a genus 1 surface with no
boundary, then H1(Mod(S); Z) ≈ Z/12Z, and if S is a genus 1 surface
with b boundary components, then H1(Mod(S); Z) ≈ Zb; again, see [124].
Combining the last statement with Proposition 3.19, we see that the map-
ping class group of a genus 1 surface with multiple boundary components is
not generated by Dehn twists about nonseparating simple closed curves (cf.
Section 4.4.4).

Genus zero. By again considering presentations, we see that if S0,n is a
sphere with n punctures, then H1(Mod(S0,n); Z) is isomorphic to a cyclic
group of order 2(n − 1) or n − 1, depending on whether n is even or odd,
respectively. The presentation for Mod(S0,n) is

Mod(S0,n) = 〈σ1, . . . , σn−1 | [σi, σj ] = 1 |i− j| > 1,

σiσi+1σi = σi+1σiσi+1,

(σ1 · · · σn−1)
n = 1,

(σ1 · · · σn−1σn−1 · · · σ1) = 1〉.

One can arrive at this presentation from a presentation for the braid
groups; the σi correspond to half-twists. See Chapter 9.

5.1.4 THE HYPERELLIPTIC RELATIONS

In our presentation of Mod(S2) above we encountered a new, seemingly
complicated relation. Here we generalize this relation to higher-genus sur-
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faces, and in Chapter 9 we give a geometric explanation for this relation.
Let c1, . . . , c2g+1 be a chain of isotopy classes of simple closed curves

in the closed surface Sg; that is, i(ci, ci+1) = 1 and i(ci, cj) = 0 when
|i− j| > 1. There is only one such chain in Sg up to homeomorphism (this
follows from the fact that there is one 2g-chain in Sg up to homeomorphism,
as in Section 1.3). The product

Tc2g+1
· · · Tc1Tc1 · · ·Tc2g+1

is a hyperelliptic involution (the hyperelliptic involution when g is equal to
1 or 2).

Thus we have the following hyperelliptic relations in Mod(Sg):

(Tc2g+1
· · ·Tc1Tc1 · · ·Tc2g+1

)2 = 1,

[Tc2g+1
· · · Tc1Tc1 · · ·Tc2g+1

, Tc2g+1
] = 1.

A strange fact. If we rewrite the first hyperelliptic relation, we see that there
is a product of 4g+ 1 Dehn twists that equals the inverse of one Dehn twist.
In other words, a right Dehn twist is a product of left Dehn twists. This, plus
the Dehn–Lickorish theorem, gives us the following surprising fact (pointed
out to us by Luis Paris):

Every element of Mod(Sg) is a product of left (positive) Dehn
twists.

5.2 PRESENTATIONS FOR THE MAPPING CLASS GROUP

We have already seen several relations between Dehn twists. In particular,
we have the disjointness relation (Fact 3.9), the braid relation, the chain
relation, the lantern relation, and the hyperelliptic relation. We will see that
these relations suffice to give a finite presentation for Mod(Sg).

5.2.1 WAJNRYB’S PRESENTATION

Finite presentations for the mapping class groups of closed surfaces of genus
1 and 2 were discussed in Section 5.1.2. McCool gave the first algorithm for
finding a finite presentation for the mapping class group of a higher-genus
surface [145]. His techniques are algebraic in nature; no explicit presenta-
tion has been derived from this algorithm.

Hatcher and Thurston made a breakthrough by finding a topologically fla-
vored algorithm for constructing an explicit finite presentation for Mod(S).
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The algorithm was carried out by Harer, who produced a finite but un-
wieldy presentation [83]. Wajnryb used these ideas to derive the following
explicit presentation, which is considered to be the standard presentation for
Mod(S) [29, 209]. The exact form of the presentation given here is taken
from a survey paper by Birman [25]. In the statement, we use functional
notation as usual (elements applied right to left).

...

c0c1

c2
c3

c4
c5

c6
c7 c2g−1

c2g

Figure 5.7 The Humphries generators for Mod(S).

THEOREM 5.3 (Wajnryb’s finite presentation) Let S be either a closed
surface or a surface with one boundary component and genus g ≥ 3. Let
ai denote the Humphries generator Tci , where ci is as shown in Figure 5.7.
The mapping class groupMod(S) has a presentation where the generators
are a0, . . . , a2g , and the relations are as follows.

1. Disjointness relations

aiaj = ajai if i(ci, cj) = 0

2. Braid relations

aiajai = ajaiaj if i(ci, cj) = 1

3. 3-chain relation

(a1a2a3)
4 = a0b0,

where

b0 = (a4a3a2a1a1a2a3a4)a0(a4a3a2a1a1a2a3a4)
−1

4. Lantern relation

a0b2b1 = a1a3a5b3,
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where

b1 = (a4a5a3a4)
−1a0(a4a5a3a4)

b2 = (a2a3a1a2)
−1b1(a2a3a1a2)

b3 = (a6a5a4a3a2ua
−1
1 a−1

2 a−1
3 a−1

4 )a0(a6a5a4a3a2ua
−1
1 a−1

2 a−1
3 a−1

4 )−1

and where

u = (a6a5)
−1b1(a6a5)

5. Hyperelliptic relation (S closed)

(a2g · · · a1a1 · · · a2g)d = d(a2g · · · a1a1 · · · a2g),

where d is any word in the generating set that, under the previous
relations, is equivalent to the Dehn twist about the simple closed curve
d in Figure 5.8.

...

...

b0

b1

b2
b3

d

Figure 5.8 Extra elements used in the relations for Wajnryb’s presentation for Mod(S). We
have labeled the simple closed curves by the corresponding elements of Mod(S).

In the statement, we mean that the hyperelliptic relation is only needed
(and it is only true) for closed surfaces. The reason for the term “hyperel-
liptic relation” is that the product d(a2g · · · a1a1 · · · a2g)d is a hyperelliptic
involution.

Strictly speaking, Theorem 5.3 does not give a formal presentation of
Mod(Sg) since we have not given the element d in terms of the generators,
so we take care of that now. If we rephrase things, we need to write the
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Dehn twist d as a product of the generators ai in the mapping class group
of the surface with one boundary component. Let n1, . . . , ng be the Dehn
twists about the simple closed curves shown in Figure 5.9. Note that n1, n2,
and ng are the same as the Dehn twists a1, b0, and d from Theorem 5.3.
Similarly to Section 4.4.3, we can inductively write the ni in terms of the
Humphries generators. We start with n1 = a1 and n2 = b0. Then we have

ni+2 = winiw
−1
i ,

where

wi= (a2i+4a2i+3a2i+2ni+1)(a2i+1a2ia2i+2a2i+1)

(a2i+3a2i+2a2i+4a2i+3)(ni+1a2i+2a2i+1a2i).

Finally, set d = ng.

...
n1 n2 n3 ng

Figure 5.9 Extra elements used in the relations for Wajnryb’s presentation for Mod(S). We
have labeled the simple closed curves by the corresponding elements of Mod(S).

A presentation of the mapping class group of a surface with more than
one boundary component can be obtained by applying the Birman exact
sequence. Also, a presentation for Mod(Sg,1) can be obtained by combining
Wajnryb’s presentation with Proposition 3.19.

The effect of relations on homology. Harer notes that if we take the ab-
stract group with the Humphries generators and the first two sets of relations
in the Wajnryb presentation, then we have a group (an Artin group) whose
first homology is Z. We see from our proof of Theorem 5.2 that if we next
add in the lantern relation, the resulting group has trivial first homology. At
this point, our abstract group has trivial second homology, yet Harer proved
that H2(Mod(Sg); Z) ≈ Z (Theorem 5.8 below). Adding in the 3-chain
relation corrects this.

The algebrogeometric approach. Years before McCool’s result, Baily and
Deligne–Mumford gave different compactifications of M(Sg), the moduli
space of Riemann surfaces homeomorphic to Sg, showing that M(Sg) is a
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quasiprojective variety [10, 52]. We will prove in Theorem 6.9 below that
Mod(Sg) has a finite-index subgroup Γ that is torsion-free, from which it
follows thatM(Sg) has a finite cover (corresponding to Γ) which is a man-
ifold, and so a smooth quasiprojective variety. Lojasiewicz had also shown
that any smooth quasiprojective variety has the homotopy type of a finite
complex; in particular, its fundamental group is finitely presented. We con-
clude that Γ, hence Mod(Sg), is finitely presented. However, this approach
does not give an algorithm for finding an explicit finite presentation.

5.2.2 THE CUT SYSTEM COMPLEX

We now very briefly outline the strategy used to derive the presentation
in Theorem 5.3. In Section 5.3 below, we will give a complete proof that
Mod(Sg) is finitely presented, although we will not derive an explicit pre-
sentation.

The cut system complex. Hatcher–Thurston [89] defined a 2-dimensional
CW-complex X(Sg), called the cut system complex, as follows. Vertices of
X(Sg) correspond to cut systems in Sg, that is, (unordered) sets {c1, . . . , cg}
where

1. each ci is the isotopy class of a nonseparating simple closed curve γi
in Sg,

2. i(ci, cj) = 0 for all i and j, and

3. Sg −∪γi is connected.

An example of a vertex in X(Sg) is given by the set of isotopy classes
{a1, . . . , ag} shown in Figure 5.10. Vertices represented by {ai} and {bi}
are connected by an edge in X(Sg) if (up to renumbering) ai = bi for
2 ≤ i ≤ g and i(a1, b1) = 1.

Just as the edges of X(Sg) are defined by certain topological configu-
rations of curves, so are the 2-cells of X(Sg). For example, we glue in
a triangle to the 1-skeleton of X(Sg) for each triple of vertices that are
pairwise-connected by edges. For example, in Figure 5.10, the vertices
va = {a, a2, . . . , ag}, vb = {b, a2, . . . , ag}, and vc = {c, a2, . . . , ag} span
a triangle in X(Sg). The complex X(Sg) also has squares and pentagons;
we refer the reader to the paper [89] for the details.

Hatcher–Thurston give a beautiful Morse–Cerf-theoretic proof that
X(Sg) is simply connected. Later Hatcher–Lochak–Schneps gave an alter-
nate proof for a closely related complex [92], and Wajnryb gave a combina-
torial proof of simple connectivity for the original complex [210].
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The mapping class group action. In general, when a group G acts co-
compactly on a simply connected complex X with finitely presented vertex
stabilizers and finitely generated edge stabilizers, the group G is finitely pre-
sented (see Proposition 5.6 below). For each orbit of vertices of X, there are
relations in G coming from the relations in those vertex stabilizers; for each
orbit of edges of X, there are relations in G coming from the generators
of those edge stabilizers (the relations identify elements of the two vertex
stabilizers); and finally there is one relation in G for each orbit of 2-cells in
X. See the paper by Ken Brown for details [37].

Since the complex X(Sg) is defined by topological rules, it follows that
Mod(Sg) acts on X(Sg). Using the change of coordinates principle, it is
not hard to see that the action is cocompact; indeed, there is a single orbit
of vertices and a single orbit of edges. Now, the stabilizer in Mod(Sg) of a
vertex of X(Sg) is closely related to a braid group. This is because if we cut
Sg along the simple closed curves corresponding to a vertex of Sg, the result
is a sphere with 2g boundary components; cf. Chapter 9. Therefore, the
presentation for a vertex stabilizer can be derived from known presentations
of braid groups or mapping class groups of genus 0 surfaces. Generating
sets for edge stabilizers are obtained similarly.

Wajnryb’s calculation. To give a flavor of the calculation used to get Wa-
jnryb’s actual presentation, we explain how the braid relation comes up in
his analysis of the action of Mod(Sg) on X(Sg). Of course, to verify the
braid relation in Mod(Sg) is not difficult (see Proposition 3.11). The point
here is that, by the general theory, a full set of relations for Mod(Sg) is ob-
tained by identifying elements of different cell stabilizers. We will realize
the braid relation as one such relation.

a = a1 a2 a3 ag

b

c
. . .

Figure 5.10 The simple closed curves ai give a vertex of the cut system complex, and the
simple closed curves a, b, and c, along with a2, . . . ag , give a triangle of the
complex.

In what follows, we abuse notation, denoting a simple closed curve and
its associated Dehn twist by the same symbol.
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Let va be the vertex of X(Sg) corresponding to the cut system {ai} given
in Figure 5.10. We will make use of two particular elements of the stabilizer
Gva of va, namely, the Dehn twist a and the element s = ba2b, where b is
the Dehn twist about the simple closed curve shown in Figure 5.10.

Let eab be the edge of X(Sg) spanned by the vertices va and vb defined
above. One element of the stabilizer Geab

of eab is r = aba. Since r in-
terchanges the vertices of eab, it follows that r2 is an element of Gva . In
particular, it is the element sa2 ∈ Gva . So we obtain the following relation
(relation P10 in [210, Theorem 31]):

r2 = sa2.

We now focus on the stabilizer of a 2-cell, namely, the triangle tabc spanned
by va, vb, and vc. The element ar does not stabilize va or eab, but it does
stabilize tabc, inducing an order 3 rotation of tabc. Thus (ar)3 is an element
of Gva , and again one can write it as a word in the elements s, a ∈ Gva ,
namely, (asa)2. So we have the following relation (relation P11 in [210,
Theorem 31]):

(ar)3 = (asa)2.

We can rewrite this last relation using the relation r2 = sa2 and the trivial
relations aa−1 = 1 and bb−1 = 1.

(ar)3 = (asa)2

=⇒ (ar)3 = a(sa2)sa

=⇒ (ar)3 = ar2sa

Replacing r with aba and s with ba2b, we find

a2ba3ba3ba= a2ba2baba2ba

=⇒ (a2ba2)aba(a2ba) = (a2ba2)bab(a2ba)

=⇒ aba= bab

Thus we see the braid relation arising from the action of Mod(Sg) on
X(Sg); it comes from two relations one gets by flipping edges and by ro-
tating triangles. Deriving the complete presentation of Mod(Sg) given in
Theorem 5.3 is quite involved; we refer the reader to Wajnryb’s paper [210]
for details.

It is straightforward to carry out this procedure in the case of the torus.
The complex X(T 2) is the Farey complex (see Section 4.1), and, in fact, the
relations r2 = sa2 and aba = bab already discussed suffice to present the
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group Mod(T 2) ≈ SL(2,Z).

5.2.3 THE GERVAIS PRESENTATION

While Wajnryb’s presentation (Theorem 5.3) is the most well known and
classical presentation of Mod(S), there are several other useful ones. We
now present one due to Gervais [71]. Some of the features of this presen-
tation are: it is fairly easy to write down explicitly, it works for the pure
mapping class group of any surface with boundary, and all of the relations
are described on uniformly small subsurfaces (tori with at most three bound-
ary components). Gervais’s derivation of this presentation is accomplished
by starting from Wajnryb’s presentation and simplifying the relations there.
The same is true for the beautiful presentation due to Matsumoto [143],
which is phrased in terms of Artin groups and which we do not discuss
here. Hirose gives a direct derivation of the Gervais presentation [94].

The Gervais presentation uses one new relation which we have not seen
before.

The star relation. Consider the torus S3
1 with three boundary components

d1, d2, and d3. Let c1, c2, c3, and b be isotopy classes of simple closed
curves configured as in Figure 5.11. Note that S3

1 is homeomorphic to a
closed regular neighborhood of c1 ∪ c2 ∪ c3 ∪ b (really the union of four
representatives).

c1 c2

c3

b

d1d2

d3

Figure 5.11 The simple closed curves used in the star relation.

Gervais gives the following relation [71]. If c1, c2, c3, b, d1, d2, and d3

are the isotopy classes of simple closed curves in S3
1 given in Figure 5.11,

then we have

(Tc1Tc2Tc3Tb)
3 = Td1Td2Td3 .
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As with the lantern relation, this relation can be checked with the Alexander
method. We call b the central curve of the star relation. For any embedding
S3

1 ↪→ S into a surface S, the image of the star relation under the induced
homomorphism Mod(S3

1) → Mod(S) of course gives a relation (between
the images of the above curves) in Mod(S).

Suppose that S3
1 is embedded in S in such a way that the isotopy classes

c1 and c2 are equal but distinct from c3. This happens when the image of d3

under the embedding is the trivial isotopy class and the images of d1 and d2

are nontrivial. In this case, the star relation becomes

(T 2
c1Tc3Tb)

3 = Td1Td2 .

We call this a degenerate star relation. We will not need to consider star
relations with c1 = c2 = c3. We note that the degenerate star relation is the
same as one of the 3-chain relations given in Section 4.4.

Recall that we used the star relation in Section 4.4.4 to prove Corol-
lary 4.16.

The Gervais presentation. Let S be a compact surface of genus g with n
boundary components. We begin by giving the generating set for the Gervais
presentation of Mod(S). Each of the generators is a Dehn twist, and so it
suffices to list the corresponding simple closed curves. The curves are shown
in Figure 5.12, where we have drawn S as a torus with g−1 handles attached
and n disks removed.

We start at the top of the figure. There is one simple closed curve b which
will form the central curve for all of our star relations. There are 2(g −
1) + n simple closed curves {ci} with i(b, ci) = 1. There are 2(g − 1)
simple closed curves corresponding to the latitudes and longitudes of the
g − 1 handles attached to the central torus. We also include the n boundary
components. Finally, for each ordered pair of distinct curves (ci, cj), there
is a simple closed curve ci,j that lies in a neighborhood of ci ∪ cj ∪ b and
that lies in the clockwise direction from ci along b (note that each ci,i+1 has
already appeared on the list). The curves ci,j are depicted at the bottom of
Figure 5.12; there are (2g − 2 + n)(2g − 3 + n) of these curves.

THEOREM 5.4 (Gervais’ finite presentation) Let S be a surface of genus
g with n boundary components. The groupMod(S) has a presentation with
one Dehn twist generator for each simple closed curve shown in Figure 5.12
and with the following relations.

1. All disjointness relations between generators

2. All braid relations between generators
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b

c1

c2

c3

c4

c2g−2
c2g−1

c2g−2+b

ci

cj

ck

ci,j

cj,k

ck,i

Figure 5.12 The generators for the Gervais presentation.

3. All star relations between generators, including the degenerate ones,
where b is the central curve.

From Theorem 5.4 it is straightforward to write down the presentation
explicitly by listing the generators and relations. For the first two kinds of
relations, one needs to find all pairs of generators that are disjoint or that
have intersection number 1. The degenerate star relations are given by triples
{ci, ci, cj}, where ci �= cj , and the other star relations are given by triples of
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distinct ci-curves.
By Proposition 3.19, one can get a presentation for the case of a sur-

face with punctures by setting each generator corresponding to a Dehn twist
about a boundary curve to be trivial.

5.3 PROOF OF FINITE PRESENTABILITY

We now give a proof that Mod(S) is finitely presented. While it is possible
to give a proof analogous to our proof of finite generation, we instead choose
to introduce a new technique. As a result, we obtain a new proof of finite
generation.

The strategy, suggested by Andrew Putman, is to show that the arc com-
plex A(S) is contractible and use the action of Mod(S) on A(S) to build a
K(Mod(S), 1) with finite 2-skeleton. It immediately follows that Mod(S)
is finitely presented. While this is a simple proof of finite presentability, we
do not know what explicit finite presentation comes out of this approach.

5.3.1 THE ARC COMPLEX

Let S be a compact surface that either has nonempty boundary or has at least
one marked point. We define the arc complexA(S) as the abstract simplicial
flag complex described by the following data (cf. Section 4.1).

Vertices. There is one vertex for each free isotopy class of es-
sential simple proper arcs in S.

Edges. Vertices are connected by an edge if the corresponding
free isotopy classes have disjoint representatives.

If we take a surface S with nonempty boundary and cap one or more
boundary components with a once-marked disk, then A(S) is naturally iso-
morphic to the arc complex for the capped surface. So in this sense there is
no difference between marked points and boundary components in defining
the arc complex. When we consider the action of the mapping class group
on the arc complex, marked points are more natural than boundary compo-
nents since Dehn twists about boundary components act trivially on the arc
complex.

As a first example, the arc complex of the torus with one boundary com-
ponent is the Farey complex (see Section 4.1).

The most fundamental fact about the arc complex is the following theo-
rem due to Harer [83].

THEOREM 5.5 Let S be any compact surface with finitely many marked
points. If A(S) is nonempty, then it is contractible.
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The elegant proof we present is due to Hatcher [90]. A number of
other mathematicians made various contributions to the circle of ideas sur-
rounding this theorem, including Thurston, Bowditch–Epstein, Mumford,
Mosher, and Penner.

For the proof, recall that the simplicial star of a vertex v in a simplicial
complex is the union of closed simplices containing v. The simplicial star
of a vertex is contractible.

Proof. We choose some base vertex v of A(S). To prove that A(S) is con-
tractible, we will define a flow of A(S) onto the simplicial star of v.

An arbitrary point p in the simplex of A(S) spanned by vertices
v1, . . . , vn is given by barycentric coordinates, that is, a formal sum

∑
civi

where
∑
ci = 1 and ci ≥ 0 for all i. Let α be a fixed representative of v. We

can realize p in S as follows: first realize the vi as disjoint arcs in S, each
in minimal position with α, and then thicken each vi-arc to a band which is
declared to have width ci.

By an isotopy, we make the intersection of the arc representing v with
the union of these bands equal to a closed interval disjoint from ∂S, as on
the left-hand side of Figure 5.13. (In the figure we have shown α with its
endpoint at a boundary component. If instead its endpoint is at a marked
point/puncture, then the boundary component, depicted as a horizontal line
at the bottom of the figure, is not in the picture.) Let θ =

∑
cii(vi, v) denote

the thickness of this union of bands.

α

∂S

Figure 5.13 The Hatcher flow on A(S).

The flow is defined as follows. At time t, we push a total band width of
tθ in some prechosen direction along the arc α (see the right-hand side of
Figure 5.13). The picture gives barycentric coordinates for some new point
in A(S). At time 1, all of the bands are disjoint from the arc α, and we are
in the star of v.
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It is not difficult to check that the flow is continuous and well defined on
the intersections of simplices. This completes the proof of the theorem. �

5.3.2 FINITE PRESENTABILITY VIA GROUP ACTIONS ON COMPLEXES

The group Mod(S) acts by simplicial automorphisms on the contractible
simplicial complex A(S). In order to use this action to analyze Mod(S),
we need to apply some geometric group theory.

The following theorem is adapted from Scott–Wall [191]. In the statement
of the theorem, we say that a group G acts on a CW-complex X without
rotations if, whenever an element g ∈ G fixes a cell σ ⊂ X, then g fixes
σ pointwise. Any action of a group on a CW-complex can be turned into
an action without rotations by barycentrically subdividing the complex. The
benefit of an action without rotations is that the quotient has a natural CW-
complex structure coming from the structure of the original complex.

Proposition 5.6 Let G be a group acting on a contractible CW-complex X
without rotations. Suppose that each of the following conditions holds.

1. The quotient X/G is finite.

2. Each vertex stabilizer is finitely presented.

3. Each edge stabilizer is finitely generated.

Then G is finitely presented.

Proof. Let U be any K(G, 1)-complex. Consider the contractible complex
Ũ × X. Since the action of G on Ũ is free, the diagonal action of G on
Ũ ×X is free. Therefore, as Ũ ×X is contractible, (Ũ ×X)/G is another
K(G, 1)-complex. This construction of a K(G, 1) from a group action on a
complex is called the Borel construction.

We will show that (Ũ ×X)/G has the homotopy type of a complex with
finite 2-skeleton. Consider the projection

(Ũ ×X)/G→ X/G.

If v is a vertex of X with stabilizer Gv in G, then (Ũ × v)/Gv is a
K(Gv , 1)-complex. Moreover, this space maps injectively to (Ũ × X)/G
and is the preimage of [v] ∈ X/G. In other words, over each vertex of X/G
there is in (Ũ × X)/G a K(π, 1) corresponding to that vertex stabilizer.
Similarly, lying over each higher-dimensional open cell is the product of a
K(π, 1)-complex for that cell stabilizer with that open cell.
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As a result, we see that (Ũ × X)/G has the structure of a complex
of spaces, with each vertex space a K(Gv, 1) for a vertex stabilizer Gv
and each edge space a K(Ge, 1) for an edge stabilizer Ge. That is, the
space (Ũ × X)/G is obtained inductively as follows: we start with the
disjoint union of the K(Gv, 1)-spaces; then, we take the K(Ge, 1)-spaces,
cross them with intervals, and glue them to the K(Gv, 1)-spaces via any
map in the unique homotopy class of maps determined by the inclusion
Ge ↪→ Gv. This process is repeated inductively (and analogously) on
higher-dimensional skeletons.

We make the following observation: if each space in the complex of
spaces is replaced with another space to which it is homotopy-equivalent
(i.e., another K(π, 1)-space), the homotopy type of the resulting complex
does not change. In other words, the homotopy colimit is well defined [91,
Proposition 4G.1].

Since the stabilizer Gv of each vertex v is assumed to be finitely pre-
sented, each K(Gv , 1)-space can be chosen to have a finite 2-skeleton.
Since the stabilizer of each edge e is assumed to be finitely generated, each
K(Ge, 1)-space can be chosen to have a finite 1-skeleton. For the stabi-
lizer Gf of each 2-cell f , the K(Gf )-space can be chosen to have a finite
0-skeleton, since for any group H , there is a K(H, 1) with a single vertex).

There are three ways that 2-cells arise in the complex of spaces (Ũ ×
X)/G: via 2-cells of K(Gv, 1)-spaces, 1-cells of K(Ge, 1)-spaces, and 0-
cells of K(Gf , 1)-spaces. As discussed above, each of these spaces can
be chosen to have finite 2-skeleton, 1-skeleton and 0-skeleton, respectively.
Since the quotient X/G is finite, the resulting complex of spaces has finitely
many 2-cells. Thus we have created a K(G, 1) with a finite 2-skeleton, and
so G is finitely presented. �

We remark that the proof of Proposition 5.6 can be slightly modified to
work in the case where X is assumed only to be simply connected as op-
posed to contractible. Actually, the complex of curves C(S) is simply con-
nected (but not contractible) for most S; see [87, Theorem 3.5] and [108,
Theorem 1.3]. The reason we use the arc complex in our application of
Proposition 5.6 is simply because it is easier to prove that A(S) is con-
tractible than it is to prove that C(S) is simply connected.

5.3.3 PROOF THAT THE MAPPING CLASS GROUP IS FINITELY PRESENTED

We are now ready to prove the following theorem.

THEOREM 5.7 If S is a compact surface with finitely many marked points,
then the groupMod(S) is finitely presented.
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Proof. We first reduce the problem to the case of Sg,n with n > 0 marked
points. Suppose we can prove the theorem in this case. We now explain how
to deduce the theorem in the case that S has nonempty boundary and then
in the case where S is closed.

Let S be a compact surface with n > 0 boundary components and assume
that S is not the disk D2. Also assume by induction that, for any compact
surface with n−1 boundary components, the mapping class group is finitely
presented. We recall Proposition 3.19, which states that if S∗ is the surface
obtained from a surface S by capping a boundary component β with a once-
marked disk, then the following sequence is exact:

1→ 〈Tβ〉 → Mod(S)
Cap→ Mod
(S∗)→ 1,

where Mod
(S∗) is the subgroup of Mod(S∗) consisting of elements that
fix the marked point coming from the capping operation. By the inductive
hypothesis, we have that Mod(S∗) is finitely presented. Since Mod
(S∗)
has finite index in Mod(S∗), it is also finitely presented. Since the extension
of a finitely presented group by a finitely presented group is finitely pre-
sented, it follows from Proposition 3.19 that Mod(S) is finitely presented.

A similar argument to the above, using the Birman exact sequence, shows
that Mod(Sg,0) is finitely presented if Mod(Sg,1) is since the quotient of a
finitely presented group by a finitely generated group is finitely presented.

We have thus reduced the proof to showing that Mod(Sg,n) is finitely
presented when n > 0. We may assume that (g, n) �= (0, 1) because we
already know Mod(S0,1) = 1. Since a group is finitely presented if and only
if any of its finite-index subgroups are finitely presented, it suffices to prove
that PMod(Sg,n) is finitely presented. We make the inductive hypothesis
that PMod(Sg′,n′) is finitely presented when g′ < g or when g′ = g and
n′ < n.

We would like to apply Proposition 5.6. By Theorem 5.5, the arc com-
plexA(Sg,n) is contractible. Therefore its barycentric subdivision A′(Sg,n),
on which PMod(Sg,n) acts without rotations, is also contractible. Note
that vertices of A′(Sg,n) correspond to simplices of A(Sg,n). It follows
from the change of coordinates principle that the quotient of A′(Sg,n) by
PMod(Sg,n) is finite.

Now let v be a vertex of A′(Sg,n) and let Gv be its stabilizer in
PMod(Sg,n). In order to apply Proposition 5.6, we need to show that Gv
is finitely presented.

As above, v corresponds to a simplex ofA(Sg,n), that is, the isotopy class
of a collection of disjoint simple proper arcs αi in Sg,n. If we cut Sg,n along
the αi, we obtain a (possibly disconnected) compact surface with boundary
Sα, possibly with marked points in its interior. We may pass from the cut
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surface Sα to a surface with marked points but no boundary by collapsing
each boundary component to a marked point (or, what will have the same
effect, capping each boundary component with a once-marked disk). De-
note the connected components of the resulting surface by Ri. Each Ri has
marked points coming from the marked points of Sg,n and/or marked points
coming from ∪αi. Note that each PMod(Ri) falls under the inductive hy-
pothesis.

Let G0
v denote the subgroup of Gv consisting of elements that fix each

isotopy class [αi] with orientation. Note that these elements necessarily fix
the Ri as well. Since G0

v has finite index in Gv , it suffices to show that G0
v

is finitely presented. There is a map

η : G0
v →

∏
PMod(Ri).

To see that η is a well-defined homomorphism, one needs the fact that if
two homeomorphisms of Sg,n fixing ∪αi are homotopic, then they are ho-
motopic through homeomorphisms that fix ∪αi (cf. Section 3.6).

The map η is also surjective. Indeed, given any element of
∏

PMod(Ri),
one can choose a representative homeomorphism that is the identity in a
neighborhood of the marked points, and then one can lift this to a repre-
sentative of an element of G0

v that is the identity on a neighborhood of the
union of the marked point with the αi. It follows from Proposition 3.19 that
the kernel of η is generated by the Dehn twists about the components of the
boundary of the cut surface Sα. Since each PMod(Ri) is finitely presented,
their product is as well. As the kernel of η is finitely generated and its co-
kernel is finitely presented, it follows that G0

v is finitely presented, which is
what we wanted to show.

Two vertices of A′(Sg,n) are connected by an edge if and only if the
corresponding simplices of A(Sg,n) share a containment relation (i.e., one
is contained in the other). It follows that the stabilizer of an edge inA′(Sg,n)
is a finite-index subgroup of the larger of the two stabilizers of its vertices.
Thus edge stabilizers are finitely presented, and in particular they are finitely
generated.

We thus have that Mod(Sg,n) acts on the contractible simplicial complex
A(S) without rotations, with finitely presented vertex stabilizers and finitely
generated edge stabilizers. Applying Proposition 5.6 to this action gives that
Mod(Sg,n) is finitely presented. �
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5.4 HOPF’S FORMULA ANDH2(Mod(S); Z)

In Section 5.1.2 we computed H1(Mod(S); Z). In this section we compute
H2(Mod(S); Z). As with first homology, the second homology is a basic
invariant of a group G. For example, if H2(G; Z) is infinitely generated,
thenG has no finite presentation. The precise connection between H2(G; Z)
and presentations for G is made explicit by Hopf’s formula below. Later we
will see that H2(G; Z) is related toH2(G; Z), which in turn classifies cyclic
central extensions of G.

THEOREM 5.8 (Harer) Let g ≥ 4. Let S1
g denote a compact surface of

genus g with one boundary component. Then we have the following isomor-
phisms:

(i) H2(Mod(Sg); Z) ≈ Z

(ii) H2(Mod(S1
g ); Z) ≈ Z

(iii) H2(Mod(Sg,1); Z) ≈ Z2.

In general, if S is a surface of genus g ≥ 4 with b boundary components
and p punctures, then H2(Mod(S); Z) ≈ Zp+1; see [83, 126]. Harer also
proved that H3(Mod(Sg); Q) = 0 for g ≥ 3 [85] and H4(Mod(Sg); Q) ≈
Q2 for g ≥ 10 [82]. The groups Hk(Mod(Sg)) have not been computed for
k ≥ 5, although it is known that Hk(Mod(Sg)) does not depend on g for g
large [86].

Harer proved Theorem 5.8 by reducing to the case where S has boundary
and using the action of Mod(S) on the arc complex associated to S. Pitsch
gave a completely different proof of the upper bound in Theorem 5.8. That
is, he showed that H2(Mod(S1

g ); Z) is a quotient of Z. He realized that
one can actually apply Hopf’s formula to Wajnryb’s explicit presentation of
Mod(S). In this section we present what is essentially Pitsch’s proof from
[179], together with the variations on his argument that are required for the
cases of Sg and Sg,1.

5.4.1 THE HOPF FORMULA

Let G be any group with a finite presentation G = 〈F |R〉. The group G can
also be thought of as F/K , where K is the normal subgroup generated by
the relators, namely, the elements of R. The classical Hopf formula states
that

H2(G; Z) ≈ K ∩ [F,F ]

[K,F ]
.
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So elements of H2(G; Z) are cosets represented by relators in G—that is,
elements of K—that are products of commutators in F . Given a relator k,
we think of any conjugate relator fkf−1 as being redundant, and that is why
we take the quotient by [K,F ]. See Brown’s book [38, Theorem 5.3] for a
proof of Hopf’s formula.

The group (K ∩ [F,F ])/[K,F ] is a subgroup of the abelian group
K/[K,F ]. Therefore, as K is normally generated by the finitely many ele-
ments of R, the group K/[K,F ] is an abelian group generated by the cosets
represented by the finitely many elements ofR. Hopf’s formula thus implies
that any element ofH2(G; Z) can be represented (nonuniquely) as a product∏
rni
i , where R = {r1, . . . rN} and ni ∈ Z.

5.4.2 THE HOPF FORMULA APPLIED TO THE WAJNRYB PRESENTATION

We start with the case of S1
g with g ≥ 4. We will use Wajnryb’s presentation

for Mod(S1
g ), in particular, using the notation from Theorem 5.3. Pitsch’s

idea is to plug this presentation into Hopf’s formula.
We can rewrite each relation from Theorem 5.3 so that we get a word

in the generators for Mod(S1
g ) that is equal to the identity element of

Mod(S1
g ), that is, a relator. We do this by moving all generators to the

left-hand side of each relation. We will use the following notation for the
relators:

(i) Disjointness relators [ai, aj ] denoted Di,j

(ii) Braid relators aiajai(ajaiaj)
−1 denoted Bi,j

(iii) 3-chain relator (a1a2a3)
4(a0b0)

−1 denoted C

(iv) Lantern relator (a0b2b1)(a1a3a5b3)
−1 denoted L

In the first two relators, only certain pairs (i, j) are allowed, as governed
by the statement of Theorem 5.3. We will not need the precise forms of the
relators here—that is, we will not write out the bi in terms of the ai—but
rather we will only need the number of times, with sign, each ai appears in
each relator. We will give these numbers as needed, though the reader can
easily read them off from Theorem 5.3.

Let F be the free group generated by the ai and letK denote the subgroup
of F normally generated by the above relators. As in the above discussion,
any element x of the abelian group K/[K,F ] is a coset represented by an
element of the form

x =
(∏

D
ni,j

i,j

)(
2g−1∏
i=1

Bni
i,i+1

)
Bn0

0,4C
nCLnL , (5.1)
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where the exponents are integers. In the remainder of the proof, we will ig-
nore the distinction between the coset given by such an element ofK/[K,F ]
and the actual element of K/[K,F ].

According to Hopf’s formula, H2(Mod(S1
g ); Z) is isomorphic to the sub-

group (K ∩ [F,F ])/[K,F ] of K/[K,F ]. So which elements of K/[K,F ]
given by (5.1) are also elements of [F,F ]/[K,F ]? One obvious condition is
that the exponent sum of each ai must be zero. Actually, we will show that,
up to multiples, there is at most one element of the form (5.1) that satisfies
this condition.

5.4.3 COMMUTING RELATORS

We begin by analyzing the simplest relators, namely, the commuting re-
lators Di,j . We will show that each represents the trivial element of
H2(Mod(S1

g ); Z), and hence these terms can be ignored in (5.1). Choose
some particular Di,j = [ai, aj ]. As an element of F = 〈ai〉, this word cer-
tainly lives in K ∩ [F,F ], where K is the normal subgroup of F generated
by the relators. Our goal is to show that it also lies in [F,K].

In general, if g and h are two commuting elements of Mod(S1
g), then

[g, h] is an element of K ∩ [F,F ]. Let {g, h} denote the corresponding
element (coset) in H2(Mod(S1

g ); Z).
If g is an element of Mod(S1

g ) that commutes with the elements h and k
of Mod(S1

g ), then

{g, hk} = {g, h} + {g, k} (5.2)

in H2(Mod(S1
g ); Z). This follows from the fact that, for any three elements

x, y, and z in the free group F , we have

[x, yz] = [x, y][x, z]y .

We have also used the fact that conjugation “does nothing” in the quotient
(K ∩ [F,F ])/[K,F ]. It is also easy to check that

{g, h−1} = −{g, h}. (5.3)

Lemma 5.9 Let g ≥ 4. If a and b are disjoint nonseparating simple closed
curves in S1

g , then {Ta, Tb} = 0 inH2(Mod(S1
g ); Z).

Proof. We cut S1
g along a and obtain a compact surface S′ of genus g − 1

with three boundary components. The simple closed curve b can be thought
of as a simple closed curve on S′, and so the Dehn twist Tb can be thought
of as an element of Mod(S′). Since g ≥ 4, we have g − 1 ≥ 3, so by
Theorem 5.2 Mod(S′) has trivial abelianization; that is, it is perfect. We
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can thus write Tb as a product of commutators Tb =
∏

[xi, yi], where each
xi and yi is an element of Mod(S′) and so commutes with Ta.

Using (5.2) and (5.3), we then obtain

{Ta, Tb} = {Ta,
∏
i[xi, yi]}

=
∑
i

{Ta, [xi, yi]}

=
∑
i

[{Ta, xi}+ {Ta, yi} − {Ta, xi} − {Ta, yi}]

= 0.

�

Lemma 5.9 has a topological interpretation. Let [T 2] ∈ H2(T
2; Z) ≈

H2(Z2; Z) ≈ Z denote the fundamental class. Two commuting Dehn twists
g, h ∈ Mod(S) determine an inclusion Z2 → Mod(S). This homomor-
phism determines (up to homotopy) a based map η from the classifying
space K(Z2, 1) ≈ T 2 to the classifying space K(Mod(S), 1). Let i∗ :
H2(Z2; Z)→ H2(Mod(S); Z) be the induced homomorphism. Lemma 5.9
says precisely that i∗ is the zero map.

It follows immediately from Lemma 5.9 that each Di,j represents the
trivial element of H2(Mod(S1

g ); Z). From this fact and (5.1), we now have
that any element x of (K ∩ [F,F ])/[K,F ] has the form

x =

(
2g−1∏
i=1

Bni
i,j

)
Bn0

0,4C
nCLnL . (5.4)

5.4.4 COMPLETING THE PROOF

Let x ∈ (K ∩ [F,F ])/[K,F ]. We have shown that x has the form given in
(5.4). We will now use the exponent sum condition for elements of [F,F ] to
reduce the possibilities for x further.

Each relator on the right-hand side of (5.4) is a product of the generators
{ai : 1 ≤ i ≤ 2g} of F . In order that x lie in [F,F ] it must be that the
exponent sum of each ai occurring in x is 0. The only relator involving a2g

is B2g−1,2g , in which a2g has exponent sum 1. Thus in the word Bn2g−1

2g−1,2g
the total exponent sum of a2g is n2g−1. Since no other relator contains a2g

and since the exponent sum of a2g in x is 0, it follows that n2g−1 is 0. We
can thus delete the relator B2g−1,2g from the expression (5.4) for x.
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Now note that the only relator left on the right-hand side of (5.4) involv-
ing a2g−1 is B2g−2,2g−1. By the same argument as above we conclude that
n2g−2 = 0. Continuing in this way, we obtain that ni = 0 for each i ≥ 6;
we stop at B5,6 because both a5 and a6 appear in other (nonbraid) relators.

Since a6 appears in B5,6 with a total exponent of −1 and since the only
other relator in which a6 appears is L, where it has an exponent sum of 0, it
follows that n5,6 = 0.

At this point we have shown that any element x ∈ (K ∩ [F,F ])/[K,F ]
has the form

x = Bn0

0,4B
n1

1,2B
n2

2,3B
n3

3,4B
n4

4,5C
nCLnL .

The power of the preceding arguments is that, for arbitrary g ≥ 4, we have
reduced the problem to understanding just seven relators and that these re-
lators involve only the generators a0, . . . , a5.

Again, in order to get an element of (K ∩ [F,F ])/[K,F ], the exponent
sums of each of the six generators a0, . . . , a5 must be zero. Since, for ex-
ample, a5 occurs in B4,5 with exponent sum −1, and in L with exponent
sum −1, the fact that the total exponent of a5 must be 0 gives the equation
−n4 − nL = 0. Continuing in this way, setting each of the exponent sums
of a0, . . . , a5 equal to 0, we obtain the following system of equations.⎛⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 −2 2
0 1 0 0 0 4 −1
0 −1 1 0 0 4 0
0 0 −1 1 0 4 −1
−1 0 0 −1 1 0 0

0 0 0 0 −1 0 −1

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

n0

n1

n2

n3

n4

nC
nL

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎝
0
0
0
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎠ .

An elementary calculation gives that the above matrix has rank 6, and
so the linear mapping Z7 → Z6 has a 1-dimensional kernel. So there is at
most one element (up to multiples) that satisfies the given linear equations.
A quick check gives that all solutions are simply integral multiples of the
vector (−18, 6, 2, 8,−10, 1, 10). It follows that the only possibilities for the
arbitrary element x ∈ K ∩ [F,F ]/[F,K] ≈ H2(Mod(S1

g ); Z) are integral
powers of the element

x0 = B−18
0,4 B

6
1,2B

2
2,3B

8
3,4B

−10
4,5 CL

10.

In other words, x0 generates H2(Mod(S1
g ); Z). Note that we still do not

know whether or not x0 is trivial in H2(Mod(S1
g); Z). We will prove below,

by a completely different line of argument, that x0 has infinite order.
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5.4.5 PITSCH’S PROOF FOR CLOSED SURFACES

To extend Pitsch’s proof to the case of a closed surface Sg (g ≥ 4), we only
need to show that the hyperelliptic relation from Wajnryb’s presentation
does not contribute to H2(Mod(Sg); Z). The argument, due to Korkmaz–
Stipcisz [126] is similar to the proof that the disjointness relations do not
contribute.

Recall that the hyperelliptic relation is

[a2g · · · a1a1 · · · a2g, d] = 1.

One would like to directly apply the proof of Lemma 5.9. However,
if we cut Sg along a representative of d, the hyperelliptic involution
a2g · · · a1a1 · · · a2g does not induce an element of the pure mapping class
group of the cut surface (it switches the two sides of d). Therefore, we can-
not write d as a product of commutators of elements that commute with
d.

We must therefore proceed with a different argument. Our first claim
is that if a and b are isotopy classes of simple closed curves in Sg with
i(a, b) = 1, then {Ta, (TaTbTa)2} = 0 in H2(Mod(Sg); Z). We proceed in
three steps. Throughout, we apply the formula (5.2) without mention.

Step 1. The classes {Ta, (TaTbTa)2} and {Tb, (TaTbTa)2} are equal.

Let r be an element of Mod(Sg) that interchanges a and b. We have

{Ta, (TaTbTa)2} = {rTar−1, r(TaTbTa)
2r−1}

= {Tb, (TbTaTb)2}

= {Tb, (TaTbTa)2}.

Step 2. The class 2{Ta, (TaTbTa)2} is trivial.

The braid relation gives that (TaTbTa)
4 = (TaTb)

6, and the 2-chain re-
lation gives that this product is equal to the Dehn twist about the simple
closed curve c which is the boundary of a regular neighborhood of minimal
position representatives of a and b. We then have

2{Ta, (TaTbTa)2} = {Ta, (TaTbTa)4} = {Ta, Tc} = 0,

where in the last step we have applied Lemma 5.9.

Step 3. The class 3{Ta, (TaTbTa)2} is trivial.
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To prove this equality, we apply step 1, which gives

3{Ta, (TaTbTa)2}= {Ta, (TaTbTa)2}+ {Ta, (TaTbTa)2}+ {Ta, (TaTbTa)2}
= {Ta, (TaTbTa)2}+ {Tb, (TaTbTa)2}+ {Ta, (TaTbTa)2}
= {TaTbTa, (TaTbTa)2}
= 0.

Steps 2 and 3 immediately imply the claim. We can now show that the

hyperelliptic relator contributes zero toH2(Mod(Sg); Z). In the calculation,

we use the identity {x, y} = {x, xjyxk}, which follows from formula (5.2)

and the fact that {x, x} = 0. Denote the product a2g−1 · · · a1a1 · · · a2g−1

by A. If a2g represents the Dehn twist Tc2g , one can check that A(c2g) =

d2(c2g), and so Aa2gA
−1 = d2a2gd

−2. We therefore have

{d, a2g · · · a1a1 · · · a2g} = {d, a2gAa2g}
= {d, a2gAa2gA

−1}
= {d, a2gd

2a2gd
−2}

= {d, da2gd
2a2gd}

= {d, (da2gd)
2}

= 0.

Here the last equality follows from the claim. This completes the proof.

5.5 THE EULER CLASS

In Section 5.4 we proved two of the upper bounds for Theorem 5.8. That is,
we showed that H2(Mod(S); Z) is cyclic when S = Sg or S = S1

g . In Sec-
tion 5.6.3 we will use homological algebra to show that H2(Mod(Sg,1); Z)
is generated by at most two elements.

In this section we explicitly construct an infinite-order element of
H2(Sg,1; Z) called the Euler class. This will be used, together with the uni-
versal coefficients theorem, to provide one of the lower bounds for Theo-
rem 5.8.

The Euler class is not just some element of a cohomology group; it is the
most basic and fundamental invariant of surface bundles.
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5.5.1 COCYCLES FROM CENTRAL EXTENSIONS

We first recall how central extensions of a group give rise to 2-dimensional
cohomology classes. For a more detailed explanation, see, for example, [38,
Section IV.3]. Let

1→ A→ E → G→ 1 (5.5)

be a central extension of the group G; in other words, A is central in E and
the sequence (5.5) is exact. Note that A is abelian since it lies in the center
of E.

If the extension (5.5) is split, then since A is central, it follows that E ≈
A × G. Even if E does not split, we still have a (noncanonical) bijection
φ : A × G → E obtained by simply picking any set-theoretic section ψ of
the map E → G. Moreover, there exists a function f : G×G → A, called
a factor set, so that

φ(a1, g1)φ(a2, g2) = φ(a1a2f(g1, g2), g1g2).

The factor set f measures the failure of the section ψ to be a homomorphism,
or equivalently, the failure of φ to be an isomorphism.

While φ, and hence f , depended on the choice of section ψ, one can
check that f does represent a well-defined element ξ of H2(G;A). That is,
the element ξ depends only on the extension (5.5) and not on any of the
choices. The sequence (5.5) splits precisely when the cohomology class ξ is
trivial.

5.5.2 THE CLASSICAL EULER CLASS

Before we construct the Euler class in H2(Mod(Sg,1); Z), we recall the
classical Euler class, which is an element of H2(Homeo+(S1); Z).

Consider the covering R→ S1 given by the quotient of R by the group Z
generated by the translation t(x) = x+ 1. The set of all lifts of an element
ψ ∈ Homeo+(S1) to Homeo+(R) is precisely the set of elements of the

form ψ̃ ◦ tm for m ∈ Z, where ψ̃ is any fixed lift of ψ. Let H̃omeo
+
(S1)

denote the group of all lifts of all elements of Homeo+(S1). In other words,

H̃omeo
+
(S1) is the subgroup of Homeo+(R) consisting of those homeo-

morphisms that commute with t, that is, the group of periodic homeomor-
phisms of period 1. We thus have an exact sequence

1→ Z→ H̃omeo
+
(S1)

π→ Homeo+(S1)→ 1, (5.6)

where Z is generated by t and is thus central. We know that the sequence
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(5.6) does not split since Homeo+(S1) has torsion while H̃omeo
+
(S1), be-

ing a subgroup of Homeo+(R), is torsion-free. As explained above, it fol-
lows that the short exact sequence (5.6) gives rise to a nontrivial element
of H2(Homeo+(S1); Z). This element is called the Euler class. This Euler
class is the most important invariant in the study of circle bundles.

5.5.3 THE EULER CLASS FOR THE MAPPING CLASS GROUP

Let g ≥ 2. We will show that there is a torsion-free group M̃od(Sg,1) and a
central extension

1→ Z→ M̃od(Sg,1)→ Mod(Sg,1)→ 1. (5.7)

Since Mod(Sg,1) contains torsion, it follows that the short exact se-
quence (5.7) does not split, and so we thus obtain a nontrivial element of
H2(Mod(Sg,1); Z) called the Euler class.

We now give two different constructions of the Euler class; that is, we
give two derivations of the short exact sequence (5.7) defining the Euler
class. The first comes directly from the classical Euler class.

5.5.4 THE EULER CLASS VIA LIFTED MAPPING CLASSES

In Section 8.2 (cf. Theorem 8.7) we will prove that an element of Mod(Sg,1)
gives rise to a homeomorphism of the circle at infinity in hyperbolic space
as follows. Assume that g ≥ 2 and regard the puncture of Sg,1 as a marked
point p. If we choose a hyperbolic metric on the closed surface Sg, its uni-
versal cover is isometric to H2. Let p̃ be some distinguished lift of p to H2.

We can represent any f ∈ Mod(Sg,1) by a homeomorphism φ : Sg →
Sg such that φ(p) = p. There is a unique lift of φ to a homeomorphism
φ̃ : H2 → H2 such that φ̃(p̃) = p̃. In Section 8.2, we will prove that φ̃ is
a π1(Sg)-equivariant quasi-isometry of H2 and that φ̃ can be extended in a
unique way to a homeomorphism

φ̃ ∪ ∂φ̃ : H2 ∪ ∂H2 → H2 ∪ ∂H2

of the closed unit disk. Restricting to ∂H2 ≈ S1, we obtain an element
∂φ̃ ∈ Homeo+(S1). Since Sg is compact, homotopies of Sg move points
by a uniformly bounded amount, and so ∂φ̃ does not depend on the choice
of representative φ.

We thus have a well-defined map

Mod(Sg,1) ↪→ Homeo+(S1).
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This map is clearly a homomorphism. It is injective because if ∂φ̃ fixes each
γ±1
∞ ∈ ∂H2 (using the notation from Section 8.2), it follows that φ
 fixes

each γ ∈ π1(Sg), and then, since Sg is a K(G, 1)-space, it follows that φ
is homotopic (hence isotopic) to the identity. The construction of the map
Mod(Sg,1) → Homeo+(S1) is due to Nielsen; he used this as a starting
point for his analysis and classification of mapping classes.

We finally define the group M̃od(Sg,1) as the pullback of Mod(Sg,1) to

H̃omeo
+
(S1):

1→ Z→ M̃od(Sg,1)→ Mod(Sg,1)→ 1. (5.8)

Thus M̃od(Sg,1) is the subgroup of elements of H̃omeo
+
(S1) that project

into Mod(Sg,1). Because the kernel Z is central in H̃omeo
+
(S1), it is cen-

tral in M̃od(Sg,1). As above, the central extension (5.8) has an associated
cocycle, giving an element e ∈ H2(Mod(Sg,1); Z). The element e is called
the Euler class for Mod(Sg,1).

The group M̃od(Sg,1) is torsion-free because it is a subgroup of

H̃omeo
+
(S1), which we already noted was torsion-free. On the other hand,

Mod(Sg,1) has nontrivial torsion (e.g., take any rotation fixing the marked
point). As above, it follows that (5.8) does not split, so e is nontrivial. We
will later see that e has infinite order in H2(Mod(Sg,1); Z).

Note that the Euler class for Mod(Sg,1) is the pullback of the classi-
cal Euler class under the map on cohomology induced by the inclusion
Mod(Sg,1)→ Homeo+(S1).

5.5.5 THE RESTRICTION OF THE EULER CLASS TO THE POINT-PUSHING
SUBGROUP

We will next evaluate the Euler class e ∈ H2(Mod(Sg,1); Z) on a concrete
2-cycle, namely, the one coming from the point-pushing subgroup. We will
do this by constructing an easy-to-evaluate cohomology class and by prov-
ing that this class equals the Euler class.

Let g ≥ 2. Recall from Section 4.2 that the point-pushing map is an in-
jective homomorphism Push : π1(Sg) ↪→ Mod(Sg,1). We can thus pull
back the Euler class e ∈ H2(Mod(Sg,1); Z) to an element Push∗(e) ∈
H2(π1(Sg); Z) ≈ Z. Let π̃1(Sg) denote the pullback of the subgroup

π1(Sg) < Homeo+(S1) to H̃omeo
+
(S1). We have that Push∗(e) is the

cocycle associated to the following central extension:

1→ Z→ π̃1(Sg)→ π1(Sg)→ 1.
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Another way to obtain an element ofH2(π1(Sg); Z) is by considering the
unit tangent bundle S1 → UT (Sg) → Sg. Since Sg is aspherical, the long
exact sequence associated to this fiber bundle gives a short exact sequence

1→ Z→ π1(UT (Sg))→ π1(Sg)→ 1.

This is a central extension, and so it has an associated cocycle e′ ∈
H2(Sg; Z). We claim that e′ is nontrivial. If e were trivial, then there would
be a splitting π1(Sg)→ π1(UT (Sg)) and hence a section of UT (Sg)→ Sg.
The latter would give a nonvanishing vector field on Sg, which is prohibited
by the Poincaré–Bendixon theorem (for g ≥ 2). We thus have that e′ is non-
trivial. In fact, this argument gives that e′ has infinite order in H2(Sg; Z).
Indeed, the extension given by ke′ is

1→ kZ→ π1(UT (Sg))→ π1(Sg)→ 1.

If this extension were trivial for some k �= 0, we would again have a nonva-
nishing vector field on Sg.

Proposition 5.10 The elements Push∗(e) and e′ of H2(π1(Sg); Z) are
equal.

Proposition 5.10 implies that the evaluation of the pullback via Push∗
of the Euler class for Mod(Sg,1) on the fundamental class of π1(Sg) is the
Euler number of the unit tangent bundle, which is equal to 2− 2g (the Euler
number of the tangent bundle to a Riemannian manifold is always equal to
the Euler characteristic of the manifold). In particular, we have that the Euler
class for Mod(Sg,1) is nontrivial even when restricted to the point-pushing
subgroup.

Proof. By the five lemma it suffices to exhibit a homomorphism

π1(UT (Sg))→ π̃1(Sg) that makes the following diagram commutative:

1 Z π1(UT (Sg)) π1(Sg) 1

1 Z π̃1(Sg) π1(Sg) 1

The key is the following claim.

Claim: The image of π1(Sg) in Homeo+(S1) given by the com-
position π1(Sg) → Mod(Sg,1) → Homeo+(S1) coincides
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with the image of the composition π1(Sg) → Isom+(H2) →
Homeo+(S1) obtained by identifying π1(Sg) with the group of
deck transformations of the covering H2 → Sg.

Proof of claim. For α ∈ π1(Sg, p), we have that Push(α) acts
by conjugation on π1(Sg, p), and so the lift of any represen-
tative of Push(α) fixing p̃ sends γ · p̃ to (αγα−1) · p̃ for all
γ ∈ π1(Sg, p). On the other hand, the deck transformation cor-
responding to α sends γ · p̃ to (αγ) · p̃. We can modify this deck
transformation by pushing each point (αγ) · p̃ along the unique
lift of α−1 starting at that point. This induces an isotopy of H2

moving points a uniformly bounded amount and hence does not
change the corresponding element of Homeo+(S1). At the end
of this isotopy, each point (αγ) · p̃ gets sent to (αγα−1) · p̃.
Since the lift of Push(α) and the (modified) deck transforma-
tion corresponding to α agree on the orbit of p̃, they induce the
same element of Homeo+(S1). �

Now let α̂ be an element of π1(UT (Sg)). In order to construct the asso-

ciated element ψ̂ ∈ H̃omeo
+
(S1), we need two ingredients:

1. a homeomorphism ψ ∈ Homeo+(S1), and

2. a path τ in S1 from some basepoint x0 ∈ S1 to ψ(x0).

Indeed, if x̂0 is some fixed lift of x0 to R, and τ̂ is the unique lift of the path

τ starting at x0, then we can take ψ̂ to be the unique element of ˜Homeo+(R)
that lifts ψ and takes x̂0 to the endpoint of τ̂ .

After constructing ψ̂, we will then need to check that it actually lies in

π̃1(Sg).
As in Section 4.2, the element α̂ ∈ π1(UT (Sg)) gives an element fbα ∈

Mod(Sg, (p, v)), the group of isotopy classes of diffeomorphisms of Sg fix-
ing the point-vector pair (p, v). The mapping class fbα is the class of a diffeo-
morphism φbα obtained at the end of a smooth isotopy of Sg pushing (p, v)

along α̂. By taking the unique lift φ̃bα of φbα to Homeo+(H2) that fixes the
point p̃, we obtain a well-defined homeomorphism f bα ∈ Homeo+(S1) as
before. For example, in the case that α̂ is the central element of π1(UT (Sg)),
the lift of φbα simply rotates a neighborhood of each lift of p, and the induced
element of Homeo+(S1) is trivial.

The homeomorphism f bα is the desired element of Homeo+(S1). It re-
mains to construct the path τ in S1 from some fixed basepoint x0 to f bα(x0).



152 CHAPTER 5

If we forget the datum of the vector v and remember only the point p, then
fbα also represents Push(α), where α ∈ π1(Sg) is the image of α̂ under the
forgetful map π1(UT (Sg)) → π1(Sg). Thus it follows from the claim that
as an element of Homeo+(S1) the mapping class fbα agrees with the deck
transformation corresponding to α.

Let (p̃, ṽ) be a fixed lift of (p, v) toUT (H2). Let x0 be the point of ∂H2 ≈
S1 to which (p̃, ṽ) points. Because fbα agrees with the deck transformation α
and since deck transformations are isometries, the lifted map φ̃bα takes (p̃, ṽ)
to an element of UT (H2) that points to f bα(x0).

Recall that φbα is a diffeomorphism obtained at the end of a smooth iso-
topy of Sg. Thus φ̃bα is a diffeomorphism obtained at the end of a smooth
isotopy of H2. At each point in time during the isotopy of H2, the pair (p̃, ṽ)
has a well-defined image, which in turn points to some point on ∂H2. Thus
the isotopy of H2 coming from α̂ determines a path τbα in ∂H2 ≈ S1. Again,
at the end of the isotopy, the image of (p̃, ṽ) points to the image of x0, and
so τbα satisfies the desired properties.

We have thus obtained the desired element of H̃omeo
+
(S1). Since the

claim implies that fbα agrees with a deck transformation, we have in fact

constructed an element of π̃1(Sg). It follows easily from the above discus-

sion that the resulting map π1(UT (Sg)) → π̃1(Sg) is well defined and that
it satisfies the desired commutativity, and we are done. �

5.5.6 THE EULER CLASS VIA CAPPING THE BOUNDARY

We now give a different construction of the group M̃od(Sg,1) and hence a
different derivation of the Euler class for Mod(Sg,1). Let S1

g be the genus
g surface with one boundary component. Recall from Proposition 3.19 that
there is a short exact sequence

1→ Z→ Mod(S1
g )→ Mod(Sg,1)→ 1 (5.9)

where the kernel Z is generated by the Dehn twist about the boundary of
S1
g and is thus central. Since the extension is central, it gives an element
e′′ ∈ H2(Mod(Sg,1); Z). Corollary 7.3 gives that Mod(S1

g) is torsion-free,
and so e′′ is nontrivial.

We will show below that H2(Mod(Sg,1); Z) ≈ Z2. And we will show
that this group is generated by the Euler class and the Meyer signature co-
cycle. We will also show that the Meyer signature cocycle evaluates trivially
on the subgroup π1(Sg) of Mod(Sg,1). Thus, to show that e′′ is the Euler
class, it suffices to check that these two classes agree on the point pushing
subgroup π1(Sg). As in Section 4.2, the central extension (5.9) restricts to
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the central extension:

1→ Z→ π1(UT (Sg))→ π1(Sg)→ 1.

We thus deduce from Proposition 5.10 that e′′ is again the Euler class.

5.5.7 THE BIRMAN EXACT SEQUENCE DOES NOT SPLIT

Let g ≥ 2. The Birman exact sequence (Theorem 4.6) is

1→ π1(Sg)→ Mod(Sg,1)→ Mod(Sg)→ 1.

Above, we described an embedding Mod(Sg,1) → Homeo+(S1). Since
finite subgroups of Homeo+(S1) are cyclic, it follows that the same is true
for Mod(Sg,1). It is easy to find finite subgroups of Mod(Sg) that are not
cyclic (e.g., the dihedral group of order 2g), and so we have the following.

Corollary 5.11 Let g ≥ 2. The Birman exact sequence

1→ π1(Sg)→ Mod(Sg,1)→ Mod(Sg)→ 1

does not split.

5.6 SURFACE BUNDLES AND THE MEYER SIGNATURE COCYCLE

Our next goal is to construct a nontrivial element σ of H2(Mod(Sg); Z).
We will prove in Section 5.6.3 that σ pulls back to an element of
H2(Mod(Sg,1); Z) that is not a power of the Euler class e. The cocycle
σ, called the Meyer signature cocycle, is defined using the theory of surface
bundles over surfaces.

We will use some homological algebra to show that the Meyer signature
cocycle gives rise to nontrivial elements of H2(Mod(Sg)), H2(Mod(S1

g )),
and H2(Mod(Sg,1)), and to then complete the proof of Theorem 5.8.

In order to define the Meyer signature cocycle properly, we must clarify
the connection between the mapping class group and the theory of surface
bundles, so this is where we start.

5.6.1 SURFACE BUNDLES

The basic problem in the theory of surface bundles is to classify, for fixed
(Hausdorff, paracompact) base space B, all isomorphism classes of bundles

Sg → E → B.
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Recall that a bundle isomorphism is a fiberwise homeomorphism of total
spaces covering the identity map. Below, we will explain how to reduce the
Sg-bundle classification problem to a problem about Mod(Sg), at least for
g ≥ 2. Before doing this, we first recall some general facts about classifying
spaces.

Classifying spaces. Suppose that G is a topological group acting freely,
continuously, and properly on a contractible space X. The quotient space
X/G is called a classifying space for G, and is denoted by BG. Any such
space X is denoted by EG. When G is discrete, BG is just a K(G, 1)-
space. For any G, there exists an EG [159]. The space BG is unique up to
homotopy equivalence. In fact, any homomorphism of groups G → H that
is a homotopy equivalence induces a homotopy equivalence BG → BH .
We will see below the usefulness of BG in the classification of G-bundles
and related bundles.

Surface bundles and homeomorphisms. We claim that there is a bijective
correspondence:{

Isomorphism classes of
oriented Sg-bundles over B

}
←→

{
Homotopy classes of

maps B → BHomeo+(Sg)

}
This bijection is realized concretely in the following way. The group
Homeo+(Sg) acts freely and properly discontinuously on the product
EHomeo+(Sg)×Sg via the diagonal action. LetE denote the quotient. The
projection EHomeo+(Sg) × Sg → EHomeo+(Sg) induces a fiber bundle
ζ:

Sg → E → BHomeo+(Sg).

The bundle ζ has the universal property that any Sg-bundle over any
space B is the pullback of ζ via a continuous map (the classifying map)
f : B → BHomeo+(Sg). Homotopic classifying maps give isomorphic
bundles. Conversely, any bundle induces such a map f . Hence our claim.

Because of this correspondence, the bundle ζ is called the universal Sg-
bundle. We thus see that BHomeo+(Sg) plays the same role for surface
bundles as the (infinite) Grassmann manifolds BSO(n) play for vector bun-
dles.

Surface bundles and the mapping class group. Consider the fiber bundle

Homeo0(Sg)→ Homeo+(Sg)
π→ Mod(Sg).



PRESENTATIONS AND LOW-DIMENSIONAL HOMOLOGY 155

By Theorem 1.14, the fiber is contractible. By the long exact sequence
in homotopy, π induces an isomorphism of all homotopy groups. White-
head’s theorem implies that the homomorphism π is a homotopy equiva-
lence, where Mod(Sg) has the discrete topology. The theory of classifying
spaces implies that π induces a homotopy equivalence of classifying spaces
BHomeo+(Sg) → BMod(Sg). In particular, we have the following key
fact.

Proposition 5.12 Suppose g ≥ 2. The classifying space BHomeo+(Sg) is
a K(Mod(Sg), 1)-space.

A continuous map f : B → K(Mod(Sg), 1) induces a representation f∗ :
π1(B) → Mod(Sg). Two such representations ρ1, ρ2 are called conjugate
if there exists an h ∈ Mod(Sg) so that

ρ1(γ) = hρ2(γ)h
−1

for all γ ∈ π1(B). Basic algebraic topology gives that the map f is de-
termined up to free homotopy by the conjugacy class of the representa-
tion f∗ and that every representation is induced by some continuous map.
In other words, there is a bijection between free homotopy classes of
maps f : B → K(Mod(Sg), 1) and conjugacy classes of representations
π1(B) → Mod(Sg). This bijection, together with Proposition 5.12, gives
the following bijective correspondence.⎧⎨⎩ Isomorphism classes

of oriented Sg-bundles
over B

⎫⎬⎭←→

⎧⎨⎩ Conjugacy classes
of representations

ρ : π1(B)→ Mod(Sg)

⎫⎬⎭
The simplest (but already interesting) instance of this fact is that isomor-

phism classes of Sg-bundles over S1 are in bijection with conjugacy classes
of elements in Mod(Sg). A more remarkable consequence is that, given any
group extension

1→ π1(Sg)→ G→ Q→ 1, (5.10)

there exist topological spaces (indeed closed manifolds) E and B and a fi-
bration Sg → E → B inducing the given group extension (apply the Dehn–
Nielsen–Baer theorem from Chapter 8). Why is this surprising? Well, if we
are given a representation ρ : π1(B) → Homeo+(Sg), it is easy to see
how to build a bundle Sg → E → B with monodromy π ◦ ρ : π1(B) →
Mod(Sg): just take the quotient of Sg × B̃ by the obvious π1(B)-action.
However, the data specified by the group extension (5.10) determines only a
representation ρ : π1(B)→ Mod(Sg). That is, elements of the monodromy
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are specified only up to isotopy, so it is not at all clear how to use this data
to build a well-defined Sg-bundle. In fact, Morita has constructed examples
where the monodromy ρ : π1(B)→ Mod(Sg) does not lift to a representa-
tion ρ̃ : π1(B) → Homeo+(Sg) [160]. Yet the bijection above gives a fiber
bundle Sg → E → B with B and E closed manifolds that has monodromy
ρ.

The above discussion should clarify why the problem of classifying con-
jugacy classes of representations of various groups into Mod(Sg) is an im-
portant problem.

Cohomology. Another corollary of Proposition 5.12 is that

H∗(BHomeo+(Sg); Z) ≈ H∗(Mod(Sg); Z).

This isomorphism is one of the main reasons that we care about the
cohomology of Mod(Sg). It is the reason we think of elements of
H∗(Mod(Sg); Z) as characteristic classes of surface bundles, as we now
explain.

Suppose one wants to associate to every Sg-bundle a (say integral) coho-
mology class on the base of that bundle so that this association is natural,
that is, it is preserved under pullbacks. By applying this to the universal Sg-
bundle ζ , we see that each such cohomology class must be the pullback of
some element of H∗(BHomeo+(Sg); Z) ≈ H∗(Mod(Sg); Z). In this sense
the classes in H∗(Mod(Sg); Z) are universal. This is why they are called
characteristic classes of surface bundles.

We have already seen that H1(Mod(Sg); Z) = 0 if g ≥ 3 (Theorem 5.2).
It follows from the universal coefficients theorem that H1(Mod(Sg); Z) =
0. Thus there are no natural 1-dimensional cohomology invariants for these
Sg-bundles. In Section 5.4 we proved for g ≥ 4 that H2(Mod(Sg); Z) is
cyclic, so that there is at most one natural 2-dimensional invariant. This is
the Meyer signature cocycle constructed below.

Remark on the smooth case. Every aspect of the discussion above holds
with the smooth category replacing the topological category. Here we re-
place BHomeo+(Sg) with BDiff+(Sg), and so on. The key fact is the theo-
rem of Earle–Eells [53] (see also [73]) that the topological group Diff0(Sg)
is contractible for g ≥ 2. Following the exact lines of the discussion
above, this gives a bijective correspondence between isomorphism classes
of smooth Sg-bundles over a fixed base space B and conjugacy classes of
representations ρ : π1(B)→ Mod(Sg).
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5.6.2 DEFINITION OF THE MEYER SIGNATURE COCYCLE

We are now ready to describe the construction of a nonzero element
σ ∈ H2(Mod(Sg); Z): the Meyer signature cocycle. Below we will prove
that σ pulls back to a nontrivial class both in H2(Mod(Sg,1); Z) and in
H2(Mod(S1

g ); Z).
For any closed 4-manifold M , there is a skew-symmetric pairing

H2(M ; Z) ⊗ H2(M ; Z) → Z
a ⊗ b 
→ 〈a ∪ b, [M ]〉

given by taking the cup product of two classes and evaluating the result on
the fundamental class of M . The signature of the resulting quadratic form
is called the signature of M , denoted by sig(M).

We can use signature to give a 2-cochain

σ ∈ C2(BHomeo+(Sg); Z) ≈ Hom(C2(BHomeo+(Sg); Z),Z)

as follows. Suppose we are given a chain c ∈ C2(BHomeo+(Sg); Z). It
follows from general facts about 2-chains in topological spaces that c can
be represented by a map f : Sh → BHomeo+(Sg), where Sh is a closed
surface of genus h ≥ 0. We then let σ ∈ C2(BHomeo+(Sg); Z) be defined
by

σ(f) = sig(f∗ζ),

where, as above, ζ denotes the universal Sg-bundle over BHomeo+(Sg).
It follows from the work of Meyer that σ is a well-defined 2-cocycle

[156]. One key ingredient in this is the fact that the signature of a fiber
bundle depends only on the action of the fundamental group of the base on
the homology of the fiber; another is the Novikov additivity of signature.

It is not easy to prove that the cocycle σ is a nonzero element of
H2(BHomeo+(Sg); Z). The hard part is finding a good way to compute sig-
nature in terms of the monodromy data. Kodaira, and later Atiyah (see [7]),
found a surface bundle over a surface with nonzero signature. This construc-
tion can be used to give such a bundle with fiber Sg for any g ≥ 4. It follows
that the signature cocycle σ ∈ H2(BHomeo+(Sg); Z) ≈ H2(Mod(Sg); Z)
is nonzero. Indeed, this kind of argument can be used to prove that σ has
infinite order in H2(Mod(Sg); Z).

5.6.3 MATCHING UPPER AND LOWER BOUNDS ONH2(Mod(S); Z)

In Section 5.4 we used Hopf’s formula to give an upper bound on the num-
ber of generators of the group H2(Mod(S); Z), where S is either Sg or S1

g
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and where g ≥ 4. So far we have constructed two nontrivial elements of
H2(Mod(S); Z), the Euler class and the Meyer signature cocycle. We will
now use homological algebra to complete the proof of Theorem 5.8.

The universal coefficients theorem and H2(Mod(S); Z). Let S be a
surface of genus at least 3. In what follows we assume that all homology and
cohomology groups have Z-coefficients. The universal coefficients theorem
gives the following short exact sequence:

1→ Ext(H1(Mod(S)),Z)→ H2(Mod(S))

→ Hom(H2(Mod(S)),Z)→ 1.
(5.11)

Since H1(Mod(S); Z) = 0 (Theorem 5.2), the Ext term in (5.11) is trivial.
Thus

H2(Mod(S); Z) ≈ Hom(H2(Mod(S); Z),Z).

In other words, we have

H2(Mod(S); Z) ≈ H2(Mod(S); Z)/torsion.

Proof that H2(Mod(Sg); Z) ≈ Z. In Section 5.4, we proved that the
group H2(Mod(Sg); Z) is cyclic. Since the Meyer signature cocycle is an
infinite-order element of H2(Mod(Sg); Z) and since H2(Mod(Sg); Z) ≈
H2(Mod(Sg); Z)/torsion, we have that

H2(Mod(Sg); Z) ≈ Z,

as stated in Theorem 5.8. Thus we see that, up to multiples, signature is the
only 2-dimensional isomorphism invariant for Sg-bundles.

A five-term exact sequence for homology groups. We now introduce a
tool that will help us compute H2(Mod(S1

g )) and H2(Mod(Sg,1)).
Given any short exact sequence of groups

1→ K → G→ Q→ 1,

there is a five-term exact sequence of homology groups

H2(G) → H2(Q)→ H1(K)Q → H1(G)→ H1(Q)→ 0

where all coefficient groups are Z and H1(K)Q is the set of coinvariants
of the action of Q by conjugation on H1(K; Z), that is, the quotient of
H1(K; Z) by all elements x − q · x, where x ∈ H1(K; Z) and q ∈ Q.
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The existence of this five-term exact sequence is a consequence of the Hopf
formula (see [38, p. 47]).

Proof thatH2(Mod(S1

g
); Z) ≈ Z. We saw in Section 5.4 that the group

H2(Mod(S1
g); Z) is cyclic. Our aim is to prove that it is isomorphic to Z.

If we apply the five-term exact sequence for homology groups to the short
exact sequence

1→ π1(UT (Sg))→ Mod(S1
g )→ Mod(Sg)→ 1,

we obtain the sequence

H2(Mod(S1
g ))→ H2(Mod(Sg))→ H1(π1(UT (Sg)))Mod(Sg)

→ H1(Mod(S1
g ))→ H1(Mod(Sg))→ 0,

or, by Theorem 5.2,

H2(Mod(S1
g ))→ Z→ H1(π1(UT (Sg)))Mod(Sg) → 0→ 0→ 0.

We now determine the set of coinvariants in this sequence.

Claim: H1(π1(UT (Sg)))Mod(Sg) ≈ Z/(2g − 2)Z.

Proof of claim. We start with the presentation

π1(UT (Sg)) = 〈 a1, b1, . . . , ag, bg, z |
g∏
i=1

[ai, bi] = z2−2g, z central 〉,

where z is the generator of the S1-fiber; see [190, p. 435]. It follows that

H1(UT (Sg); Z) ≈ Z2g ⊕ Z/(2g − 2)Z ≈ H1(Sg; Z)⊕ Z/(2g − 2)Z.

What is more, the action of Mod(Sg) on H1(UT (Sg); Z) is given by the
standard action of Mod(Sg) on H1(Sg; Z) together with the trivial action
on Z/(2g − 2)Z. Thus we have

H1(π1(UT (Sg)))Mod(Sg) ≈ H1(Sg; Z)Mod(Sg) ⊕ Z/(2g − 2)Z,

and so it now remains to show that the set of coinvariants H1(Sg; Z)Mod(Sg)

is trivial.
By the change of coordinates principle and Proposition 6.2, Mod(Sg)

identifies all primitive elements of H1(Sg; Z). In particular, each primitive
element is identified with its inverse. ThusH1(Sg; Z)Mod(Sg) is a quotient of
Z/2Z. On the other hand, one can find inH1(Sg; Z) three primitive elements
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that sum to zero. It follows that H1(Sg; Z)Mod(Sg) is trivial. �

Our five-term sequence is now reduced to

H2(Mod(S1
g ))→ Z→ Z/(2g − 2)Z→ 0.

It follows that the kernel of the map Z → H1(π1(UT (Sg)))Mod(Sg) is iso-
morphic to Z. By exactness of the sequence, we see that H2(Mod(S1

g ); Z)
contains an infinite cyclic subgroup. On the other hand, we already
showed that H2(Mod(S1

g ); Z) is a quotient of Z, and so it follows that
H2(Mod(S1

g ); Z) ≈ Z, as desired.
Actually, we have proven a little more. We have shown that there is an

exact sequence

H2(Mod(S1
g ))

≈

H2(Mod(Sg))

≈

H1(π1(UT (Sg)))Mod(Sg)

≈

0

Z Z Z/(2g − 2)Z.

So we see that the map from H2(Mod(S1
g)) ≈ Z to H2(Mod(Sg)) ≈ Z is

multiplication by 2g − 2.

Proof that H2(Mod(Sg,1); Z) ≈ Z2. We start by showing that the
group H2(Mod(Sg,1); Z) is generated by at most two elements. Recall from
Proposition 3.19 that we have a short exact sequence

1→ 〈Ta〉 → Mod(S1
g )→ Mod(Sg,1)→ 1,

where a is the isotopy class of the boundary component of S1
g . The associ-

ated five-term exact sequence of homology groups is

H2(Mod(S1
g ))→ H2(Mod(Sg,1))→ H1(〈Ta〉)Mod(Sg,1)

→ H1(Mod(S1
g))→ H1(Mod(Sg,1))→ 0.

We just proved that H2(Mod(S1
g )) ≈ Z. Also by Theorem 5.2, the groups

H1(Mod(S1
g )) and H1(Mod(Sg,1)) are trivial. Finally, since 〈Ta〉 is central

in Mod(S1
g ), the set of coinvariants H1(〈Ta〉)Mod(Sg,1) is isomorphic to Z.

We can thus rewrite the five-term exact sequence as

Z→ H2(Mod(Sg,1))→ Z→ 0→ 0→ 0.

It follows that H2(Mod(Sg,1); Z) is a quotient of Z2, as desired.
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We obtain one element e
 of H2(Sg,1; Z) by passing the Euler class e ∈
H2(Mod(Sg,1); Z) through the universal coefficients theorem as above.

We obtain another element of H2(Sg,1; Z) from the Meyer signature co-
cycle σ ∈ H2(Mod(Sg); Z) as follows. The universal coefficients theorem
identifies σ with an element σ
 of H2(Mod(Sg); Z). Then, we consider the
Birman exact sequence

1→ π1(Sg)→ Mod(Sg,1)→ Mod(Sg)→ 1.

The associated five-term exact sequence in homology is

H2(Mod(Sg,1))→ H2(Mod(Sg))→ H1(Sg)Mod(Sg)

→ H1(Mod(Sg,1))→ H1(Mod(Sg))→ 0.

We showed above that H1(Sg)Mod(Sg) is trivial, and so the map
H2(Mod(Sg,1)) → H2(Mod(Sg)) is surjective. Thus (abusing notation)
there is an element σ
 ∈ H2(Mod(Sg,1)) mapping to σ
 ∈ H2(Mod(Sg)).
Applying the universal coefficients theorem one more time, we obtain an
element σ ∈ H2(Mod(Sg,1)).

We now show that e
 and σ
 are distinct elements of H2(Mod(Sg,1); Z),
even up to multiples. By the universal coefficients theorem, it suffices to
show that e and σ are distinct elements of H2(Mod(Sg,1); Z).

By Proposition 5.10, the Euler class e evaluates nontrivially on the 2-
cycle given by the fundamental class of the point-pushing subgroup π1(Sg).
On the other hand, since π1(Sg) is the kernel of the map Mod(Sg,1) →
Mod(Sg) (Theorem 4.6), we have that the fundamental class of π1(Sg)
pushes forward to zero in H2(Mod(Sg)). As the signature cocycle σ ∈
H2(Mod(Sg,1)) is the pullback of σ ∈ H2(Mod(Sg); Z), it follows that
σ ∈ H2(Mod(Sg,1)) evaluates trivially on the fundamental class of π1(Sg).
We thus have that H2(Mod(Sg,1); Z) ≈ Z2 and hence

H2(Mod(Sg,1); Z) ≈ Z2.

This completes the proof of Theorem 5.8.



Chapter Six

The Symplectic Representation and the Torelli

Group

One of the fundamental aspects of Mod(Sg) is its action on H1(Sg; Z).
The representation Ψ : Mod(Sg) → Aut(H1(Sg; Z)) is like a first linear
approximation to Mod(Sg), and we can try to transfer our knowledge of the
linear group Aut(H1(Sg; Z)) to the group Mod(Sg).

As we show in Section 6.1, the algebraic intersection number on
H1(Sg; R) gives this vector space a symplectic structure. This symplectic
structure is preserved by the image of Ψ, and so Ψ can be thought of as a
representation

Ψ : Mod(Sg)→ Sp(2g,Z)

into the integral symplectic group. The homomorphism Ψ is called the sym-
plectic representation of Mod(Sg). The bulk of this chapter is an exposition
of the basic properties and applications of Ψ. A sample application is that
Mod(Sg) has a torsion-free subgroup of finite index (Theorem 6.9).

The representation Ψ has a large kernel, called the Torelli group I(Sg),
which can be thought of as the “nonlinear” part of Mod(Sg). We conclude
this chapter with an introduction to the study of I(Sg), which is an important
topic in its own right.

6.1 ALGEBRAIC INTERSECTION NUMBER AS A SYMPLECTIC FORM

In order to understand the symplectic representation Ψ : Mod(Sg) →
Sp(2g,Z), one of course needs to know the basic facts about symplectic lin-
ear transformations. After describing these, we show how H1(Sg; R) comes
equipped with a natural symplectic structure. This structure relates in a nat-
ural way to simple closed curves in Sg.

6.1.1 SYMPLECTIC VECTOR SPACES AND SYMPLECTIC MATRICES

Let g ≥ 1 be an integer and let {x1, y1, . . . , xg, yg} be a basis for the vector
space R2g. Denote the dual vector space of R2g by (R2g)
. The standard
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symplectic form on R2g is the 2-form

ω =

g∑
i=1

dxi ∧ dyi.

Given two vectors v = (v1, w1, . . . , vg, wg) and v′ = (v′1, w
′
1, . . . , v

′
g, w

′
g)

in R2g, we compute

ω(v, v′) =

g∑
i=1

(viw
′
i − v′iwi).

The 2-form ω is a nondegenerate, alternating bilinear form on R2g. In fact,
it is the unique such form up to change of basis of R2g. The vector space
R2g equipped with such a form is called a real symplectic vector space.

The linear symplectic group Sp(2g,R) is defined to be the group of linear
transformations of R2g that preserve the standard symplectic form ω. In
terms of matrices:

Sp(2g,R) = {A ∈ GL(2g,R) : A
ω = ω},

or in other words,

Sp(2g,R) = {A ∈ GL(2g,R) : ATJA = J},

where J is the 2g × 2g matrix

J =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 · · · 0 0
−1 0 0 0 · · · 0 0

0 0 0 1 · · · 0 0
0 0 −1 0 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 0 1
0 0 0 0 · · · −1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The integral symplectic group Sp(2g,Z) is defined as

Sp(2g,Z) = Sp(2g,R) ∩ GL(2g,Z).

It is straightforward to check the following facts using basic linear algebra
(see, e.g., [148], Lemmas 1.14, 2.19, and 2.20):

1. det(A) = 1 for each A ∈ Sp(2g,R).

2. Sp(2g,R) ∩ O(2g,R) = U(g).
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3. λ is an eigenvalue ofA ∈ Sp(2g,R) if and only if λ−1 is. This follows
from the fact that A−1 and AT are similar (i.e., conjugate).

We also remark that in the case g = 1 we have

Sp(2,R) = SL(2,R) and Sp(2,Z) = SL(2,Z).

Elementary symplectic matrices. There are symplectic analogues of the
elementary matrices for SL(n,Z). Let σ be the permutation of {1, . . . , 2g}
that transposes 2i and 2i−1 for each 1 ≤ i ≤ g. The elementary symplectic
matrices are the (finitely many) matrices of the form

SEij =

{
I2g + eij if i = σ(j),
I2g + eij − (−1)i+jeσ(j)σ(i) otherwise,

where i �= j and eij is the matrix with a 1 in the (i, j)-entry and 0s else-
where. The following result is classical [154, Hilfssatz 2.1].

THEOREM 6.1 Sp(2g,Z) is generated by elementary symplectic matrices.

The Burkhardt generators. In 1890 Burkhardt [40] gave the following
generating set for Sp(4,Z). Below, when we refer to a factor, we mean a
subgroup of Z2g spanned by some pair {xi, yi}.
Transvection:

(x1, y1, x2, y2) 
→ (x1 + y1, y1, x2, y2)

Factor rotation:

(x1, y1, x2, y2) 
→ (y1,−x1, x2, y2)

Factor mix:

(x1, y1, x2, y2) 
→ (x1 − y2, y1, x2 − y1, y2)

Factor swap:

(x1, y1, x2, y2) 
→ (x2, y2, x1, y1).

For g > 2, if one adds for each 1 ≤ i ≤ g the factor swap exchang-
ing the adjacent factors {xi, yi} ↔ {xi+1, yi+1}, one can derive the finite
generating set given in Theorem 6.1. Thus Burkhardt’s elements give a gen-
erating set for Sp(2g,Z). Below we will consider an infinite generating set
for Sp(2g,Z), namely, the set of all transvections.
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6.1.2 H1(Sg; Z) AS A SYMPLECTIC VECTOR SPACE

In what follows we will use [c] to denote the homology class corresponding
to an oriented simple closed curve c. Consider the ordered basis

{[a1], [b1], . . . , [ag], [bg]}

for H1(Sg; R) ≈ R2g shown in Figure 6.1. The algebraic intersection num-
ber

î : H1(Sg; Z) ∧H1(Sg; Z) −→ Z

extends uniquely to a nondegenerate, alternating bilinear map

î : H1(Sg; R) ∧H1(Sg; R) −→ R.

If [ai]

 and [bi]


 denote the vectors in H1(Sg; R)
 dual to [ai] and [bi], re-
spectively, then

î =

g∑
i=1

[ai]

 ∧ [bi]


 ∈ ∧2 (H1(Sg; R)
) .

With this structure the pair (H1(Sg; R), î) is a symplectic vector space.

a1

b1

a2

b2

a3

b3

ag

bg

. . .

Figure 6.1 The standard geometric symplectic basis for H1(Sg; Z).

It is an important observation that there is a collection of oriented simple
closed curves {c1, . . . , c2g} in Sg so that the homology classes {[ci]} form
a symplectic basis for H1(Sg; Z) and i(ci, cj) = î([ci], [cj ]) for all i, j.
Such a collection of curves will be called a geometric symplectic basis for
H1(Sg; Z).
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6.2 THE EUCLIDEAN ALGORITHM FOR SIMPLE CLOSED CURVES

In order to effectively make use of the symplectic structure on H1(Sg; Z),
we will need to strengthen the dictionary between the algebraic and topo-
logical aspects of H1(Sg; Z). As a start, we answer the question: when can
an element of v ∈ H1(Sg; Z) be represented by an oriented simple closed
curve? Of course, if v �= 0, then such a curve must be nonseparating.

Recall that v ∈ H1(Sg; Z) ≈ Z2g is primitive if v �= nw for any w ∈
H1(Sg; Z) and any integer n ≥ 2.

Proposition 6.2 Let g ≥ 1. A nonzero element of H1(Sg; Z) is represented
by an oriented simple closed curve if and only if it is primitive.

Our proof of Proposition 6.2, adapted from Meeks–Patrusky [153], is a
topological incarnation of the Euclidean algorithm. We recall the classical
Euclidean algorithm for finding the greatest common divisor of two nonneg-
ative integers. Given a pair of nonnegative integers {p, q} with 0 < p ≤ q,
we subtract p from q to obtain a new set {p, q − p} with gcd(p, q − q) =
gcd(p, q). If we start with the two natural numbers m and n and repeat this
process iteratively, then the theorem is that we will eventually arrive at the
pair {gcd(m,n), 0}.

Proof of Proposition 6.2. Let {ai, bi} be a geometric symplectic basis
shown in Figure 6.1, as well as the corresponding basis {[ai], [bi]} for
H1(Sg; Z).

The statement of the proposition for the torus is exactly that of Proposi-
tion 1.5. Thus we can assume that g ≥ 2.

One direction of the proposition is simple. By the change of coordinates
principle, for any nonseparating oriented simple closed curve γ in Sg, there
exists φ ∈ Homeo+(S) with φ(γ) = a1. Thus the homology class [γ] ∈
H1(Sg; Z) is part of some basis for Z2g and is therefore primitive.

The interesting direction of the proposition is to start with a primitive
homology class x ∈ H1(Sg; Z) and to show that x is represented by a simple
closed curve.

Say that with respect to the above basis we have

x = (v1, w1, . . . , vg, wg).

Without loss of generality we may assume that each vi and wi is nonnega-
tive, for if not, we can simply switch the orientations of some ai and bi so
that this condition holds.

For each 1 ≤ i ≤ g, take a closed regular neighborhood Ni of ai ∪ bi. We
can take the Ni to be disjoint. Each Ni is homeomorphic to a torus with one
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boundary component. Note that since the proposition is true for the torus, it
is also true for a torus with one boundary component. Thus for each i there
is an oriented nonseparating simple closed curve γi in Ni so that

gcd(vi, wi)[γi] = vi[ai] + wi[bi] ∈ H1(Sg; Z).

We can thus represent x by
∑

gcd(vi, wi) pairwise disjoint oriented simple
closed curves contained in ∪Ni. Our goal is to combine these together to
form a single curve.

The following key observation is a consequence of the change of coordi-
nates principle.

Observation: Given any two disjoint, oriented, nonhomologous, nonsepa-
rating simple closed curves α and β in Sg, there is an arc joining the left
side of α to the left side of β.

Using this observation, we can perform a topological Euclidean algo-
rithm on the

∑
gcd(vi, wi) curves above. By this we mean the following.

Let N1,2 be a closed subsurface of Sg that contains N1 and N2 and is dis-
joint from the other Ni. We can take N1,2 to be a surface of genus 2 with
one boundary component. As above, we have gcd(v1, w1) parallel copies
of γ1 and gcd(v2, w2) parallel copies of γ2 in N1,2 that together represent
(v1, w1, v2, w2, 0, . . . , 0) ∈ H1(Sg; Z).

By the observation, we can surger the leftmost curve copy of γ1 with the
leftmost curve in γ2 as in Figure 6.2. Since the surgery adds two parallel arcs
with opposite orientations, the homology class of the collection of curves is
unchanged. We can repeat this process until we run out of copies of γ1 or
γ2. We then again have two collections of parallel curves. If gcd(v1, w1) ≥
gcd(v2, w2), then the two collections have gcd(v1, w1) − gcd(v2, w2) and
gcd(v2, w2) oriented curves, respectively. If we repeat this process in N1,2,
we will end up, as in the Euclidean algorithm, with

gcd(gcd(v1, w1), gcd(v2, w2)) = gcd(v1, w1, v2, w2)

parallel oriented simple closed curves in N1,2 that together represent the
element (v1, w1, v2, w2, 0, . . . , 0) of H1(Sg; Z). Moreover, by our choice of
N1,2, these curves are disjoint from the γi with i ≥ 3.

We continue the process inductively. Let N1,2,3 be a closed surface of
genus 3 that contains N1, N2, and N3 and is disjoint from the other Ni.
We can apply the above process to the gcd(v1, w1, v2, w2) curves obtained
in the previous step and gcd(v3, w3) parallel copies of γ3 in N3. If we do
this, we will find gcd(v1, w1, v2, w2, v3, w3) parallel oriented simple closed
curves in the class (v1, w1, v2, w2, v3, w3, 0, . . . , 0) ∈ H1(Sg; Z).

By induction on genus we find, at the end, gcd(v1, w1, . . . , vg, wg) paral-
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Figure 6.2 Surgering two oriented simple closed curves along an arc.

lel oriented simple closed curves in Sg representing x. Since x is primitive,
we have that gcd(v1, w1, . . . , vg, wg) = 1, and so we actually have a single
oriented simple closed curve in Sg, as desired. �

Note that since the inclusion maps Sg,1 → Sg and S1
g → Sg induce

isomorphisms H1(Sg,1; Z) → H1(Sg; Z) and H1(S
1
g ; Z) → H1(Sg; Z),

Proposition 6.2 implies the analogous statement for surfaces with either one
puncture or one boundary component.

6.3 MAPPING CLASSES AS SYMPLECTIC AUTOMORPHISMS

Any φ ∈ Homeo+(Sg) induces an automorphism φ∗ : H1(Sg; Z) →
H1(Sg; Z). As homotopic homeomorphisms φ ∼ ψ induce the same map
φ∗ = ψ∗, there is a representation

Ψ0 : Mod(Sg)→ Aut(H1(Sg; Z)) ≈ Aut(Z2g) ≈ GL(2g,Z).

The rightmost isomorphism comes from choosing a basis for H1(Sg; Z).
Our goal in this section is to understand the basic properties of Ψ0, and in
particular to compute its image.

Since each element of Mod(Sg) is represented by an orientation-
preserving homeomorphism of Sg, it follows that the image of Ψ0 lies in
SL(2g,R). Since each f ∈ Mod(Sg) preserves the lattice H1(Sg; Z) inside
H1(Sg; R), it follows that Ψ0(Mod(Sg)) ⊆ SL(2g,Z). Since Mod(Sg)
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preserves the nondegenerate, alternating bilinear form î, it follows that
Ψ0(Mod(Sg)) ⊂ Sp(2g,R). Together these observations give that

Ψ0(Mod(Sg)) ⊂ Sp(2g,Z).

Thus Ψ0 is better regarded as a representation

Ψ : Mod(Sg)→ Sp(2g,Z).

The representation Ψ is called the symplectic representation of Mod(Sg).
As we already said, the inclusions Sg,1 → Sg and S1

g → Sg induce
isomorphisms H1(Sg,1; Z) → H1(Sg; Z) and H1(S

1
g ; Z) → H1(Sg; Z).

Therefore, the above discussion applies to give representations

Ψ : Mod(Sg,1)→ Sp(2g,Z) and Ψ : Mod(S1
g)→ Sp(2g,Z).

6.3.1 THE ACTION OF A DEHN TWIST ON HOMOLOGY

A first step in understanding Ψ is to compute what it does to Dehn twists.
We have the following formula.

Proposition 6.3 Let a and b be isotopy classes of oriented simple closed
curves in Sg. For any k ≥ 0, we have

Ψ(T kb )([a]) = [a] + k · î(a, b)[b].

Proof. First we treat the case where b is separating. By the change of
coordinates principle there is a geometric symplectic basis {ai, bi} with
i(ai, b) = i(bi, b) = 0 for all i. The proposition follows immediately in
this case.

Now assume that b is nonseparating. By change of coordinates there is a
geometric symplectic basis {ai, bi} forH1(Sg; Z) with b1 = b. It is straight-
forward to check that the action of T kb on H1(Sg; Z), written with respect to
the basis {ai, bi} is given by

Ψ(T kb )([c]) = [T kb (c)] =

{
[a1] + k[b1] c = a1,

[c] c ∈ {b1, a2, b2, . . . , ag, bg}.

Now let a be the isotopy class of an arbitrary oriented simple closed curve
in Sg. The [a1]-coefficient of [a] in the basis {[ai], [bi]} is î(a, b). By the
linearity of Ψ(T kb ), the proposition follows. �

We caution the reader that if [c] = [a] + [b] ∈ H1(S; Z), then

Ψ(Tc) �= Ψ(TaTb)
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in general. It is true, though, that

Ψ(Ta) = Ψ(Ta′) ⇐⇒ [a] = [a′],

as can be seen from Proposition 6.3. Another consequence of Proposi-
tion 6.3 is that if [a] = 0, then Ψ(Ta) is trivial.

6.3.2 SURJECTIVITY OF THE SYMPLECTIC REPRESENTATION: THREE
PROOFS

It is natural to ask whether every automorphism of H1(Sg; Z) preserving
algebraic intersection number can be realized by some homeomorphism.
In other words, is Ψ : Mod(Sg) → Sp(2g,Z) surjective? The first proof
one might think of would be to realize each elementary symplectic matrix
as the action of some element of Mod(Sg); since these matrices generate
Sp(2g,Z), surjectivity of Ψ would follow. While some elementary sym-
plectic matrices are the images of a Dehn twist, others are not, and it is not
obvious how to prove these lie in the image of Ψ. Nevertheless, Ψ is indeed
surjective.

Theorem 6.4 The representation Ψ : Mod(Sg) → Sp(2g,Z) is surjective
for g ≥ 1.

We give three conceptually distinct proofs of Theorem 6.4 as each demon-
strates a different useful concept. The first proof presupposes the Burkhardt
generating set for Sp(2g,Z) and finds particular elements of Mod(Sg) map-
ping to those elementary matrices. The second and third proofs offer a more
“bare hands” approach, for example, using the Euclidean algorithm from
Proposition 6.2.

When S is either Sg,1 or S1
g , there is a commutative diagram

Mod(S) Sp(2g,Z)

≈

Mod(Sg) Sp(2g,Z)

and so Mod(Sg,1) and Mod(S1
g) both surject onto Sp(2g,Z) as well.

Theorem 6.4 follows immediately in the case g = 1 from the isomor-
phism Mod(T 2) ≈ SL(2,Z) = Sp(2,Z) given in Theorem 2.5. Hence in
what follows we can assume g ≥ 2.

First proof of Theorem 6.4. The finite generating set for Sp(2g,Z) given by
Burkhardt has four types of generators: one transvection, one factor rotation,
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Figure 6.3 Realizing the Burkhardt generators geometrically. From top to bottom: a
transvection, a factor rotation, a factor swap, and a factor mix.

one factor mix, and g − 1 factor swaps. Let {ai, bi}gi=1 be oriented simple
closed curves in Sg forming a geometric symplectic basis for H1(Sg; Z)
(see Figure 6.1). We show that each of Burkhardt’s generators, hence all of
Sp(2g,Z), lies in Ψ(Mod(Sg)). Figure 6.3 illustrates the proof that follows.

By Proposition 6.3, Ψ(Tb1) is the transvection generator.
We obtain Burkhardt’s factor rotation generator as follows. Let N be a

closed regular neighborhood of a1 ∪ b1 in Sg. The subsurface N is homeo-
morphic to a torus with one boundary component. Think of N as a square
with sides identified and an open disk removed from the center. Consider
the homeomorphism of N obtained by rotating the boundary of the square
by π/2 and leaving the boundary of N fixed. Extending by the identity
map gives a homeomorphism of Sg, hence a mapping class h ∈ Mod(Sg)
called a handle rotation. This handle rotation represents a mapping class
which equals the product of Dehn twists: Tb1Ta1Tb1 . A direct check gives
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that Ψ(h) is Burkhardt’s factor rotation generator.
We next realize Burkhardt’s factor mix generator by a mapping class.

Consider a closed annular neighborhood of b1 and push the left-hand bound-
ary component of this annulus along a path in the surface that intersects
a2 once (from the left of a2) and misses the other curves in the geometric
symplectic basis; see the third diagram in Figure 6.3. The resulting map-
ping class h is called a handle mix. We can also describe h as the mapping
class obtained by cutting Sg along b1, pushing one of the new boundary
components through the (a2, b2)-handle as in Figure 6.3, and then regluing.
Alternatively, h is a product of three commuting Dehn twists:

h = T−1
b1
T−1
b2
Tc,

where c is a simple closed curve in the homology class [b2]− [b1]. Compare
the handle mix h with our push map description of the lantern relation in
Section 5.1. Another direct check gives that Ψ(h) is Burkhardt’s factor mix
generator.

Finally, we have Burkhardt’s g − 1 factor swaps. These are obtained as
the Ψ-images of handle swaps. The ith handle swap hi for 1 ≤ i ≤ g − 1
is easily visualized (see Figure 6.3), but we can also write it as a product of
Dehn twists:

hi = (Tai+1
Tbi+1

Tdi
TaiTbi)

3,

where di is a simple closed curve in the homology class [ai+1] + [bi]. �

We point out that all of the symplectic elementary matrices SEij are,
up to change of basis, equivalent to Burkhardt’s transvection generators and
factor mix generators for Sp(2g,Z). Therefore, up to change of coordinates,
the proof of Theorem 6.4 shows how to realize the symplectic elementary
matrices as Dehn twists and handle mixes.

In the first proof of Theorem 6.4 it was not essential for us to write down
explicit products of Dehn twists realizing each Burkhardt generator. In fact,
it was not even necessary to say which particular mapping classes descend
to those generators. The next proof exploits this idea.

Second proof of Theorem 6.4. Say that {ai, bi} are oriented simple closed
curves in Sg that form a geometric symplectic basis. Let A ∈ Sp(2g,Z)
and say that we can find a geometric symplectic basis representing
{A([ai]), A([bi])}. That is, suppose we can find a geometric symplectic ba-
sis {a′i, b′i} so that [a′i] = A([ai]), [b′i] = A([bi]).

If we cut Sg along the union of the ai and bi, we get a sphere with g
“square” boundary components. Of course each boundary component is a
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topological circle, but each circle is divided into four segments according to
which points came from the left side of a1, the right side of a1, the left side
of b1, and the right side of b1. Similarly, if we cut Sg along the a′i and b′i, we
also get a sphere with g square boundary components.

Choose any homeomorphism φ from the first sphere to the second. We
can choose φ so that it not only takes the ith square to the ith square but
also takes the ai sides to the a′i sides (with orientation) and the bi sides to
the b′i sides. Since φ respects the required identifications, it follows that φ
extends to a homeomorphism Sg → Sg. By construction, the action of φ on
H1(Sg; Z) is exactly given by A.

Thus to prove the theorem it suffices to show that the image of {[ai], [bi]}
under each of the Burkhardt generators can be realized by a geometric sym-
plectic basis. For the transvection this is easy, and for the permutation gen-
erators, namely, the factor rotation and the factor swap, this is essentially
obvious. It remains to consider the factor mix

([a1], [b1], [a2], [b2]) 
→ ([a1]− [b2], [b1], [a2]− [b1], [b2]).

But it is easy to realize this basis geometrically (see Figure 6.3 for the solu-
tion), and so we are done. �

We can use the idea from the second proof of Theorem 6.4 to give a proof
that does not presuppose that we already know an explicit generating set for
Sp(2g,Z).

Third proof of Theorem 6.4. Let A ∈ Sp(2g,Z) be given. Let {ai, bi} be
oriented simple closed curves in Sg that form a geometric symplectic basis.
Since A ∈ GL(2g,Z), the image vector A([a1]) ∈ H1(Sg; Z) is primitive.
By Proposition 6.2 there is an oriented simple closed curve a′1 representing
the homology class A([a1]).

Since the vector A([b1]) is primitive, we can represent it by an oriented
simple closed curve. Since Sp(2g,Z) preserves algebraic intersection num-
ber, this simple closed curve will necessarily have algebraic intersection +1
with a′1. But we want something better: we want to find a simple closed
curve b′1 that represents A([b1]) and has geometric intersection number 1
with a′1.

We proceed as follows. Choose any geometric symplectic basis {a′′i , b′′i }
for H1(Sg; Z), where a′′1 = a′1. The curve b′′1 is the only curve in {a′′i , b′′i }
that intersects a′1 = a′′1, and it intersects it once. We can write A([b1])

uniquely in terms of the basis {[a′′i ], [b′′i ]}. Since î(A([a1]), A([b1])) =

î([a1], [b1]) = 1, it follows that the coefficient of b′′1 in this sum is exactly
+1. This sum gives a nonsimple (and not necessarily connected) represen-
tative β of A([b1]). The good news is that β intersects a′1 exactly once.
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The strategy now is to convert β into a connected simple closed curve
without changing its homology class or its geometric intersection number
with a′1. By “resolving” intersections, we immediately turn β into a disjoint
union β′ of simple closed curves such that [β′] = A([b1]) ∈ H1(Sg,Z).
Note that β′ has exactly one component simple closed curve that intersects
a′1 since the intersection of β with a′1 is 1.

To change β′ into a connected simple closed curve without changing its
homology class, we apply a slight variation of the Euclidean algorithm for
curves from Proposition 6.2. One just needs to notice that, given any two
oriented simple closed curves in Sg that are disjoint from a′1 or perhaps
an oriented simple closed curve disjoint from a′1 and one that intersects a′1
once, there is an arc that connects the left side of the first curve/arc to the
left side of the second and that is disjoint from a′1. (The reader might prefer
to translate this statement into the context of the surface with two boundary
components obtained by cutting Sg along a′1.) Given this fact, we can pro-
ceed exactly as in the proof of Proposition 6.2 in order to obtain an oriented
simple closed curve b′1 that represents A([b1]) and that intersects a′1 once.

At this point, one can repeat the process to obtain a geometric symplec-
tic basis {a′i, b′i} for H1(Sg; Z) that represents {A([ai]), A([bi])}. As in the
second proof of Theorem 6.4, the result follows. �

6.3.3 MINIMALITY OF THE HUMPHRIES GENERATING SET

The surjectivity of the symplectic representation Ψ : Mod(Sg) →
Sp(2g,Z) can be applied to prove that Mod(Sg) cannot be generated by
fewer than 2g + 1 Dehn twists. Before proving this, we need a bit of setup.

A transvection in Sp(2g,Z) is an element of Sp(2g,Z) whose fixed set
in R2g has codimension 1. We claim that each transvection in Sp(2g,Z) is
the image under Ψ of some power of a Dehn twist in Mod(Sg). Indeed, let
v ∈ Z2g be any primitive vector that is not fixed by a given transvection A
and choose some symplectic basis {v,w, x2, y2, . . . , xg, yg} for Z2g. Since
A preserves the symplectic form restricted to Z2g, it follows that A(v) =
v + kw for some k ∈ Z. By Proposition 6.3, we have A = Ψ(T kb ), where b
is any oriented simple closed curve in Sg with [b] = w ∈ H1(Sg; Z).

It follows from the fact that Mod(Sg) is generated by Dehn twists (The-
orem 4.1) that Theorem 6.4 is equivalent to the fact that Sp(2g,Z) is gener-
ated by transvections. That is, we can give another proof of Theorem 6.4 by
showing that transvections generate Sp(2g,Z). Or we can use Theorem 6.4
to deduce the fact that transvections generate Sp(2g,Z).

If v is a primitive vector in Z2g, we denote by τv the corresponding
transvection in Sp(2g,Z), by which we mean that τv = Ψ(Tc), where
[c] = ±v. We call an element of Sp(2g,Z/mZ) a transvection if it is the
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image of a transvection under the reduction Sp(2g,Z) → Sp(2g,Z/mZ).
The following proposition (and its proof) are due to Humphries [101].

Proposition 6.5 Let g ≥ 2. The group Sp(2g,Z/2Z) cannot be generated
by fewer than 2g + 1 transvections.

Note that since Sp(2,Z) = SL(2,Z), the conclusion of Proposition 6.5
does not hold for g = 1.

Proof. First note that the fixed set of a nontrivial transvection in
Sp(2g,Z/2Z) has codimension 1 in (Z/2Z)2g . Given a set of transvec-
tions, the intersection of their fixed sets is the fixed set for the entire group
that they generate. Clearly, there is no nontrivial element of (Z/2Z)2g fixed
by the whole group Sp(2g,Z/2Z). It follows that any generating set for
Sp(2g,Z/2Z) consisting entirely of transvections must have at least 2g ele-
ments, corresponding to linearly independent vectors.

It remains to show that Sp(2g,Z/2Z) cannot be generated by transvec-
tions corresponding to 2g linearly independent elements of (Z/2Z)2g .

Let v1, . . . , v2g be linearly independent elements of (Z/2Z)2g . Note that
each nontrivial element of (Z/2Z)2g is primitive, and in particular that the
vi form a basis for (Z/2Z)2g (this basis is not necessarily symplectic). We
would like to show that the τvi do not generate Sp(2g,Z/2Z).

We construct a graph G with one vertex for each vi and an edge between
each pair of vertices {vi, vj} that pair nontrivially (mod 2) under the sym-
plectic form on (Z/2Z)2g induced by that on Z2g.

To any vector w ∈ (Z/2Z)2g , we associate a subgraph G(w) of G as
follows: if w =

∑
civi, where ci ∈ Z/2Z, then G(w) is defined to be the

full subgraph of G spanned by the vertices of G corresponding to those vi
with ci �= 0.

We now argue that, for any transvection τvi and any w ∈ (Z/2Z)2g , the
mod 2 Euler characteristics of G(w) and of G(τvi(w)) are the same. If the
symplectic pairing of vi with w is 0, then τvi(w) = w, and there is nothing
to show. If the symplectic pairing of vi with w is 1, then by Proposition 6.3
G(τvi(w)) is obtained from G(w) as follows: first we “add modulo 2” the
vi-vertex of G (i.e., add it if it is not there, delete it if it is); then, so as to
preserve the property of being a full subgraph, we add modulo 2 the edges
connecting the vi-vertex to the other vertices of G(w). The first operation
changes the Euler characteristic by 1. Since the symplectic pairing of vi with
w is 1 (modulo 2), the second operation changes the Euler characteristic by
1. Thus the mod 2 Euler characteristics of G(w) and G(τvi(w)) are the
same.

Since Sp(2g,Z/2Z) acts transitively on the nontrivial vectors of
(Z/2Z)2g , it now suffices to show that there exist nontrivial vectors in
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(Z/2Z)2g whose associated subgraphs have different mod 2 Euler character-
istics. Observe that G(v1) is a single vertex and so has Euler characteristic
equal to 1. If G is not a complete graph, then we can find two vertices, vi
and vj , that are not connected by an edge in G, and so G(vi + vj) is the
union of two vertices, which has mod 2 Euler characteristic equal to 0, and
we are done in this case. If G is a complete graph, then (since g ≥ 2) the
graph G(v1 + v2 + v3) is a triangle, which also has Euler characteristic 0.
This completes the proof. �

Since the symplectic representation Ψ : Mod(Sg) → Sp(2g,Z) is sur-
jective (Theorem 6.4), Proposition 6.5 implies the following.

Corollary 6.6 Let g ≥ 2. Any generating set for Mod(Sg) consisting en-
tirely of Dehn twists must have cardinality at least 2g+ 1. In particular, the
Humphries generating set for Mod(Sg) is minimal among such generating
sets.

6.4 CONGRUENCE SUBGROUPS, TORSION-FREE SUBGROUPS, AND

RESIDUAL FINITENESS

In this section we define the congruence subgroups Mod(Sg)[m] of
Mod(Sg) for m ≥ 2. We will then use these groups to prove two important
algebraic properties of the group Mod(Sg): it has a torsion-free subgroup of
finite index, and it is residually finite. We will approach these results via the
corresponding theorems in the classical, linear case of Sp(2g,Z) by using
the symplectic representation.

6.4.1 CONGRUENCE SUBGROUPS OF Sp(2g, Z)

Let m ≥ 2. The level m congruence subgroup Sp(2g,Z)[m] of Sp(2g,Z)
is defined to be the kernel of the reduction homomorphism:

Sp(2g,Z)[m] = ker (Sp(2g,Z) → Sp(2g,Z/mZ)) .

When studying the topology of a space with infinite fundamental group Γ,
it is quite useful to have a torsion-free subgroup of Γ of finite index. For
example, if an orbifold X has orbifold fundamental group Γ and Γ has a
torsion-free subgroup of finite index, then we can sometimes conclude that
X is finitely covered by a manifold; indeed, we will apply this principle
later in this book (Section 12.3).

Proposition 6.7 Let g ≥ 1. The congruence subgroup Sp(2g,Z)[m] is
torsion-free form ≥ 3.



THE SYMPLECTIC REPRESENTATION AND THE TORELLI GROUP 177

Note that Sp(2g,Z)[2] is not torsion-free; consider, for example, the ele-
ment −I2g.

Proof. Since Sp(2g,Z)[m] ⊂ Sp(2g,Z)[n] whenever n is a divisor of m,
we can assume that m = pa, where either p = 2 and a > 1 or p is an odd
prime and a = 1.

Let h ∈ Sp(2g,Z)[m] be nontrivial and let k ≥ 1 be any positive integer.
We must show that hk �= I2g . Since h ∈ Sp(2g,Z)[m], we can write

h = I2g + pdT,

where d ≥ a and where T is a 2g× 2g matrix with the property that at least
one of its entries is not divisible by p. Replacing h by a positive power of
h if necessary, we can assume that k is prime. Consider the following two
cases.

Case 1: p = k. By the binomial theorem,

hk = (I2g + pdT )k ≡ I2g + k(pdT ) ≡ I2g + pd+1T �≡ I2g mod pd+2.

Note that the first congruence uses m �= 2.

Case 2: p �= k. Note that

(pdT )2 = p2dT 2 ≡ 0 mod pd+1.

Using this fact, the binomial theorem, and the assumption that k is prime
(so p � k), it follows that

hk = (I2g + pdT )k ≡ I2g + k(pdT ) �≡ I2g mod pd+1,

as desired. �

Replacing Sp(2g,Z)[m] by SL(n,Z)[m] in the proof of Proposition 6.7
gives that the stronger result that the congruence subgroup SL(n,Z)[m] is
torsion-free.

6.4.2 CONGRUENCE SUBGROUPS OF Mod(Sg)

Let g ≥ 1 and let m ≥ 2. The level m congruence subgroup Mod(Sg)[m]
of Mod(Sg) is defined to be the preimage Ψ−1(Sp(2g,Z)[m]) of the level
m congruence subgroup Sp(2g,Z)[m] under the symplectic representation
Ψ : Mod(Sg) → Sp(2g,Z). That is, Mod(Sg)[m] is the kernel of the com-
position

Mod(Sg)
Ψ→ Sp(2g,Z) → Sp(2g,Z/mZ).
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Since Sp(2g,Z/mZ) is finite, Mod(Sg)[m] has finite index in Mod(Sg).
In order to convert our knowledge about torsion in Sp(2g,Z) into infor-

mation about torsion in Mod(Sg), we will need the following.

THEOREM 6.8 Let g ≥ 1. If f ∈ Mod(Sg) has finite order and is nontriv-
ial, then Ψ(f) is nontrivial.

We will prove Theorem 6.8 in Section 7.1.2 as an application of the Lef-
schetz fixed point theorem. With this theorem in hand, we can now prove
the following theorem, first observed by Serre [194].

THEOREM 6.9 Let g ≥ 1. The groupMod(Sg)[m] is torsion-free form ≥
3.

The hyperelliptic involutions of Sg are finite-order elements of
Mod(Sg)[2] (there are no others!). Thus the assumption m ≥ 3 in Theo-
rem 6.9 is necessary.

Proof. Suppose f ∈ Mod(S)[m] has finite order. Since Sp(2g,Z)[m] is
torsion-free (Proposition 6.7), it follows that Ψ(f) is the identity. In other
words, f induces the trivial action on H1(Sg; Z). By Theorem 6.8, f is the
identity. �

6.4.3 RESIDUAL FINITENESS

Residual finiteness is one of the most commonly studied concepts in com-
binatorial group theory. A group G is residually finite if it satisfies any one
of the following equivalent properties.

1. For each nontrivial g ∈ G, there exists a finite-index subgroup H < G
with g /∈ H .

2. For each nontrivial g ∈ G, there exists a finite-index normal subgroup
N �G with g /∈ N .

3. For each nontrivial g ∈ G, there is a finite quotient φ : G → F with
φ(g) �= 1.

4. The intersection of all finite-index subgroups in G is trivial.

5. The intersection of all finite-index normal subgroups in G is trivial.

6. G injects into its profinite completion

Ĝ = lim← G/H,

where H ranges over all finite-index normal subgroups of G.



THE SYMPLECTIC REPRESENTATION AND THE TORELLI GROUP 179

It is elementary to check that these six properties are indeed equivalent. A
group is thus residually finite if it is well approximated by its finite quotients.
Correspondingly, spaces with residually finite fundamental groups can be
understood via their finite covers.

Linear groups. By a linear group we mean a group that is isomorphic to
a subgroup of GL(n,C) for some n. It is a famous theorem of Malcev that
every finitely generated linear group is residually finite. This is easy to see
for Sp(2g,Z) since the intersection⋂

m≥3

SL(n,Z)[m]

is trivial. Indeed, if A ∈ SL(n,Z) is any matrix lying in the intersection,
then all of its off-diagonal entries must be congruent to 0 (mod m) for all
m ≥ 3. Thus all off-diagonal entries of A must be 0, and so A = I . Since
subgroups of residually finite groups are residually finite, we have the fol-
lowing.

Proposition 6.10 For each n ≥ 2, the group SL(n,Z) is residually finite.
In particular, for g ≥ 1, the group Sp(2g,Z) is residually finite.

Mapping class groups. In analogy with linear groups we have the follow-
ing.

THEOREM 6.11 Let S be a compact surface. The group Mod(S) is resid-
ually finite.

Theorem 6.11 was originally proven by Grossman [74]. The idea of her
proof is to first show that π1(S) is conjugacy separable: given two noncon-
jugate elements x, y ∈ π1(S), there is a homomorphism φ : π1(S) → F to
a finite group F such that φ(x) and φ(y) are not conjugate in F . She then
proves that any automorphism of π1(S) that preserves conjugacy classes is
inner. The outer automorphism group of any finitely generated group with
these two properties is residually finite. Theorem 6.11 then follows from the
Dehn–Nielsen–Baer theorem (Theorem 8.1 below) and the fact that residual
finiteness is inherited by subgroups. See also [11].

Ivanov outlines the following more direct proof in [105, Section 11.1].
The general idea is to derive residual finiteness of Mod(S) from residual
finiteness properties of finitely generated subrings of R.

Proof of Theorem 6.11. First note that Mod(S) is a subgroup of Mod(S′)
where S′ is the surface obtained from S by gluing a genus 1 surface with
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boundary onto each boundary component of S (see Theorem 3.18). Since
any subgroup of a residually finite group is clearly residually finite, it suf-
fices to prove the theorem when ∂S = ∅, which we now assume.

We assume that S = Sg is hyperbolic; for S2 the theorem is trivial and
for T 2 it is easy.

Let f ∈ Mod(Sg) be any nontrivial element. We need to find a homo-
morphism φ : Mod(Sg) → F to a finite group F so that φ(f) �= 1. By
Theorem 6.8 it is enough to consider two cases: either f acts nontrivially on
H1(Sg; Z) or f has infinite order.

In the first case, this says precisely that the image Ψ(f) under the sym-
plectic representation Ψ : Mod(Sg) → Sp(2g,Z) is nontrivial. Since
Sp(2g,Z) is residually finite (Proposition 6.10), there is a finite quotient
Sp(2g,Z) → F to which Ψ(f) projects nontrivially, and so we are clearly
done.

Now assume that f ∈ Mod(Sg) has infinite order. Choose any hyperbolic
metric on Sg. This gives a faithful representation

ρ : π1(Sg)→ PSL(2,R) ≈ Isom(H2).

Since π1(Sg) is finitely generated, ρ(π1(Sg)) is a subgroup of PSL(2, A) for
some finitely generated subring A of R. Such a ring A is residually finite:
for each nontrivial a ∈ A there is a ring homomorphism φ : A → R to a
finite ring R with φ(A) �= 0. See [211, Section 4.1] for a proof of this fact.

Now, f acts on the set of oriented isotopy classes of simple closed curves
in Sg. Since Sg is compact, each free homotopy class γ of curves on Sg
contains a unique geodesic, and the isometry ρ(γ) is of hyperbolic type.
To each such isotopy class γ we associate the hyperbolic length �(γ) of
this unique geodesic. Denote by | tr |(γ) the absolute value of the trace of
ρ(α) for any α ∈ π1(Sg) freely homotopic to γ; this is well defined since
geodesics in free homotopy classes are unique. Since ρ(γ) is an isometry
of H2 of hyperbolic type, it can be diagonalized, from which we see that
| tr |(γ) = 2 cosh(�(γ)/2).

Since f has infinite order, the action of f on the simple closed curves in Sg
must change the hyperbolic length of some conjugacy class γ (this follows,
for example, from Lemma 12.4 and the Alexander method). It follows that

| tr |(γ) �= | tr |(f(γ)).

Since the ring A is residually finite, we can find a finite-index subring U of
A so that | tr |(γ) and | tr |(f(γ)) are not equal inA/U . It follows that γ and
f(γ) are not equal in PSL(2, A/U).

The action of Mod(Sg) on π1(Sg) gives rise to a homomorphism σ :
Mod(Sg)→ Out(π1(Sg)) (see Chapter 8). We can thus interpret the action
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of f on free homotopy classes of oriented closed curves in Sg as an action
of σ(f) on conjugacy classes in π1(Sg).

As PSL(2, A/U) is finite, the composition

π1(Sg)→ PSL(2, A) → PSL(2, A/U)

has a finite-index kernel H ′. Since π1(Sg) is finitely generated, H ′ con-
tains a finite-index characteristic subgroup H; that is, H is preserved by
every automorphism of π1(Sg). Such an H can be constructed by taking the
common intersection of the all subgroups in the (finite) Aut(π1(Sg))-orbit
of H ′. Since H is characteristic, the quotient homomorphism π1(Sg) →
π1(Sg)/H gives rise to a homomorphism

ψ : Out(π1(Sg))→ Out(π1(Sg)/H).

By construction, γ �= σ(f)(γ) in π1(Sg)/H . It follows that ψ ◦ σ(f) �= 1.
Since π1(Sg)/H is finite, so is Out(π1(Sg)/H), and we are done. �

When S is allowed to have finitely many punctures, it is still true that
Mod(S) is residually finite. While the proof of Theorem 6.11 given above
does not work verbatim in this case, since there are finitely many free homo-
topy classes (one for each puncture) that do not contain geodesics, a slight
variation of the proof can still be used to give the result in this case.

6.5 THE TORELLI GROUP

In this section we give a brief introduction to the Torelli subgroup I(S)
of Mod(S). In addition to the beauty of the topic, the study of I(S) has
important connections and applications to 3-manifold theory and algebraic
geometry.

There is another good reason to study I(S). One recurring theme in the
area is that questions about Mod(S) can often be answered in two steps: first
for the elements that act nontrivially onH1(S; Z), and then for the elements
that act trivially on H1(S; Z). Since we understand matrix groups compar-
atively well, the first type of element is usually vastly easier to analyze. We
have already seen several instances of this phenomenon:

1. When we computed in Proposition 2.3 that Mod(S0,3) ≈ Σ3, all
of the work was in showing that an element that acts trivially on
H1(S0,3; Z), that is an element that fixes the three punctures, is the
trivial mapping class.

2. When we proved in Proposition 3.1 that Dehn twists are nontrivial
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elements of Mod(S), we easily dispensed with the case of Dehn
twists about nonseparating simple closed curves, using their action
on H1(S; Z). For the case of separating curves, we needed a more
subtle argument.

3. When we proved in Theorem 6.11 that Mod(S) is residually finite,
we quickly dealt with the case of elements that act nontrivially on
H1(S; Z); the other elements of Mod(S) required a much more in-
volved argument.

It is therefore important for us to understand the elements of Mod(Sg)
that act trivially on H1(Sg; Z). These elements form a normal subgroup
I(Sg) of Mod(Sg) called the Torelli group. We have an exact sequence

1→ I(Sg)→ Mod(Sg)
Ψ→ Sp(2g,Z) → 1.

The Torelli group I(T 2) of the torus is trivial; this is simply a restatement of
Theorem 2.5. In general, we think of I(Sg) as encoding the more mysterious
structure of Mod(Sg)—it is the part that cannot be seen via the symplectic
representation Ψ. The study of I(S) is also of central importance in under-
standing the structure of congruence subgroups of Mod(S); for example,
see the recent work of Putman [183].

Torelli groups for other surfaces. When S is a surface of genus g with
either one puncture or one boundary component, we also have a naturally
defined Torelli group Mod(S), which is again the kernel of the symplec-
tic representation. For other surfaces S, one can still consider the subgroup
of Mod(S) consisting of elements that act trivially on H1(S; Z). However,
there are other natural choices for the Torelli group in these cases; see Put-
man’s paper [184] for an in-depth discussion.

Homology 3-spheres. One purely topological motivation for studying
I(Sg) is the following connection with integral homology 3-spheres, which
are 3-manifolds that have the same integral homology as S3. A standard
handlebody H is a 3-manifold homeomorphic to a closed regular neighbor-
hood of a graph embedded in a plane in S3. The complement in S3 of the
interior of H is another handlebody H ′. Thus we can think of S3 as the
union of two handlebodies glued along their boundaries by a homeomor-
phism φ : ∂H → ∂H ′, that is,

S3 ≈ H ∪φ H ′.

Note that ∂H and ∂H ′ are homeomorphic closed surfaces. If ψ is a self-
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homeomorphism of ∂H , we obtain a new 3-manifold

Mψ = H ∪φ◦ψ H ′.

The manifold Mψ depends only on the isotopy class of ψ. The homology
of Mψ depends only on Ψ([ψ]) ∈ Sp(2g,Z). In particular, if [ψ] lies in the
Torelli subgroup of Mod(∂H), then Mψ is a homology 3-sphere. What is
more, every homology 3-sphere arises in this way [161, Section 2].

The symplectic action. By Theorem 6.4, each matrix A ∈ Sp(2g,Z) is the
action of some element Ã ∈ Mod(Sg). The element Ã acts by conjugation
on the normal subgroup I(Sg) in Mod(Sg). A different choice of Ã gives an
automorphism of I(Sg) that differs by conjugation by an element of I(Sg).
We therefore have a representation

ρ : Sp(2g,Z) → Out(I(Sg)).

This representation is quite useful; it pervades the study of I(Sg). For ex-
ample, the abelian group H∗(I(Sg); Z) is an Sp(2g,Z)-module. One can
then use the representation theory of symplectic groups to greatly constrain
the possibilities for H∗(I(Sg); Z); see [112]. The representation ρ turns out
to be an isomorphism; see [33, 34, 59].

6.5.1 TORELLI GROUPS ARE TORSION-FREE

Theorem 6.8 can be rephrased as a theorem about Torelli groups, giving the
following basic fact about I(Sg).

THEOREM 6.12 For g ≥ 1, the group I(Sg) is torsion-free.

Similarly, we have that I(Sg,1) is torsion-free. We could also say that
I(S1

g) is torsion-free, where S1
g is a surface of genus g with one boundary

component, but the entire group Mod(S1
g) is already torsion-free (Corol-

lary 7.3).

6.5.2 EXAMPLES OF ELEMENTS

We can write down several explicit examples of elements of I(Sg).

1. Dehn twists about separating curves. Each Dehn twist about a separating
simple closed curve γ in Sg is an element of I(Sg). This is because there ex-
ists a basis for H1(Sg; Z) where each element is represented by an oriented
simple closed curve disjoint from γ. Since Tγ fixes each of these curves,
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it in particular fixes the corresponding homology classes and is hence an
element of I(Sg).

Another way to see that Tγ is an element of I(Sg) is to apply Proposi-
tion 6.3, which gives that

Tγ(x) = x+ î([γ], x)[γ]

for any x ∈ H1(Sg; Z). Since γ is separating, we have [γ] = 0, and so
Tγ(x) = x.

The group generated by Dehn twists about separating simple closed
curves is denoted K(Sg). In the 1970s Birman asked whetherK(Sg) is equal
to all of I(Sg) or at least has finite index in I(Sg). To prove that this is not
the case, one has to find some invariant to tell that an element of I(Sg)
does not lie in K(Sg). We explain below Johnson’s construction of such an
invariant.

2. Bounding pair maps. A bounding pair in a surface is a pair of disjoint,
homologous, nonseparating simple closed curves. A bounding pair map is
a mapping class of the form

TaT
−1
b ,

where a and b form a bounding pair. Since a and b are homologous, Propo-
sition 6.3 gives that the images of Ta and Tb in Sp(2g,Z) are equal. Thus
any bounding pair map is an element of I(Sg).

We have seen bounding pair maps once before: the kernel of the forgetful
map Mod(Sg,1) → Mod(Sg) is generated by bounding pair maps. This
follows from Theorem 4.6 together with Fact 4.7 and the fact that π1(Sg) is
generated by simple nonseparating loops.

3. Fake bounding pair maps. In verifying that a bounding pair map acts triv-
ially on homology, we never used the fact that the curves in the bounding
pair were disjoint—just that they were homologous. Thus TaT

−1
b is an ele-

ment of I(Sg) whenever a and b are homologous. A special case of this is
the mapping class [Ta, Tc], where î(a, c) = 0. Indeed,

TaTcT
−1
a T−1

c = TaT
−1
Tc(a)

,

and, by Proposition 6.3, the simple closed curves a and Tc(a) are homolo-
gous.

4. Point pushes and handle pushes. The Birman exact sequence gives us the
point-pushing homomorphism

Push : π1(Sg)→ Mod(Sg,1).
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Since π1(Sg) is generated by simple loops, and these elements map to
bounding pair maps in Mod(Sg,1) (Fact 4.7), we have that the entire im-
age Push(π1(Sg)) lies in I(Sg,1).

We would like to make an analogous statement for I(S1
g). Since the map

S1
g → Sg,1 induces a canonical isomorphism H1(S

1
g ; Z) → H1(Sg,1; Z),

the boundary-capping homomorphism Mod(S1
g ) → Mod(Sg,1) induces a

surjective homomorphism I(S1
g) → I(Sg,1). By Proposition 3.19 and the

fact that Dehn twists about separating curves lie in the Torelli group, we
obtain a short exact sequence

1→ Z→ I(S1
g)→ I(Sg,1)→ 1,

where the kernel Z is generated by the Dehn twist about the boundary of S1
g .

Recall from from Section 4.2 that we also have a homomorphism
π1(UT (Sg))→ Mod(S1

g ) that makes the following diagram commute:

π1(UT (Sg)) Mod(S1
g)

π1(Sg) Mod(Sg,1)

By the commutativity of the diagram, the fact that the image of π1(Sg)
in Mod(Sg,1) lies in I(Sg,1), the fact that the kernel of the map
π1(UT (Sg)) → π1(Sg) maps to I(S1

g), and the fact that I(S1
g) surjects

onto I(Sg,1), we obtain that the image of π1(UT (Sg)) in Mod(S1
g ) lies in

I(S1
g).

The natural inclusion S1
g → Sg+1 induces an injective homomor-

phism Mod(S1
g ) → Mod(Sg+1) that restricts to an injective homo-

morphism I(S1
g) → I(Sg+1). Precomposing with the homomorphism

π1(UT (Sg))→ I(S1
g) we obtain an inclusion

π1(UT (Sg))→ I(Sg+1).

We think of the elements in the image of this map as handle pushes, obtained
by pushing the (g + 1)st handle around the surface Sg.

6.5.3 A BIRMAN EXACT SEQUENCE FOR THE TORELLI GROUP

The above discussion about point pushes and handle pushes gives the fol-
lowing result, which allows us to translate results back and forth between
the three groups I(Sg), I(Sg,1), and I(S1

g):
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Proposition 6.13 Let g ≥ 2. The forgetful map Sg,1 → Sg induces a short
exact sequence

1→ π1(Sg)→ I(Sg,1)→ I(Sg)→ 1,

and the boundary-capping map S1
g → Sg gives a short exact sequence

1→ π1(UT (Sg))→ I(S1
g)→ I(Sg)→ 1.

6.5.4 THE ACTION ON SIMPLE CLOSED CURVES

Similar to Section 1.3, we can classify the orbits of simple closed curves in
Sg up to the action of I(Sg). While the statement is perhaps not so surpris-
ing, the proof is more subtle than the usual change of coordinates principle.

To state the result we need the fact that a separating simple closed curve
in Sg (or its isotopy class) induces a splitting of H1(Sg; Z). By a splitting of
H1(Sg; Z) we mean a decomposition as a direct product of subgroups that
are orthogonal with respect to skew-symmetric bilinear pairing given by al-
gebraic intersection number î on H1(Sg; Z). A simple closed curve γ that
separates Sg into two subsurfaces S′ and S′′ gives a splitting of H1(Sg; Z)
into the product of the two subgroups H1(S

′; Z) and H1(S
′′; Z), each sub-

group consisting of those homology classes supported on one side of γ or
the other. We say that two isotopy classes of simple closed curves are I(Sg)-
equivalent if there is an element of I(Sg) taking one to the other.

The following theorem, observed by Johnson [110, Section 6], gives that
the obvious necessary condition for two simple closed curves on Sg to be
I(Sg)-equivalent is also sufficient.

Proposition 6.14 Let c and c′ be two isotopy classes of simple closed curves
in Sg. If c and c′ are separating, then they are I(Sg)-equivalent if and only
if they induce the same splitting ofH1(Sg; Z). If c and c′ are nonseparating,
then they are I(Sg)-equivalent if and only if, up to sign, they represent the
same element of H1(Sg; Z).

Proof. For both cases, one direction is obvious, and so we only need to
prove that the obvious necessary condition for I(Sg) equivalence is suffi-
cient. Let γ and γ′ be representative curves for the isotopy classes c and
c′.

Suppose that c and c′ are separating. Let S1 and S2 be the two embed-
ded subsurfaces of Sg bounded by γ and let S′1 and S′2 be the two embed-
ded subsurfaces bounded by γ′. Up to renumbering, our hypothesis tells us
that H1(S1; Z) and H1(S

′
1; Z) are equal as subsets of H1(Sg; Z). There-

fore, S1 and S′1 have the same genus and hence are homeomorphic. Fix a
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homeomorphic identification of γ with γ′ and choose any homeomorphism
φ1 : (S1, γ) → (S′1, γ

′) respecting this identification. By Theorem 6.4 and
by the hypothesis, there is a homeomorphism ψ1 ∈ Homeo+(S′1, γ

′) so that
ψ1 ◦ φ1 is the identity automorphism of H1(S1; Z) = H1(S

′
1; Z). Here we

are invoking our claim that all of the results in Section 6.3 work for surfaces
with one boundary component. We similarly choose ψ2 ◦ φ2 : S2 → S′2.
Together, the maps ψ1 ◦φ1 and ψ2 ◦φ2 induce a homeomorphism of Sg that
takes γ to γ′ and acts trivially on H1(Sg; Z).

Now suppose that c and c′ are nonseparating. We would like to proceed
similarly to the previous case. One difficulty is that we do not have a sur-
jectivity statement for the action of the stabilizer of c in Mod(Sg) on the
homology of the surface obtained by cutting along c. Instead, we proceed as
follows.

Let β be any simple closed curve in Sg that intersects γ once. By the
argument in the third proof of Theorem 6.4, there is a simple closed curve
β′ that intersects γ′ once and is homologous to β. Let δ be the boundary
of a regular neighborhood of β ∪ γ and let δ′ be the boundary of a regular
neighborhood of β′ ∪ γ′. Applying the present proposition to the case of
separating simple closed curves, there is an element of I(Sg) taking δ to δ′.
Since I(S1,1) is trivial (Theorem 2.5), it follows that this element of I(Sg)
takes c to c′, and we are done. �

The statement of Proposition 6.14 can be sharpened in the case of isotopy
classes of oriented simple closed curves. Two isotopy classes of oriented
nonseparating simple closed curves are I(Sg)-equivalent if and only if they
represent the same element of H1(Sg; Z). Two isotopy classes of oriented
separating simple closed curves are I(Sg)-equivalent if and only if they
induce the same ordered splitting of H1(Sg; Z), where the ordering of the
factors comes from the fact that the curve has well-defined left and right
sides.

The statement of Proposition 6.14 (and its proof) apply to the cases of
surfaces with either one boundary or one puncture.

6.5.5 GENERATORS FOR THE TORELLI GROUP

Birman and Powell proved that I(Sg) is generated by the infinite collection
of all Dehn twists about separating simple closed curves and all bounding
pair maps [23, 180]. The general method they used is as follows.

From relations to generators. Let

1→ K → E
ρ→ Q→ 1
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be a short exact sequence of groups. Suppose that E is generated by
{e1, . . . , ek} and that Q has a presentation with generators ρ(e1), . . . , ρ(ek)
and relations {ri = 1}, where each ri is a word in the {ρ(ei)}. For each i,
let r̃i be the corresponding word in the ei. As an element of E, each r̃i lies
in K. It is easy to check that the {r̃i} is a normal generating set for K , that
is, the set of all conjugates of all ri by elements of E generate K .

An infinite generating set for I(Sg). Birman’s idea was to apply the
above general fact to the short exact sequence

1→ I(Sg)→ Mod(Sg)→ Sp(2g,Z) → 1.

Birman determined a finite presentation for Sp(2g,Z) and made the remark
that the relators for Sp(2g; Z) give rise to generators for I(Sg). Then her
student Powell interpreted each of these generators as products of Dehn
twists about separating curves and bounding pair maps, thus proving that
I(Sg) is generated by (infinitely many) such maps.

Putman has recently shown that the same generating set for I(Sg) can be
derived from methods similar to the ones that we used to show that Mod(Sg)
is generated by Dehn twists; see [184].

Whittling down the infinite generating set. Johnson showed that, for g ≥
3, the Dehn twists about separating simple closed curves are not needed
to generate I(Sg). In other words, he proved that any such Dehn twist is
a product of bounding pair maps. This can be deduced from the lantern
relation as shown in Figure 6.4. In the figure, the pairs of simple closed
curves (x, b3), (y, b1), and (z, b4) are all bounding pairs, and so, using the
fact that the Tbi commute with the Dehn twists about all seven simple closed
curves in the picture, the lantern relation TxTyTz = Tb1Tb2Tb3Tb4 can be
written as the desired relation in I(Sg):

(TxT
−1
b3

)(TyT
−1
b1

)(TzT
−1
b4

) = Tb2 .

The genus of a bounding pair map TaT
−1
b is the minimum of the genera of

the two components of Sg−{a∪b}. It is easy to see that a genus k bounding
pair map is a product of k genus 1 bounding pair maps, and so I(Sg) is
generated by genus 1 bounding pair maps. This implies, by the change of
coordinates principle, that I(Sg) is normally generated in Mod(Sg) by a
single genus 1 bounding pair map.

Finite generation. In his clever and beautiful paper [111] Johnson proved
the following.
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b1

b2

b3

b4

x

y

z

Figure 6.4 A lantern showing how to write the twist about the separating simple closed curve
a as a product of bounding pair maps.

THEOREM 6.15 For g ≥ 3, the Torelli group I(Sg) is generated by a finite
number of bounding pair maps.

While Mod(Sg) can be generated by 2g+1 Dehn twists that can easily be
displayed in one figure, we will see below that any generating set for I(Sg)
must have at least O(g3) generators (Theorem 6.19). Thus any such generat-
ing set for I(Sg) is not so easy to write in a single figure. This indicates the
combinatorial complexity needed to prove Theorem 6.15. What is particu-
larly remarkable is that for g ≥ 3, Johnson finds a generating set for I(Sg)
with O(2g) elements (for g = 20, he gives over one trillion generators);
even naming that many elements in a coherent way is not so trivial!

Johnson’s strategy for Theorem 6.15 is as follows. He first produces an
explicit list of bounding pair maps in I(Sg), some of which are genus 1,
and shows that the group generated by these is normal in Mod(Sg). To
check normality, it suffices to check that the conjugate of each bounding
pair map on the list by each Humphries generator for Mod(Sg) is a product
of bounding pair maps on the list. Since any single genus 1 bounding pair
map normally generates I(Sg) (in Mod(Sg)), this proves the theorem. Of
course, the hard part is coming up with the explicit list. The proof of The-
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orem 6.15 would take us too far afield, but we encourage the reader to read
the proof in [111].

While Theorem 6.15 settles the question of finite generation of I(Sg), we
do not have an analogue of the Humphries generating set. In fact, Johnson
has conjectured that I(Sg) has a generating set with O(g3) elements, as the
rank of H1(I(Sg); Q) has this order. If this conjecture is true, Johnson’s
generating set with O(2g) elements is far from minimal. In the case g = 3,
Johnson was able to whittle down the cardinality of his generating set for
I(S3) to 35, which is exactly the rank of H1(I(S3); Q). Johnson conjec-
tures that this should persist in higher genus. However, it is still an open
question even to find a generating set for I(Sg) whose number of elements
is polynomial in g.

Two related open questions are: is I(Sg) finitely presented for g ≥ 3? is
K(Sg) finitely generated for g ≥ 3?

Genus 2. In genus 2 the story is quite different. McCullough–Miller showed
that I(S2) is not finitely generated [146]. Mess sharpened this result by
showing that I(S2) is an infinitely generated free group, with one Dehn
twist generator for each orbit of the action of I(S2) on the set of separating
simple closed curves in S2 [155]. Note that there are no bounding pairs in
S2, and so I(S2) is generated by Dehn twists; that is, I(S2) = K(S2).

Nonclosed surfaces. For the surfaces Sg,1 and S1
g , it follows from Theo-

rem 6.15 and the Birman exact sequences for I(Sg) that I(Sg,1) is generated
by finitely many bounding pair maps and that I(S1

g) is generated by finitely
many bounding pair maps together with the Dehn twist about the boundary
curve of S1

g .

6.6 THE JOHNSON HOMOMORPHISM

In this section we explain the Johnson homomorphism and some of its ap-
plications.

6.6.1 CONSTRUCTION

We now describe another of Johnson’s fundamental contributions to our un-
derstanding of the Torelli group, the Johnson homomorphism [109]. This is
a surjective homomorphism

τ : I(Sg)→
(
∧3H1(Sg; Z)

)
/H1(Sg; Z),
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where ∧3H1(Sg; Z) is the third exterior power of H1(Sg; Z). The map τ
exactly captures the torsion-free part of H1(I(Sg); Z) (Theorem 6.19). It is
a useful invariant of elements of I(Sg), as we shall see.

We begin by considering the case of S1
g , a surface of genus g ≥ 2 with

one boundary component. We do this for simplicity since we can choose a
basepoint on ∂S1

g and so any element of Mod(S1
g ) gives an automorphism

of π1(S
1
g ) as opposed to just an outer automorphism. Also the target of τ in

this case is simply ∧3H1(Sg; Z).
Let Γ = π1(S

1
g ), which is isomorphic to the free group of rank 2g. Let

Γ′ denote the commutator subgroup [Γ,Γ] of Γ. By definition, I(S1
g) is the

subgroup of Mod(S1
g ) that acts trivially on Γ/Γ′. Johnson’s key idea is to

look at the action of I(S1
g) on the quotient of Γ by the next term in its lower

central series, namely, [Γ,Γ′] = [Γ, [Γ,Γ]].
There is a short exact sequence

1→ Γ′/[Γ,Γ′]→ Γ/[Γ,Γ′]→ Γ/Γ′ → 1,

which we rewrite as

1→ N → E → H → 1

by simply renaming the groups. The Johnson homomorphism is the homo-
morphism

τ : I(S1
g)→ Hom(H,N)

given by

τ(f)(x) = f(e)e−1,

where e is any lift of x ∈ H to E. It is straightforward to check that τ(f) is
a well-defined homomorphism and that τ itself is a homomorphism.

In the literature and in applications, τ(f) is usually thought of as an ele-
ment of ∧3H . This involves a little bit of an algebraic juggle as follows.

1. There is a homomorphism ψ : ∧2H → N defined as follows. For
a, b ∈ H , we take lifts ã and b̃ in E and let

ψ(a ∧ b) = [ã, b̃] ∈ N.

Now extend ψ linearly. Note that Sp(2g,Z) acts on both the do-
main and the range of ψ, and it is not hard to prove that τ is an
Sp(2g,Z)-module homomorphism. Using, for example, the classical
Witt formula to count dimensions, one can check that ψ is an Sp-
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module isomorphism. Therefore, Hom(H,N) is naturally isomorphic
to Hom(H,∧2H).

2. Hom(H,∧2H) is canonically isomorphic to H
 ⊗ ∧2H . Using the
nondegenerate symplectic form given by algebraic intersection num-
ber, we can canonically identify H with its dual H
. This gives a
canonical isomorphism Hom(H,∧2H) ≈ H ⊗ ∧2H .

3. There is a natural inclusion of ∧3H into H ⊗ ∧2H given by

a ∧ b ∧ c 
→ a⊗ (b ∧ c) + b⊗ (c ∧ a) + c⊗ (a ∧ b),

and we will show below that the image of τ is exactly ∧3H .

Naturality. The action of Mod(S1
g) on H = H1(S

1
g ; Z) induces an ac-

tion of Mod(S1
g ) on ∧3H . A crucial and easily verified property of τ is the

following naturality property: for any f ∈ I(S1
g) and h ∈ Mod(S1

g ), we
have

τ(hfh−1) = h
(τ(f)). (6.1)

Closed and once-punctured surfaces.We will compute below that for the
isotopy class c of ∂S1

g , τ(Tc) = 0. It then follows that τ : I(S1
g) → ∧3H

factors through a homomorphism τ : I(Sg,1)→ ∧3H .
For closed surfaces Sg, the Johnson homomorphism is a surjective homo-

morphism τ : I(Sg) → ∧3H/H . The inclusion of H into ∧3H is given
by

a 
→
(∑

xi ∧ yi
)
∧ a,

where xi and yi represent a symplectic basis forH = H1(Sg; Z). The reason
that we need to take the quotient ∧3H/H is in order for τ to be well defined
on I(Sg) comes from the fact that I(Sg) is the quotient of I(Sg,1) by the
normal subgroup π1(Sg) (Proposition 6.13). In computing the image of a
bounding pair map in I(Sg) under τ , we can think of the quotient by H as
accounting for the fact that there is no preferred side of a bounding pair in
a closed surface; in S1

g the two subsurfaces cut off by a bounding pair are
distinguished from each other by whether or not they contain ∂S1

g .
We can now deduce Corollary 6.17 for the closed surface Sg. The

analogues of Theorems 6.18 and 6.19 also hold for closed surfaces; see
[111, 112, 113, 114].
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An interpretation via mapping tori. The Johnson homomorphism τ can
also be defined using topology. Let f ∈ I(Sg,1) and think of Sg,1 as Sg with
a marked point. We wish to come up with an element of ∧3H . Let φ be a
representative of f and consider the mapping torus

Mf =
Sg × [0, 1]

(x, 0) ∼ (φ(x), 1)
.

Since f ∈ I(Sg,1), it follows that H1(Mφ; Z) ≈ H1(Sg × S1; Z). The
projection map Sg × S1 → Sg induces a projection H1(Sg × S1; Z) →
H1(Sg) ≈ Z2g. Composing these maps and then precomposing with the
abelianization homomorphism π1(Mφ) → H1(Mφ; Z) gives a homomor-
phism

π1(Mφ)→ Z2g.

Since T 2g is a K(Z2g, 1), it follows that this homomorphism is induced by
a continuous based map of spaces

Mφ → T 2g,

where T 2g is the 2g-dimensional torus. This map is well defined up to
(based) homotopy, and it induces a homomorphism

ψ : H3(Mφ; Z)→ H3(T
2g; Z).

SinceH3(T
2g; Z) ≈ ∧3(H), the image ψ([Mφ]) of the fundamental class of

Mφ in H3(T
2g; Z) specifies an element of ∧3(H). This element is precisely

τ(f). This can be proven by a straightforward algebraic topology argument;
see [47].

Another interpretation via mapping tori. There is a different way to use
mapping tori in order to obtain a description of τ(f). Specifically, we will
find a homomorphism I(Sg,1) → Hom(∧3H,Z) ≈ ∧3H that agrees with
τ .

Let x ∈ H . Represent x by an oriented multicurve µ in Sg,1. The cylinder
C = µ× [0, 1] lies in Sg,1× [0, 1] and hence maps to the mapping torus Mφ,
where φ is a representative of f . The cylinder C is in general not a closed
surface. However, since φ(µ) is homologous to µ, there is an immersed
surface R in Sg,1 × {0} ≈ Sg,1 with µ − φ(µ) as its boundary. Since Sg,1
has a marked point, the choice of R is unique. The union C ∪R is a surface
Σx, and so it represents an element [Σx] ∈ H2(Mφ; Z) ≈ H1(Mφ; Z), this
last isomorphism coming from Poincaré duality.
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βk

Figure 6.5 The simple closed curves c and d and the elements of π1(S
1
g) used to compute

τ (Tc) and τ (TdT
−1
e ).

Given any x ∧ y ∧ z ∈ ∧3H , the cup product

[Σx] ∪ [Σy] ∪ [Σz] ∈ H3(Mφ; Z)

can be paired with the fundamental class [Mφ] to give an element of Z.
Equivalently, one can take the triple (algebraic) intersection Σx ∩ Σy ∩ Σz

to obtain this element of Z. We have thus constructed a map I(Sg,1) →
Hom(∧3H,Z) ≈ ∧3H that one can check is a homomorphism and that
agrees with τ ; see [112].

6.6.2 COMPUTING THE IMAGE OF τ

We now explain how to explicitly calculate τ on certain elements of I(S1
g)

and compute its image.

The image of a Dehn twist. Let c be the standard separating simple closed
curve shown in Figure 6.5. We claim that τ(Tc) = 0.

To prove this claim we begin by taking the generators {αi, βi} for π1(S
1
g )

shown in Figure 6.5. Let k be the genus of the subsurface of S1
g cut off by c

and not containing ∂S1
g ; in Figure 6.5 this is the surface to the left of c. We

see that Tc fixes αi and βi for k+1 ≤ i ≤ g. Let γ be the element of π1(S
1
g )

shown at the bottom right of Figure 6.5. For x ∈ {α1, β1, . . . , αk, βk}, we
find that

Tc(x) = γxγ−1,
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and so

Tc(x)x
−1 = [γ, x].

But γ is a separating simple closed curve, and so γ ∈ Γ′, so that [γ, x] ∈
[Γ,Γ′]. Thus we have [γ, x] = 0 ∈ ∧2H , and so τ(Tc) = 0.

By the change of coordinates principle and the naturality property of τ
(formula (6.1)) it follows that τ(Tc′) = 0 for any separating simple closed
curve c′ in S1

g . We thus have K(S1
g ) ≤ ker(τ).

The image of a bounding pair map. As in the case of Dehn twists, in
order to understand the image of an arbitrary bounding pair map, it suffices
to compute τ(TdT−1

e ) for the standard bounding pair {d, e} shown in Fig-
ure 6.5.

Let f = TdT
−1
e and suppose that the bounding pair {d, e} has genus k;

that is, the subsurface of S1
g cut off by d ∪ e and not containing ∂S1

g has
genus k. It is straightforward to compute directly the induced action of f
on π1(S

1
g ) by computing the action on each generator αi and βi of π1(S

1
g ).

Doing this, we obtain

f(αi) = δαiδ
−1 i ≤ k f(βk+1) = βk+1

f(βi) = δβiδ
−1 i ≤ k f(αi) = αi i ≥ k + 1

f(αk+1) = δε−1αk+1 f(βi) = βi i ≥ k + 1

where δ and ε are the elements of π1(S
1
g ) shown at the bottom left of Fig-

ure 6.5.
From here we can write down the product f(x)x−1 for each x ∈ {αi, βi}.

Recall that f(x)x−1 lies in N and that it corresponds to an element of ∧2H .
In the calculation we will use the fact that

δε−1 =

k∏
i=1

[αi, βi]

and the fact that the homology classes [δ] and [βk+1] are equal. Denoting
by↔ the correspondence between elements of N and ∧2H via the isomor-
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phism described above, we have

f(αi)α
−1
i = [δ, αi] ↔ [βk+1] ∧ [αi] i ≤ k

f(βi)β
−1
i = [δ, βi] ↔ [βk+1] ∧ [βi] i ≤ k

f(αk+1)α
−1
k+1 = δε−1 ↔

k∑
i=1

[αi] ∧ [βi]

f(βk+1)β
−1
k+1 = 1 ↔ 0

f(αi)α
−1
i = 1 ↔ 0 i ≥ k + 1

f(βi)β
−1
i = 1 ↔ 0 i ≥ k + 1

This gives that τ(f), as an element of H ⊗ ∧2H , is

τ(f)=
k∑
i=1

([βi]⊗ ([βk+1] ∧ [αi])− [αi]⊗ ([βk+1] ∧ [βi]))

+[βk+1]⊗
(

k∑
i=1

[αi] ∧ [βi]

)

=

k∑
i=1

([αi]⊗ ([βi] ∧ [βk+1]) + [βi]⊗ ([βk+1] ∧ [αi])

+[βk+1]⊗ ([αi] ∧ [βi]))

=

(
k∑
i=1

[αi] ∧ [βi]

)
∧ [βk+1].

In summary, we have shown that

τ(TdT
−1
e ) =

k∑
i=1

xi ∧ yi ∧ z,

where z ∈ H is the homology class [d] = [e] and x1, y1, . . . , xk, yk, z
form a (degenerate) symplectic basis for the homology of the component of
S1
g − (d ∪ e) not containing the basepoint of π1(S

1
g ).

The image of I(S1

g
). Choosing k = 1 in the above computation gives that

the wedge product

[α1] ∧ [β1] ∧ [β2]
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lies in the image of τ : I(S1
g) → ∧3H . We will now use the naturality

property (6.1) together with the fact that Mod(S1
g ) surjects onto Sp(2g,Z)

to show that τ surjects onto ∧3H .
Assume that g ≥ 3. By Theorem 6.4, there is some f ∈ Mod(S1

g) so that
f∗ maps the pair ([α1], [α3]) to the pair ([α1]+[β1]− [β3], [α3]− [β1]+[β3])
and fixes all other basis elements of H . Then

f∗([α1] ∧ [β1] ∧ [β2]) = [α1] ∧ [β1] ∧ [β2]− [β1] ∧ [β2] ∧ [β3].

Since we have already shown that [α1] ∧ [β1] ∧ [β2] lies in the image of
τ , it follows from the naturality property of τ that [β1] ∧ [β2] ∧ [β3] does
as well. Applying factor swaps and factor rotations gives that every wedge
product x ∧ y ∧ z is in the image of τ , where x, y, z ∈ {[αi], [βi]}. Since
such elements span ∧3H , this completes the proof that τ is surjective when
g ≥ 3. We leave the case of g = 2 as an exercise.

We have therefore proved the following result of Johnson.

Proposition 6.16 If g ≥ 2, then τ(I(S1
g)) = ∧3H .

There is another way to prove the slightly weaker fact that τ(I(S1
g)) ⊗

Q = ∧3H⊗Q. LetHQ = H⊗Q. Then the vector space ∧3HQ decomposes
as a direct sum of irreducible Sp(2g,Q)-modules as follows:

∧3HQ = ∧3HQ/HQ ⊕HQ.

Since these two summands are irreducible and since τ satisfies the natu-
rality property (6.1), we could prove that τ is a surjection onto ∧3H (after
tensoring with Q) by finding one element with τ -image in the first sum-
mand and one element with τ -image in the second summand and then ap-
plying Schur’s lemma. Note that ∧3H is a small, nonobviously embedded
subspace of ∧2H ⊗H . How did Johnson know to prove that the image of τ
is contained in this subspace? Well, he knew that the image of τ has to be a
direct sum of Sp-invariant subspaces, so after computing a few elements in
the image he might have guessed which subspaces would be needed.

6.6.3 SOME APPLICATIONS

The Johnson homomorphism τ is the most important invariant in the study
of the Torelli group. Here we give two example applications.

The kernel of τ . As K(S1
g ) is contained in the kernel of τ and since the

image of τ is infinite, and indeed the image of any bounding pair map is
infinite, we immediately deduce the following.
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Corollary 6.17 If g ≥ 3, then K(S1
g ) has infinite index in I(S1

g). In fact, no
bounding pair map or any of its nontrivial powers lie in K(S1

g ).

Thus, by using a purely algebraically defined “invariant” τ , Johnson de-
duced a purely topological statement, namely, that no nontrivial power of
any bounding pair can be written as a product of Dehn twists of separat-
ing curves. Before Johnson’s work, Chillingworth had already shown that
K(Sg) �= I(Sg) [46]. Johnson actually proved the following much deeper
result [113].

THEOREM 6.18 If g ≥ 3, then ker(τ) = K(S1
g ).

In other words, the kernel of τ , which is defined purely algebraically, is
simply the group K(S1

g ), which is defined purely topologically.

The abelianization of the Torelli group. That fact that τ : I(S1
g) → ∧3H

is surjective immediately implies that the abelianization H1(I(S1
g ); Z) must

contain an isomorphic copy of ∧3H . It turns out that τ captures the entire
torsion-free part of H1(I(S1

g); Z), but there is more to the story. Johnson
proved the following [114].

THEOREM 6.19 Let g ≥ 2. Then

H1(I(S1
g); Z) ≈ ∧3H × (Z/2Z)N ,

where

N =

(
2g

2

)
+

(
2g

1

)
+

(
2g

0

)
.

The ∧3H in the theorem is exactly what is detected by the Johnson ho-
momorphism. The torsion part is detected by the Birman–Craggs–Johnson
homomorphisms, which are defined using the Rochlin invariant, an invariant
coming from the theory of 3-manifolds. See Johnson’s lovely survey paper
[112] for a discussion.

A filtration of the mapping class group. Let S be either Sg or S1
g and

let Γ = π1(S). The symplectic representation of Mod(S) describes the
action of Mod(S) on H1(S; Z) = Γ/Γ′, where Γ′ = [Γ,Γ]. The kernel of
this representation is the Torelli group I(S). The Johnson homomorphism
describes the action of I(S) on the quotient Γ/[Γ′,Γ]. By Theorem 6.18, the
kernel of this map is K(S). One would like to continue this line of analysis
to K(S) and beyond.
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To this end, we consider the lower central series of Γ = π1(S), which is
the sequence of groups

Γ = Γ1 ⊃ Γ2 ⊃ · · ·

defined inductively by

Γ1 = Γ and Γi = [Γ,Γi−1].

Since each Γi in the lower central series is characteristic, that is, fixed by
Aut(Γ), there is a natural homomorphism Aut(Γ) → Aut(Γ/Γi) that de-
scends to a homomorphism

Ψi : Out(Γ)→ Out(Γ/Γi+1).

As explained in Chapter 8, the (outer) action of Mod(S) on π1(S) gives a
homomorphism Mod(S) → Out(π1(S)). (The Dehn–Nielsen–Baer theo-
rem says that this map is an isomorphism when S is closed.)

We define the kth Torelli group Ik(S) to be the kernel of Ψk restricted to
Mod(S). We have already seen the following.

I0(S) = Mod(S) I1(S) = I(S) I2(S) = K(S)

It is a theorem of Magnus that the intersection of the Γi is trivial [65, 137].
Using this fact, Bass and Lubotzky proved that the intersection of the Ik(S)
is trivial and so the Ik(S) give a filtration of I(S), that is, a descending
sequence of normal subgroups that intersect in the identity [12]. This filtra-
tion of I(S) is called the Johnson filtration. In the same way that the Torelli
group captures some mysterious aspects of the mapping class group, we can
think of the Johnson filtration as probing even more deeply.



Chapter Seven

Torsion

In this chapter we investigate finite subgroups of the mapping class group.
After explaining the distinction between finite-order mapping classes and
finite-order homeomorphisms, we then turn to the problem of determining
what is the maximal order of a finite subgroup of Mod(Sg). We will show
that, for g ≥ 2, finite subgroups have order at most 84(g − 1) and cyclic
subgroups have order at most 4g + 2. We will also see that there are finitely
many conjugacy classes of finite subgroups in Mod(S). At the end of the
chapter, we prove that Mod(Sg) is generated by finitely many elements of
order 2.

7.1 FINITE-ORDER MAPPING CLASSES VERSUS FINITE-ORDER

HOMEOMORPHISMS

In this section we will see that problems about finite-order mapping classes
can be converted to (easier) problems about finite-order homeomorphisms.

7.1.1 NIELSEN REALIZATION

Assume g ≥ 2 and suppose that G < Homeo+(Sg) is a finite subgroup.
It follows from Theorem 6.8 that the natural projection Homeo+(Sg) →
Mod(Sg) restricted to G is injective. That is, any finite subgroup of
Homeo+(Sg) is isomorphic to a finite subgroup of Mod(Sg).

What about the converse? Even the case of a single element is interesting.
Suppose f ∈Mod(S) has order k and suppose φ ∈ Homeo+(S) is any rep-
resentative of f . It follows from the definition of Mod(S) that φk is isotopic
to the identity. The question is whether or not φ can be chosen so that φk is
exactly the identity in Homeo+(S). The following classical theorem, due to
Fenchel and Nielsen, answers this question in the affirmative.

THEOREM 7.1 Let S = Sg,n and suppose χ(S) < 0. If f ∈ Mod(S) is
an element of finite order k, then there is a representative φ ∈ Homeo+(S)
so that φ has order k. Further, φ can be chosen to be an isometry of some
hyperbolic metric on S.
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Our proof of Theorem 7.1 relies on basic properties of Teichmüller space,
and so we relegate it to Section 13.2. The following theorem of Kerckhoff is
a generalization of Theorem 7.1 from finite cyclic groups to arbitrary finite
groups [122]. Its proof is much harder than the proof of Theorem 7.1 and is
beyond the scope of this book.

THEOREM 7.2 (Nielsen realization theorem) Let S = Sg,n and suppose
χ(S) < 0. Suppose G < Mod(S) is a finite group. Then there exists a finite
group G̃ < Homeo+(S) so that the natural projection Homeo+(S) →
Mod(S) restricts to an isomorphism G̃ → G. Further, G̃ can be chosen to
be a subgroup of isometries of some hyperbolic metric on S.

In other words, every finite subgroup of Mod(S) comes from a finite
subgroup of Homeo+(S).

Mapping class groups of surfaces with boundary are torsion-free. Re-
call that a frame at a point x ∈ S is a basis for the tangent space at x. If
∂S �= ∅, then any isometry that fixes ∂S pointwise must clearly fix each
frame at each point of ∂S. Since an isometry of a surface is determined by
what it does to a point and a frame, any such isometry is equal to the identity.

When ∂S �= ∅, our proof of Theorem 7.1 applies to produce an isometry
φ ∈ Homeo+(S) (not Homeo+(S, ∂S)) in the free homotopy class of f .
Using the fact that Dehn twists about components of ∂S have infinite order,
we obtain the following.

Corollary 7.3 If ∂S �= ∅, thenMod(S) is torsion-free.

Isometries of the torus. Since Mod(T 2) ≈ SL(2,Z), torsion in Mod(T 2)
is the same as torsion in SL(2,Z). The group SL(2,Z) has eight nontrivial
conjugacy classes of finite-order elements. There are elements of 2, 3, 4, and
6 given by the matrices(

−1 0
0 −1

)
,

(
0 −1
1 −1

)
,

(
0 −1
1 0

)
, and

(
0 1
−1 1

)
and their inverses. Each of these matrices can be realized as an isometry of
either the square torus or the hexagonal torus; compare Section 12.2.

Isometries of punctured spheres. Let S0,n be a sphere with n ≥ 3 punc-
tures and let f ∈ Mod(S0,n) be a finite-order element. By Theorem 7.1,
there is a hyperbolic metric on S0,n and a representative φ ∈ Homeo+(S0,n)
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of f so that φ acts by isometries. In particular, φ is a finite-order homeomor-
phism. What is more, we can fill in the punctures of S0,n and so regard φ as
a finite-order homeomorphism of the 2-sphere S2.

Now, any finite-order homeomorphism f of S2 is topologically conjugate
to an isometry of S2 in the standard round metric; see, for example, [128,
Section 2.2]. When f is a diffeomorphism, one can see this by averaging a
metric to obtain an f -invariant metric and then pulling back this f -invariant
metric to the round metric, which one can do by the uniformization theorem.
The conjugation of f by the uniformizing map will then act by isometries
on the round metric on S2.

Any orientation-preserving isometry of the round metric on S2 is a ro-
tation. Therefore, up to taking powers, there are exactly three conjugacy
classes of finite-order elements of Mod(S0,n) when n ≥ 4, since there are
0, 1, or 2 punctures on the axis of rotation. When n = 3, there are only two
nontrivial conjugacy classes since any element of Mod(S0,3) that fixes two
punctures must also fix the third.

7.1.2 DETECTING TORSION WITH THE SYMPLECTIC REPRESENTATION

Using Theorem 7.1, we can now prove Theorem 6.8, which states that if f ∈
Mod(Sg) has finite order, then its image under Ψ : Mod(Sg) → Sp(2g,Z)
is nontrivial.

Proof of Theorem 6.8. For g = 1, the theorem follows immediately from
Theorem 2.5, so assume g ≥ 2. By Theorem 7.1, the mapping class f is
represented by an element φ ∈ Diff+(Sg) of order n, where 1 < n < ∞.
Choose any Riemannian metric h on Sg. Average h by taking h + φ∗h +
· · · + (φn−1)∗h, which is a φ-invariant Riemannian metric on Sg. Thus φ
acts as an isometry in this metric.

Consider any fixed point x ∈ Sg of φ if one exists. Since φ is an isometry,
it is determined by its derivative Dφx at x, which is a 2 × 2 orthogonal
matrix. Since φ is orientation-preserving, the matrix Dφ has determinant 1.
Since φ is nontrivial, Dφx is a nontrivial rotation, and so x is an isolated
fixed point of φ of index 1.

Since φ is a continuous map with isolated fixed points, we can apply the
Lefschetz fixed point theorem, which says in this case that the sum M(φ)
of the indices of the fixed points of φ is equal to the Lefschetz number L(φ),
which is defined as

L(φ) =

2∑
i=0

(−1)iTrace(φ
 : Hi(Sg; Z)→ Hi(Sg; Z))

= 1− Trace(φ
 : H1(Sg; Z)→ H1(Sg; Z)) + 1.
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Since each fixed point of φ has index 1, it follows that M(φ) ≥ 0, so that
L(φ) ≥ 0. But since g ≥ 2, the matrix φ∗ cannot be the identity, for then its
trace would be at least 4, giving L(φ) < 0, a contradiction. Thus Ψ(f) = φ∗
is nontrivial, as desired. �

7.2 ORBIFOLDS, THE 84(g − 1) THEOREM, AND THE 4g + 2 THEO-

REM

By rotating a flat torus X in one circle factor by 2π/n, one obtains an isom-
etry of X of any order n. In contrast, the possible isometries of hyperbolic
surfaces are highly constrained. In this section we will prove two theorems
along these lines. The first result was proved in 1893 by Hurwitz. It bounds
the order of any finite group of hyperbolic isometries of a genus g ≥ 2
surface.

THEOREM 7.4 (84(g − 1) theorem) If X is a closed hyperbolic surface
of genus g ≥ 2, then

| Isom+(X)| ≤ 84(g − 1).

One remarkable aspect of Theorem 7.4 is that the number 84 appears
(why 84?) and yet the given bound is sharp in the sense that the 84(g − 1)
bound is realized for infinitely many g; see the discussion below.

The following theorem was proved in 1895 by Wiman [214].

THEOREM 7.5 (4g + 2 theorem) LetX be a closed hyperbolic surface of
genus g ≥ 2. Then any element of Isom+(X) has order at most 4g + 2.

The upper bound of Theorem 7.5 is attained for every g ≥ 2: we simply
realize Sg as a regular hyperbolic (4g+ 2)-gon with angle sum 2π and with
opposite sides identified, and we consider the rotation by one click.

Combining Theorems 7.2, 7.4, and 7.5 gives the following.

Corollary 7.6 Let g ≥ 2. The order of any finite subgroup of Mod(Sg) is
at most 84(g − 1), and the order of any finite cyclic subgroup of Mod(Sg)
is at most 4g + 2.

Since Theorem 7.1 is proved in Section 13.2, this book contains a com-
plete proof of the second statement of Corollary 7.6.
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7.2.1 THE ISOMETRY GROUP OF A CLOSED HYPERBOLIC SURFACE IS FI-
NITE

A first step toward obtaining upper bounds on the orders of finite subgroups
of isometry groups of surfaces is to show that these groups are finite to begin
with.

Proposition 7.7 Let X be a hyperbolic surface homeomorphic to Sg with
g ≥ 2. Then Isom(X) is finite in any hyperbolic metric.

Proof. The isometry group of any compact Riemannian manifold is a com-
pact topological group.1 This follows easily from the Arzela–Ascoli the-
orem. It therefore suffices to prove that Isom(X) is discrete or, what is
the same thing, that the connected component in Isom(X) of the identity
is trivial. Since the topology on Isom(X) agrees with the subspace topol-
ogy inherited from Homeo+(Sg), it is enough to prove that Isom(X) ∩
Homeo0(Sg) = {1}.

Suppose that φ ∈ Isom(X) ∩Homeo0(Sg). This says precisely that φ ∈
Isom(X) is isotopic to the identity. Then φ has a lift to Isom(H2) that is
a bounded distance from the identity map of H2. By the classification of
hyperbolic isometries, any such isometry is equal to the identity. Thus φ is
the identity, as desired. �

Proposition 7.7 is simply not true for the torus: the standard square torus
has infinitely many isometries. Indeed, the isometry group contains a copy
of S1×S1 ≈ T 2. On the other hand, these isometries all represent the trivial
element of Mod(T 2). In general, if X is any flat torus, then we still have
that Isom(X) is compact. From this it follows that the projection

Isom+(X) → Mod(X) = Mod(T 2)

has finite image.

7.2.2 ORBIFOLDS

As the hypothesis of Theorem 7.4, we are given a closed hyperbolic surface
X of genus g ≥ 2. The basic strategy of the proof of Theorem 7.4 is to study
the quotient space

Y = X/ Isom+(X).

When Isom+(X) acts freely on X, the quotient Y is itself a hyperbolic
surface. However, elements of Isom+(X) can have fixed points in X, so

1It is a theorem of Myers–Steenrod that the isometry group of a compact Riemannian
manifold is in fact a Lie group, but we will not need this.
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that it is not even clear that Y is a manifold (we will prove below that it is).
Since Isom+(X) is a finite group for g ≥ 2 (Proposition 7.7), the space Y
has a well-defined area given by

Area(Y ) = Area(X)/| Isom+(X)|.

By the Gauss–Bonnet theorem we have Area(X) = 2π(2g−2). Thus if we
find a universal lower bound on Area(Y ), we obtain a universal upper bound
on the order of Isom+(X). Theorem 7.10 gives that Area(Y ) ≥ π/21, and
we will use this to easily prove Theorem 7.4.

In order to prove that Area(Y ) ≥ π/21, we will need to better understand
the geometry of quotients of hyperbolic surfaces by (possibly nonfree) ac-
tions of finite groups. This is best accomplished via the theory of hyperbolic
orbifolds.

A 2-dimensional (orientable) hyperbolic orbifold2 is a quotient X/G,
where X is an orientable surface with a hyperbolic metric and G is a sub-
group of the finite group Isom+(X). Our main goal is to find an Euler char-
acteristic for orbifolds, to prove a Gauss–Bonnet theorem for orbifolds, and
to use these results to show that there is a universal lower bound of π/21 for
the area of any 2-dimensional orientable hyperbolic orbifold. As explained
above, applying this lower bound to the orbifold Y = X/ Isom+(X) gives
the 84(g − 1) theorem.

Orbifold fundamental group. By the orbifold fundamental group of an
orbifold X, we mean the deck transformation group of the universal cover
X̃ ≈ H2. Elements of the orbifold fundamental group of X can be repre-
sented by loops in X.

Cone points and signature. Let Y be any 2-dimensional hyperbolic orb-
ifold. Any point y ∈ Y has a neighborhood isometric to the quotient of an
open ball in H2 by a finite group of rotations Fy of H2. Under this isometry,
the point y is mapped to the fixed point of Fy . This follows from the fact
that any finite subgroup of Isom+(H2) is a finite group of rotations fixing
some point. If Fy is trivial, then y is called a regular point of Y ; if Fy is not
trivial, then y is called a cone point of order |Fy|. There are finitely many
cone points on a 2-dimensional hyperbolic orbifold.

If X is a 2-dimensional hyperbolic orbifold where the underlying topo-
logical surface (the surface obtained by forgetting the extra structure of the
cone points) is homeomorphic to Sg and where the cone points have orders

2What we are referring to as an orbifold is sometimes called a “good orbifold”; see [206,
Chapter 13].
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p1, p2, . . . , pm, then we define the signature of X to be the (m + 1)-tuple
(g; p1, p2, . . . , pm).

Orbifolds from hyperbolic triangle groups. We can use triangles in H2

to build examples of 2-dimensional orientable hyperbolic orbifolds as fol-
lows. Consider a triangle T in H2 with angles π/p, π/q, and π/r, where
p, q, r ∈ N and 1/p + 1/q + 1/r < 1. Each side of T can be extended to a
unique geodesic line in H2. Let Γ < Isom(H2) denote the group generated
by the reflections in these three geodesic lines. The elements of Γ that are
orientation-preserving form a subgroup Γ0 of index 2. Note that Γ0 contains
rotations about the vertices of T of orders p, q and r. By the Selberg lemma
[193] (or by a direct argument), Γ0 contains a normal, torsion-free subgroup
Γ1 of finite index. Note that Γ1 acts properly discontinuously and cocom-
pactly on H2 since Γ does. Since Γ1 is torsion-free, it also acts freely, so that
H2/Γ1 is a closed hyperbolic surface. By basic covering space theory this
surface admits an isometric action by the finite group Γ0/Γ1 with quotient
H2/Γ0. Thus H2/Γ0 is a 2-dimensional (orientable) hyperbolic orbifold. It
has signature (0; p, q, r).

We will see that the combinatorial data of signature is enough to deter-
mine the hyperbolic area of a 2-dimensional hyperbolic orbifold. This is es-
sentially the content of the Gauss–Bonnet theorem for orbifolds explained
below.

In order to get to that point, we will first need to find an Euler charac-
teristic for orbifolds. This invariant should agree with the classical Euler
characteristic when evaluated on surfaces and should be multiplicative with
respect to coverings. Of course, the key issue here is to find such a defini-
tion that gives a well-defined number; this is not trivial to do since there are
many coverings of and many finite group actions on hyperbolic surfaces. In
order to give the definition we will use the notion of orbifold covering maps.

Orbifold covering maps. By an isometry of a 2-dimensional hyperbolic
orbifold X, we mean an isometry of the metric space X. Such an isometry
necessarily is an isometry of X−{cone points} thought of as a Riemannian
manifold, and it takes cone points to other cone points of the same order.

A map X → Y between 2-dimensional hyperbolic orbifolds is a regular
d-fold orbifold covering map if it is a quotient map by an order d group of
orientation-preserving isometries of X.

For example, if Z is a hyperbolic surface and H �G < Isom+(Z), then
the orbifoldX = Z/H covers the orbifold Y = Z/G since Y is the quotient
of X by G/H:
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X = Z/H

Z

Y = Z/G

Consider a d-fold orbifold covering π : X → Y . The degree of π at a
point x is the order of the cone point π(x) divided by the order of the cone
point x. The sum of the degrees of π at the preimages of a given point y ∈ Y
is always equal to d. In other words, if the preimage of a cone point of order
p is a collection of cone points in X of orders q1, . . . , qk, then

k∑
i=1

p

qi
= d.

One way to see that this equality holds is to notice that π is a true covering
map away from the cone points and to consider a regular point close to y.

By summing over all cone points in Y , we have that if X has signature
(h; q1, . . . , qn) and Y has signature (g, p1, . . . , pm) and X → Y is a d-fold
cover, then

n∑
i=1

1

qi
= d

m∑
i=1

1

pi
. (7.1)

The Riemann–Hurwitz formula. We want to find an orbifold Euler char-
acteristic, that is, a function of the signature of an orbifold that is multiplica-
tive under orbifold covers.

Consider the 2-dimensional hyperbolic orbifold Y with signature
(g; p1, p2, . . . , pm). We think of constructing Y by starting with a closed
surface of genus g, removing m open disks, and gluing in “fractions of
disks.” This leads to the Riemann–Hurwitz formula, an Euler characteris-
tic for 2-dimensional orientable hyperbolic orbifolds. We define

χ(Y ) = (2− 2g) −m+

m∑
i=1

1

pi
(Riemann–Hurwitz formula).

First note that χ(Y ) clearly agrees with the classical Euler characteristic
when Y has no singular points.
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Proposition 7.8 (Multiplicativity of orbifold Euler characteristic) If π :
X → Y is a d-fold orbifold cover, then we have

χ(X) = dχ(Y ).

Proof. Denote the signatures of the orbifolds X and Y by (h; q1, . . . , qn)
and (g; p1, p2, . . . , pm), respectively. Let Y ◦ be the complement in Y of
disjoint open neighborhoods of the cone points of Y and letX◦ = π−1(Y ◦).
Note that X −X◦ is an open neighborhood of the cone points in X and that
π|X◦ : X◦ → Y ◦ is a d-fold covering map of surfaces. We now compute:

χ(X) = (2− 2h) − n+
n∑
i=1

1

qi

= χ(X◦) +

n∑
i=1

1

qi

= dχ(Y ◦) + d

m∑
i=1

1

pi

= d((2− 2g) −m) + d
m∑
i=1

1

pi

= dχ(Y ).

The first and fifth equalities follow from the Riemann–Hurwitz formula.
The third equality follows from (7.1) and the multiplicativity of the Euler
characteristic for surfaces. The second and fourth equalities follow from the
fact that deleting an open disk from a surface reduces the Euler characteristic
by 1. This completes the proof. �

The orbifold Gauss–Bonnet formula. The classical Gauss-Bonnet for-
mula for closed hyperbolic surfaces X gives that Area(X) = −2πχ(X).
For an orbifold Y that is the quotient of a hyperbolic surface X by a group
G of isometries, the area Area(Y ) is Area(X)/|G| (this agrees with the
area of Y −{cone points}, thought of as a Riemannian manifold). With this
generalized notion of area and the generalized notion of Euler characteristic
χ for orbifolds, the Gauss–Bonnet formula extends to hyperbolic orbifolds.

Proposition 7.9 (Orbifold Gauss–Bonnet formula) Suppose Y is a 2-
dimensional hyperbolic orbifold. If the signature of Y is (g; p1, p2, . . . , pm),
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then

Area(Y ) =−2πχ(Y )

=−2π

(
(2− 2g)−

m∑
i=1

(
1− 1

pi

))
.

Proof. Verifying this formula is easy, given the Gauss–Bonnet theorem for
surfaces and the multiplicativity of the orbifold Euler characteristic (Propo-
sition 7.8). Indeed, if Y = X/G, we have

Area(Y ) =
Area(X)

|G| = −2π
χ(X)

|G| = −2πχ(Y ).

�

The smallest 2-dimensional hyperbolic orbifold. Armed with the orbifold
Gauss-Bonnet formula, we are now able to find a lower bound on the area of
any 2-dimensional hyperbolic orbifold. As noted at the start of this section,
this will give the desired upper bound on the order of Isom+(X).

Theorem 7.10 If Y is any compact 2-dimensional (orientable) hyperbolic
orbifold, then χ(Y ) ≤ −1/42. Equivalently, Area(Y ) ≥ π/21. Further, the
orbifold with signature (0; 2, 3, 7) is the unique 2-dimensional hyperbolic
orbifold with Euler characteristic −1/42.

The fact that χ(Y ) ≤ −1/42 is equivalent to Area(Y ) ≥ π/21 follows
immediately from the orbifold Gauss-Bonnet formula (Proposition 7.9). To
construct the orbifold with signature (0; 2, 3, 7), simply choose any triangle
in H2 with angles π/2, π/3, and π/7, consider the group Γ generated by
the reflections in the unique lines containing its sides, and take the quotient
of H2 by the index 2 subgroup of Γ consisting of orientation-preserving
isometries.

Proof. We begin with a simple but useful observation. Any cone point has
order at least 2. Thus for each cone point of order p, the corresponding term
1− 1

p from the Riemann–Hurwitz formula is at least 1/2.
Assume that X is a 2-dimensional orientable hyperbolic orbifold with

χ(X) ≥ −1/42. We will rule out all possibilities for X except the hyper-
bolic orbifold with signature (0; 2, 3, 7). We accomplish this with a case-by-
case analysis, applying the Riemann–Hurwitz formula repeatedly.

We can immediately rule out that X has no cone points since in this case
χ(X) is a negative integer and so is less than −1/42. We can also dispense
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with all orbifolds X of genus greater than 1, since in this case χ(X) ≤ −2.
Similarly, any orbifold X of genus 1 must have at least one cone point in
order to be hyperbolic, and hence χ(X) ≤ −1/2. The case that X has
genus 0 and more than four cone points can be eliminated since in this case
χ(X) ≤ 2− 5 · 1/2 = −1/2.

Consider the case when X is genus 0 with four cone points. If X has
signature (0; 2, 2, 2, 2), then χ(X) = 0, contradicting the fact that X is
hyperbolic. If any of the four cone points of X has order greater than 2, then

χ(X) ≤ 2− 3 · 1/2 − 2/3 = −1/6 < −1/42.

We are now reduced to checking orbifolds X with genus 0 and three cone
points. If 3 is the smallest order of a cone point of X, then either χ(X) =
2− 3 · 2/3 = 0, contradicting the fact that X is hyperbolic, or

χ(X) ≤ 2− 2 · 2/3 − 3/4 = −1/12 < −1/42.

Thus we can assume that X has at least one cone point of order 2. We know
that X cannot have two cone points of order 2, for otherwise χ(X) > 0. If
X has no cone point of order 3, then χ(X) ≥ 2 − 1/2 − 2 · 3/4 = 0 (a
contradiction) or

χ(X) ≤ 2− 1/2− 3/4 − 4/5 = −1/20 < −1/42.

It now remains to check orbifolds X of signature (0; 2, 3, p). It is easy to
check that the smallest p for which χ(X) < 0 is p = 7. If p > 7, then
χ(X) < −1/42. Combining all of the observations above, we see that
χ(X) < −1/42 for every hyperbolic orbifold except for the hyperbolic
orbifold of signature (0; 2, 3, 7), which has Euler characteristic −1/42. �

7.2.3 PROOF OF THE 84(g − 1) THEOREM

As explained above, the 84(g − 1) theorem follows rather directly from the
inequality of Theorem 7.10.

Proof of the 84(g − 1) theorem. Let G = Isom+(X). By Proposition 7.7,
the group G is finite. Thus X/G is a 2-dimensional orientable hyperbolic
orbifold. By Theorem 7.10, we have

Area(X/G) ≥ π

21
,

and by the orbifold Gauss–Bonnet formula, this becomes

2π(2g − 2)

|G| ≥ π

21
,
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which gives the result. �

7.2.4 PROOF OF THE 4g + 2 THEOREM

LetX be a closed hyperbolic surface of genus g. In this subsection we prove
Wiman’s theorem (Theorem 7.5) that every element of Isom+(X) has order
at most 4g+2. As explained above, this bound is attained for every g ≥ 1 by
considering the rotations of the (4g+2)-gon about its center. The quotient of
X by this cyclic group of rotations is a 2-dimensional orientable hyperbolic
orbifold of signature (0; 2, 2g + 1, 4g + 2).

Let G be a cyclic subgroup of Isom+(X). To prove that |G| ≤ 4g + 2
we will apply a case-by-case analysis similar to the proof of the 84(g − 1)
theorem. In order to get a better upper bound than 84(g−1) for |G|, we will
of course have to exploit the fact that the orbifold covering map X → Y =
X/G is cyclic.

Lemma 7.11 Let X → Y be an orbifold covering with cyclic covering
group G < Isom+(X). Suppose that the signature of Y is (0; p1, . . . , pm).
Then for any 1 ≤ i ≤ m,

lcm(p1, . . . , pi−1, pi+1, . . . , pm) = |G|.

That is, the least common multiple of the orders of anym− 1 cone points is
equal to |G|.
Proof. The covering group over any 2-dimensional hyperbolic orbifold of
genus 0 with m cone points is generated by simple loops that go around any
m − 1 of the cone points. This is analogous to the fact that fundamental
groups of punctured spheres are generated by such loops. A simple loop
going around a cone point of order pi represents an element of order pi in
the covering group. The lemma now follows from the fact that the order
of a cyclic group is the least common multiple of the orders of any set of
generators. �

Proof of the 4g + 2 theorem. LetX be a closed hyperbolic surface of genus
g ≥ 2, let G < Isom+(X) be a cyclic subgroup, and let X → Y = X/G
be the induced orbifold covering map. Say that the orbifold signature of Y
is (h; p1, . . . , pm). Since the orbifold Euler characteristic is multiplicative
(Proposition 7.8), we have χ(X)/|G| = χ(Y ), which we write as

2g − 2

|G| = −χ(Y ). (7.2)

The proof proceeds as follows. We systematically go through all possibili-
ties for the signature of Y . For each signature that is not (0; 2, 2g+1, 4g+2),
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we will either show that the signature cannot possibly be the signature of a
quotient of X or show that |G| < 4g + 2. Sometimes the latter will be ac-
complished by showing that −χ(Y ) = (2g − 2)/|G| is at least 1/2 (note
that (2g − 2)/(4g + 2) < 1/2).

First suppose that h ≥ 1. By the Riemann–Hurwitz formula, we have

−χ(Y ) = 2h− 2 +
m∑
i=1

(
1− 1

pi

)
≥

m∑
i=1

(
1− 1

pi

)
.

If h = 1, thenm > 0 (otherwise Y is not hyperbolic), and so−χ(Y ) ≥ 1/2.
If h ≥ 2, then 2g − 2 ≥ 2, and so −χ(Y ) ≥ 2 > 1/2. Thus it remains to
consider orbifolds of signature (0; p1, . . . , pm), and so we can write

−χ(Y ) = −2 +

m∑
i=1

(
1− 1

pi

)
. (7.3)

Suppose that m ≥ 5. Again, since (1 − 1/pi) ≥ 1/2 for each i, we have
−χ(Y ) ≥ 1/2. It follows easily from the Riemann–Hurwitz formula that a
2-dimensional hyperbolic orbifold of genus 0 must have at least three cone
points. Thus we may assume that m = 3 or m = 4.

First we treat the case m = 4. In this case, (7.2) and (7.3) give

2g − 2

|G| = 2−
(

1

p1
+

1

p2
+

1

p3
+

1

p4

)
.

Say that p1 ≤ p2 ≤ p3 ≤ p4. If p3 ≥ 4, then p4 ≥ 4, and we again find
−χ(Y ) ≥ 1/2. If p3 = 3, then p1 ≤ 3 and p2 ≤ 3, and so lcm(p1, p2, p3)
is equal to 3 or 6. Applying Lemma 7.11 then gives that |G| is equal to 3
or 6. In either case, |G| < 4g + 2 since g ≥ 2. Finally, if p3 = 2, then
p1 = p2 = p3 = 2, and Lemma 7.11 gives that |G| = 2.

It remains to consider orbifolds of signature (0; p1, p2, p3). Now (7.2) and
(7.3) give

2g − 2

|G| = 1−
(

1

p1
+

1

p2
+

1

p3

)
. (7.4)

As above, we assume p1 ≤ p2 ≤ p3. We deal with two subcases, according
to whether or not p1 divides p2.

If p1 divides p2, then lcm(p1, p2) = p2, and Lemma 7.11 gives p2 = |G|.
Lemma 7.11 also gives lcm(p2, p3) = p2. Since p3 ≥ p2, we have p2 =
p3 = |G|. Substituting |G| for p2 and p3 in (7.4) and simplifying, we obtain

2g = |G|
(

1− 1

p1

)
.
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Since 1/2 ≤ 1− 1/p1 < 1, it follows that 2g < |G| ≤ 4g.
Finally, we treat orbifolds of signature (0; p1, p2, p3) where p1 does not

divide p2. If p1 ≥ 6, then (7.4) gives −χ(Y ) ≥ 1/2, and so we may assume
p1 ≤ 5; in particular, p1 is either 2, 3, 4, or 5. An elementary case-by-case
argument using Lemma 7.11 then gives that |G| = lcm(p1, p2) is equal
to p3 (this means that G has a fixed point at the cone point of order p3).
Substituting |G| for p3 in (7.4) and simplifying, we obtain

2g − 1 = |G|
(

1− 1

p1
− 1

p2

)
. (7.5)

If p1 ≥ 4, then the right-hand side of (7.5) is at least |G|/2, and so |G| ≤
4g − 2. If p1 = 3, then Lemma 7.11 gives that p2 = |G|/3. Plugging into
(7.5) then gives |G| = 3g + 3, which is strictly less than 4g + 2 for g ≥ 2.
Finally, if p1 = 2, then Lemma 7.11 implies that p2 = |G|/2, and we find
that |G| = 4g + 2. This is exactly the case where the quotient orbifold has
signature (0; 2, 2g + 1, 4g + 2), as desired. �

Combined with the results of Section 10.5, our proof of the 4g+2 theorem
really proves a stronger result, namely, that (up to isometry) there is only one
hyperbolic structure X on Sg that admits a symmetry of order 4g + 2, and
moreover the corresponding element of Mod(Sg) is unique up to conjugacy
(cf. Theorem 7.14 below).

7.3 REALIZING FINITE GROUPS AS ISOMETRY GROUPS

The 84(g − 1) theorem gives a restriction on those finite groups that can act
effectively by isometries on some hyperbolic surface of genus g ≥ 2. One
can ask for a sort of converse: can any given group be realized as a group
of isometries of some closed hyperbolic surface? If so, what is the smallest
genus of such a surface?

THEOREM 7.12 Let G be any finite group. Then G can be realized as a
subgroup ofMod(Sg) for some g ≥ 2. In fact,G is a subgroup of Isom+(X)
for some hyperbolic surface X ≈ Sg.

We give two proofs of Theorem 7.12, one using geometric group theory
and one using covering spaces.

First proof of Theorem 7.12. Let G be a nontrivial finite group and let Γ be
the Cayley graph of G with respect to any generating set. Let Sg be the
surface obtained as follows. We start by taking one torus for each vertex of
Γ. Then, for each edge of Γ, we perform a connect sum operation on the
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corresponding tori. The result is a closed surface Sg. Since G is nontrivial,
the graph Γ has at least two vertices, and so g ≥ 2.

The action by G on Γ on the left by automorphisms induces an action
of G on Sg by orientation-preserving homeomorphisms. We prove in The-
orem 6.8 below that the natural projection Homeo+(Sg) → Mod(Sg) is
faithful when restricted to any finite subgroup. (Alternatively, to see that the
action is faithful, we can notice that the action of G on H1(Sg; Z) is faithful
since there is a torus for each vertex of Γ and each torus carries a nontrivial
subspace of H1(Sg; Z).)

As mentioned above, any finite group G of homeomorphisms of Sg,
where g ≥ 2, preserves some hyperbolic metric on Sg: one just averages
any metric to obtain a G-invariant metric, uniformizes that metric, and then
conjugates the G-action by this uniformizing map to obtain a G-invariant
hyperbolic metric. �

We note that it is possible to perturb any G-invariant hyperbolic metric
within the space of hyperbolic metrics so that G = Isom+(X) for some
hyperbolic metric X.

Second proof of Theorem 7.12. Let S0,n+1 be a sphere with n+1 punctures,
where n is the size of some generating set for G. Since π1(S0,n+1) is a
free group on n letters, it surjects onto G, and so there is a covering map
S′ → S0,n+1 with covering group G. We can fill in the punctures of S′ to
get a closed surface Sg on which G acts effectively by homeomorphisms.
(An alternative way to obtain that the action of G is effective is to modify
the surface Sg by adding extra handles equivariantly; it is then clear that
each element of G acts nontrivially on the first homology of the resulting
surface.) As in the previous proof, this proves the theorem. �

For a classical treatment of the problem of understanding finite-group
actions on surfaces, see [41, Chapter XII].

It is natural to ask how often the bound of 84(g − 1) in Theorem 7.4
is realized. It is a classical fact that it is realized for infinitely many g and
not realized for infinitely many g. One can find infinitely many g ≥ 2 for
which there is a closed genus g hyperbolic surface X with | Isom+(X)| =
84(g − 1) as follows. Consider the quotient of H2 by the congruence group
PSL(2,Z)[7] (see Chapter 6 below) and fill in the punctures of the result-
ing surface. This gives a closed surface admitting a hyperbolic metric. This
surface X is known as the Klein quartic surface. It has genus 3. A straight-
forward but detailed analysis gives that

| Isom+(X)| = 168 = 84(3 − 1).



TORSION 215

The group PSL(2,Z)[7] acts on the Farey complex, and the resulting tri-
angulation on the Klein quartic surface is exactly the fundamental domain
for the action of the isometry group. Examples of surfaces in higher genus
realizing the 84(g − 1) bound are obtained by simply taking normal covers
of this one. Larsen proved the remarkable result that the frequency of g for
which the bound 84(g − 1) is attained is the same as the frequency of the
perfect cubes in the integers [129].

7.4 CONJUGACY CLASSES OF FINITE SUBGROUPS

We have seen above that a finite subgroup of Homeo+(Sg) gives rise to an
orbifold covering map X → Y , where X is a hyperbolic surface homeo-
morphic to Sg. If we have two orbifold coverings X → Y and X ′ → Y ′,
where X,X ′ ≈ Sg, then a necessary condition for the covering groups to be
conjugate in Homeo+(Sg) is that Y and Y ′ have the same signature. How-
ever, this is not sufficient, even in the case where Y and Y ′ have no cone
points. Indeed, we also need for the maps from the orbifold fundamental
groups of Y and Y ′ to the deck group to be the same, up to precomposition
by an automorphism of the orbifold fundamental group.

By the Riemann–Hurwitz formula, there are finitely many orbifolds that
can be covered by a fixed Sg. The fundamental group of each such orbifold
has finitely many homomorphisms onto some fixed finite group. Finally, by
the orbifold Gauss–Bonnet formula and the fact that area is multiplicative
under orbifold covers, the order of the deck transformation group of Sg over
a fixed orbifold is completely determined. We thus deduce the following.

Theorem 7.13 Let g ≥ 2. There are finitely many conjugacy classes of
finite subgroups in Homeo+(Sg). In particular, there are finitely many con-
jugacy classes of finite-order elements in Homeo+(Sg).

If we then quote the Nielsen realization theorem (Theorem 7.2), we obtain
the following.

Theorem 7.14 Let g ≥ 2. There are finitely many conjugacy classes of fi-
nite subgroups inMod(Sg). In particular, there are finitely many conjugacy
classes of finite-order elements inMod(Sg).

Uniqueness of hyperelliptic involutions. In Chapter 2, we said that the
element of Mod(Sg) obtained by reflecting a regular (4g + 2)-gon through
its center is called a hyperelliptic involution. A more sophisticated definition
of a hyperelliptic involution is that it is an order 2 element of Mod(Sg) that
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acts by −I on H1(Sg; Z). In what follows we take this new definition of a
hyperelliptic involution.

As an illustration of the above criterion for distinguishing conjugacy
classes of finite subgroups, we have the following.

Proposition 7.15 Let g ≥ 1. Any two hyperelliptic involutions inMod(Sg)
are conjugate.

Proof. First note that the quotient orbifold corresponding to a hyperelliptic
involution must have genus 0, otherwise the involution permutes handles of
Sg and hence does not act by −I on H1(Sg; Z). By the Riemann–Hurwitz
formula, the quotient has 2g+2 cone points of order 2. The involution is then
determined by the homomorphism from this orbifold fundamental group to
Z/2Z. But each generator must map nontrivially to Z/2Z, for otherwise
the cover, which is supposed to be Sg, would have cone points. Therefore,
there is only one possible homomorphism and hence one conjugacy class of
hyperelliptic involutions. �

The element of Mod(Sg) obtained by reflecting a (4g+2)-gon through its
center has order 2, and it acts by−I onH1(Sg; Z). The element of Mod(Sg)
depicted in Figure 2.3 also has these properties, and so it, too, is a hyperel-
liptic involution. By Proposition 7.15, these mapping classes are conjugate.

Proposition 7.15 implies that we could alternatively define hyperelliptic
involutions as the (homotopy classes of) order 2 homeomorphisms with 2g+
2 fixed points.

Recall from the discussion after Theorem 3.10 that the hyperelliptic in-
volutions in Mod(T 2) and Mod(S2) are central. So in these cases the hy-
perelliptic involution is not only unique up to conjugacy but is completely
unique. For g ≥ 3, there are infinitely many hyperelliptic involutions in
Mod(Sg).

7.5 GENERATING THE MAPPING CLASS GROUPWITH TORSION

We conclude this chapter with the following curious theorem of Feng Luo
[132]. By an involution in a group we simply mean any element of order 2.

THEOREM 7.16 For g ≥ 3, the group Mod(Sg) is generated by finitely
many involutions.

Proof. Theorem 4.1 states that Mod(Sg) is generated by finitely many Dehn
twists about nonseparating simple closed curves. So to prove the theorem
it suffices to show that every Dehn twist about a nonseparating curve is a
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product of involutions. By the change of coordinates principle and Fact 3.7,
any two twists about nonseparating curves are conjugate, so it suffices to
prove that any specific such twist is the product of involutions.

Recall from Section 5.1 that, since g ≥ 3, we can find a lantern relation

TxTyTz = TaTbTcTd

where each of the seven simple closed curves in the relation is nonseparating
(cf. Figure 5.5). What is more, we can arrange that each of x∪ a, y ∪ b, and
z ∪ c is nonseparating.

To prove the theorem, we only need to show that Td is a product of invo-
lutions. Using the fact that each of Ta , Tb, and Tc commutes with each of
Tx, Ty, and Tz , we can rewrite the above lantern relation as

(TxT
−1
a )(TyT

−1
b )(TzT

−1
c ) = Td.

The theorem is now reduced to showing that if {u, v} is a pair of simple
closed curves in Sg where u∪v is nonseparating, then TuT−1

v is a product of
involutions. Indeed, it then follows from the change of coordinates principle
that each of TxT−1

a , TyT
−1
b , and TzT−1

c is a product of involutions, and then
so is Td.

Let u and v be curves in Sg as above. We claim that there is an involution
f ∈ Mod(Sg) interchanging u and v. Indeed, there is an involution of Sg
interchanging the simple closed curves s and t in Figure 7.1. Our claim then
follows from the change of coordinates principle.

s t

Figure 7.1 Rotation by π is an involution of Sg interchanging s and t.

Since f(u) = v and since f = f−1, we can use Fact 3.7 to write

TuT
−1
v = Tu(fT

−1
u f).

By simply changing the parentheses on the right-hand side of the last equa-
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tion we have

TuT
−1
v = (TufT

−1
u )f.

We know that f is an involution by assumption, and so TufT−1
u is an invo-

lution since it is conjugate to f . Thus TuT−1
v is a product of two involutions,

and we are done. �

Luo asked if there was a universal bound on the number of torsion el-
ements needed to generate Mod(Sg). Korkmaz showed that Mod(Sg) can
actually be generated by two torsion elements, which is obviously optimal
[125]. Building on work of Brendle–Farb, Kassabov proved that Mod(Sg)
is generated by four involutions when g ≥ 7 [32, 117]. Now Mod(Sg) does
not have a finite-index cyclic subgroup, so it is not generated by two invo-
lutions. The question of whether or not Mod(Sg) can be generated by three
involutions remains open.



Chapter Eight

The Dehn–Nielsen–Baer Theorem

The Dehn–Nielsen–Baer theorem states that Mod(Sg) is isomorphic to an
index 2 subgroup of the group Out(π1(Sg)) of outer automorphisms of
π1(Sg). This is a beautiful example of the interplay between topology and
algebra in the mapping class group. It relates a purely topological object,
Mod(Sg), to a purely algebraic one, Out(π1(Sg)). Further, these are related
via hyperbolic geometry!

8.1 STATEMENT OF THE THEOREM

We begin by defining the objects in the statement of the theorem.

Extended mapping class group. Let S be a surface without boundary. The
extended mapping class group, denoted Mod±(S), is the group of isotopy
classes of all homeomorphisms of S, including the orientation-reversing
ones.1 The group Mod(S) is an index 2 subgroup of Mod±(S). There is
a homomorphism Mod±(S)→ Z/2Z which records whether or not an ele-
ment is orientation-preserving, and we have the short exact sequence

1→ Mod(S)→ Mod±(S)→ Z/2Z→ 1.

For any S, there is an order 2 element of Mod±(S) that reverses orientation,
and so this sequence is split.

As a first example, we have Mod±(S2) ≈ Z/2Z. Also, it follows from
the fact that Mod(T 2) ≈ SL(2,Z) (Theorem 2.5) that

Mod±(T 2) ≈ GL(2,Z).

1For the surfaces S0,1 and S0,2, we must be careful to define Mod±(S) as the group of
isotopy classes of homeomorphisms; for these surfaces, every homeomorphism is homotopic
to an orientation-preserving homeomorphism.
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Similarly, we have

Mod±(S0,3)≈Σ3 × Z/2Z

Mod±(S0,4)≈PGL(2,Z) � (Z/2Z × Z/2Z)

Mod±(S1,1)≈GL(2,Z).

We remark that, the way we have defined things, we do not automatically
have a definition of the extended mapping class group for a surface S with
boundary since a homeomorphism that is the identity on ∂S is necessarily
orientation-preserving.

Outer automorphism groups. For a groupG, let Aut(G) denote the group
of automorphisms of G. For any h ∈ G, there is an associated inner auto-
morphism Ih : G→ G given by

g 
→ hgh−1

for all g ∈ G. For Φ ∈ Aut(G) and h ∈ G, we have

Φ ◦ Ih ◦ Φ−1 = IΦ(h).

Thus the inner automorphisms form a normal subgroup of Aut(G), called
the inner automorphism group of G, denoted Inn(G).

The outer automorphism group of G is defined as the quotient

Out(G) = Aut(G)/ Inn(G).

In other words, Out(G) is the group of automorphisms of G considered up
to conjugation. Note that while an element of Out(G) does not act on the
set of elements in G, it does act on the set of conjugacy classes of elements
in G.

A natural homomorphism. Let S be a surface with χ(S) ≤ 0. The uni-
versal cover of S is contractible, and so S is a K(π1(S), 1)-space. We thus
have a correspondence:{

Free homotopy classes of
(unbased) maps S → S

}
←→

{
Conjugacy classes of homo-
morphisms π1(S)→ π1(S)

}
Let p ∈ S. Given a map φ : S → S and a path γ from p to φ(p), we obtain
a homomorphism φ∗ : π1(S, p) → π1(S, p) as follows. For a loop α based
at p, we set

φ∗([α]) = [γ ∗ φ(α) ∗ γ−1].
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For fixed φ, different choices of γ give rise to maps φ∗ that differ by conju-
gation.

If φ is a homeomorphism, then it is invertible, and so φ∗ is an automor-
phism. It follows that we have a well-defined homomorphism

σ : Mod±(S)→ Out(π1(S))

which is injective by the correspondence given above. We have the follow-
ing remarkable theorem.

THEOREM 8.1 (Dehn–Nielsen–Baer) Let g ≥ 1. The homomorphism

σ : Mod±(Sg) −→ Out(π1(Sg))

is an isomorphism.

As noted above, the proof of Theorem 8.1 reduces to the statement that σ
is surjective. The original proof of this is due to Dehn [51], although Nielsen
was the first to publish a proof [168]. Baer was the first to prove injectivity.

Note that in the case g = 1, the Dehn–Nielsen–Baer theorem recovers the
fact that Mod±(T 2) ≈ GL(2,Z). Note too that the statement of the theorem
does not hold when g = 0 since

Mod±(S2) ≈ Z/2Z �≈ 1 ≈ Out(π1(S
2)).

Action on the fundamental class. The action of Mod±(Sg) on
H2(Sg; Z) ≈ Z and the action of Out(π1(Sg)) on H2(π1(Sg); Z) ≈ Z are
related by the Dehn–Nielsen–Baer theorem in the sense that the following
diagram is commutative.

Mod±(Sg)
≈

Out(π1(Sg))

Z/2Z ≈ Out(H2(Sg; Z))
≈

Out(H2(π1(Sg); Z))

An element of Mod±(Sg) is orientation-preserving if and only if the in-
duced element of Out(H2(Sg; Z)) is trivial. This gives an algebraic charac-
terization of Mod(Sg) inside Mod±(Sg): it is the subgroup of Out(π1(Sg))
that acts trivially on H2(π1(Sg); Z).

The case of punctured surfaces. The Dehn–Nielsen–Baer theorem does
not hold as stated for surfaces with punctures. For example, let S0,3 be the
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thrice-punctured sphere. We have π1(S0,3) ≈ F2, the free group on two gen-
erators. Also, it is a theorem of Nielsen that Out(F2) ≈ GL(2,Z); see [133,
Proposition 4.5] or [20, Section 5.3]. Thus Out(π1(S0,3)) ≈ GL(2,Z), but,
as above, Mod±(S0,3) is isomorphic to the finite group Σ3 × Z/2Z.

For punctured surfaces, we will see in Theorem 8.8 below that Mod±(S)
is isomorphic to the subgroup of Out(π1(S)) that preserves the collection
of conjugacy classes of elements corresponding to punctures of S (the prim-
itive parabolic elements).

8.2 THE QUASI-ISOMETRY PROOF

Dehn’s original proof of the Dehn–Nielsen–Baer theorem uses the notion of
quasi-isometry. Again, the goal is to show that each element of Out(π1(Sg))
is induced by an element of Mod±(Sg). The key step is to show that an
element of Out(π1(Sg)), which a priori preserves only algebraic proper-
ties/objects, must in fact preserve topological ones. For example, the first
step in the proof will be to prove that an element of Out(π1(Sg)) must re-
spect the topological property of whether or not the free homotopy classes
of two simple closed curves have geometric intersection number 0. We will
prove this by studying the behavior of π1(Sg) “at infinity” in H2.

8.2.1 METRICS ON π1(S)

Let G be a group with a fixed finite generating set S . The Cayley graph
Γ(G,S) for G with respect to S is the abstract graph with a vertex for each
element g ∈ G and an edge between the vertices g and gs if s ∈ S or
s−1 ∈ S . The group G acts on Γ(G,S) on the left by graph automorphisms.

There is a natural metric on Γ(G,S) given by taking each edge to have
length 1 and putting the path metric on Γ(G,S), whereby the distance be-
tween two points is the length of the shortest path between them. Restricting
this metric to the vertices of Γ(G,S) gives a G-invariant metric on G called
the word metric on G with respect to S . For g ∈ G, the distance dS(1, g) is
called the word length of g. By left invariance, for any g, h ∈ G, the distance
dS(g, h) is the word length of g−1h.

For a surface S with χ(S) < 0, another way to get a metric on π1(S)
is to choose a covering map H2 → S that endows S with a hyperbolic
metric (recall that, by “hyperbolic metric,” we mean a complete, finite-area
Riemannian metric with constant curvature −1). If we fix a basepoint in
S, its set of lifts to H2 are in bijection with elements of π1(S). We can
therefore define the hyperbolic distance between two elements of π1(S) as
the hyperbolic distance between the corresponding lifts.
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Clearly, the word metric on π1(S) depends on the choice of generating
set, and the hyperbolic metric on π1(S) depends on the choice of covering
map. We would like to understand what properties of the metric do not de-
pend on these choices. In short, the answer is that all choices give metrics
that look the same, up to a universally bounded stretch, at large scales. This
brings us to the notion of quasi-isometry.

8.2.2 QUASI-ISOMETRIES

A function f : X → Y between metric spaces (X, dX ) and (Y, dY ) is a
quasi-isometric embedding if there are constants K and C so that

1

K
dX(x, x′)− C ≤ dY (f(x), f(x′)) ≤ KdX(x, x′) +C

for any choice of x and x′ in X. We say that f is a quasi-isometry if there is
a constant D so that the D-neighborhood of f(X) is equal to Y . In this case
we say that X and Y are quasi-isometric. Quasi-isometry is an equivalence
relation on metric spaces.

There is a more symmetric definition of quasi-isometry, as follows. Two
metric spaces (X, dX ) and (Y, dY ) are quasi-isometric if and only if there
are maps f : X → Y and f : Y → X and constants K , C , and D such that

dY (f(x), f(x′)) ≤ KdX(x, x′) +C dX(f(y), f (y′)) ≤ KdY (y, y′) +C

and

dX(f ◦ f(x), x) ≤ D dY (f ◦ f(y), y) ≤ D

for all x, x′ ∈ X and y, y′ ∈ Y .
As a first exercise, one can show that given two word metrics on the same

finitely generated group G, the identity map G → G is a quasi-isometry.
This fact also follows from the first statement of Theorem 8.2; see Corol-
lary 8.3 below.

8.2.3 THE FUNDAMENTAL OBSERVATION OF GEOMETRIC GROUP THEORY

The following theorem, sometimes called the Milnor–Švarc lemma, is one
of the most basic theorems in geometric group theory. It first appeared in
the work of Efremovic̆ [55], S̆varc [202], and Milnor [158].

Recall that the action of a group G on a topological space X is properly
discontinuous if, for each compact K in X, the set {g ∈ G : (g ·K)∩K �=
∅} is finite. Let X be some metric space. The space X is proper if closed
balls in X are compact. A geodesic in X is a distance-preserving map of a
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closed interval into X. Finally, X is a geodesic metric space if there exists
a geodesic connecting any two points in X.

THEOREM 8.2 (Fundamental oberservation of geometric group theory)
Let X be a proper geodesic metric space and suppose that a group G
acts properly discontinuously on X via isometries. If the quotient X/G is
compact, then G is finitely generated and G is quasi-isometric to X. More
precisely, there is a word metric for G so that, for any point x0 ∈ X, the
map

G→ X
g 
→ g · x0

is a quasi-isometry.

One example of the phenomenon described in Theorem 8.2 is given by
the action by deck transformations of a compact Riemannian manifold on
its universal cover.

Proof. Let x0 be some fixed basepoint of X. Since the action of G on X is
properly discontinuous, the metric on X induces a metric on X/G. Indeed,
the distance between two points in the quotient is the infimum of the dis-
tances between any two of their preimages; the proper discontinuity implies
the infimum is a minimum. As X/G is compact, it has finite diameter R. It
follows that X is covered by the G-translates of B = B(x0, R), the ball of
radius R about x0. Let

S = {g ∈ G : g �= 1 and g ·B ∩B �= ∅}.

By the properness of X and the proper discontinuity of the action of G on
X, the set S is finite.

Let d denote the metric on X. We define

λ = max
s∈S

d(x0, s · x0) and r = inf{d(B, g ·B) | g /∈ S ∪ {1}}.

Note that, since the action of G is properly discontinuous and since X is
proper, r is actually a minimum.

If r = 0, then G is finite, and the theorem is trivial in this case. So we
may assume r > 0.

Let g ∈ G. As X is geodesic, it is in particular path-connected. Given a
path from x0 to g · x0, we can choose points x1, . . . , xn = g · x0 along this
path so that d(xi, xi+1) < r. Since the {g · B} cover X, we may choose
g1, . . . , gn ∈ G so that xi ∈ gi · B. If we set g0 = 1 and si = g−1

i−1gi, we
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have that s1s2 · · · sn = g. We have

d(si ·B,B) = d(g−1
i−1gi ·B,B) = d(gi · B, gi−1 ·B) ≤ d(xi, xi−1) < r.

By the definition of r, we see that si ∈ S ∪ {1} for all i. Thus S generates
G, and G is finitely generated.

We will now show that the map g 
→ g · x0 defines a quasi-isometric
embedding G → X, where G is given the word metric associated to S . In
other words, we will show that for g1, g2 ∈ G we have

1

λ
d(g1 · x0, g2 · x0) ≤ dS(g1, g2) ≤

1

r
d(g1 · x0, g2 · x0) + 1.

Since G acts by isometries on itself and on X, this is equivalent to the state-
ment that

1

λ
d(x0, g · x0) ≤ dS(1, g) ≤

1

r
d(x0, g · x0) + 1

for any g ∈ G (substitute g−1
1 g2 for g). In our definition of a quasi-isometric

embedding, one can take K = max{λ, 1
r} and C = 1. The constant C

cannot be taken to be 0 because, for instance, g could be in the stabilizer of
x0.

The inequality 1
λd(x0, g · x0) ≤ dS(1, g) follows immediately from the

triangle inequality, the definitions of S and λ, and the fact that s ∈ S if and
only if s−1 ∈ S . Thus “short” paths in G give rise to short paths in X.

We must now show that short paths in X correspond to short paths in
G. Precisely, we will prove the inequality dS(1, g) ≤ 1

rd(x0, g · x0) + 1.
The argument is a souped-up version of the argument that S generates
G. Let g ∈ G. Since X is geodesic, we may find a geodesic of length
d(x0, g · x0) connecting x0 to g · x0. Let n be the smallest integer strictly
greater than d(x0, g · x0)/r, so n ≤ d(x0, g · x0)/r + 1. We can find
points x1, . . . , xn−1, xn = g · x0 in X so that d(xi, xi+1) < r for
0 ≤ i ≤ n − 1. Since the G-translates of B cover X, we can choose el-
ements 1 = g0, g1 . . . , gn−1, gn = g of G so that xi ∈ gi · B. If we set
si = g−1

i−1gi, then g = s1 · · · sn. Again, by the definition of r, we have
si ∈ S , and so the word length of g is at most n. In summary, we have

d(1, g) ≤ n ≤ 1

r
d(x0, g · x0) + 1,

which is what we wanted to show.
By the definition of R, the R-neighborhood of the image of G is all of X,

and so the quasi-isometric embedding G→ X is a quasi-isometry. �
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Applications to Cayley graphs. Any Cayley graph for a finitely generated
group is a proper, geodesic metric space. Thus, by considering the action of
a group G on an arbitrary Cayley graph for G, we obtain the following fact.

Corollary 8.3 For any two word metrics on a finitely generated group G,
the identity map G→ G is a quasi-isometry.

The following corollary of Corollary 8.3 represents the first step in our
proof of the Dehn–Nielsen–Baer theorem.

Corollary 8.4 Any automorphism of a finitely generated group is a quasi-
isometry.

By Corollary 8.3, we do not need to specify which word metric we are
using in the statement of Corollary 8.4.

Proof. Let Φ : G → G be an automorphism of a finitely generated group
G and let S be a finite generating set for G. Since Φ is an automorphism,
we have that Φ−1(S) = {Φ−1(s) : s ∈ S} is a finite generating set for G.
What is more, we have

dS(Φ(g),Φ(h)) = dΦ−1(S)(g, h).

In other words, the amount word length inG is stretched under the map Φ is
equivalent to the amount of stretch word length undergoes when changing
the finite generating set. The result now follows immediately from Corol-
lary 8.3. �

Combining Theorem 8.2 and Corollary 8.3, we have that any two word
metrics on π1(Sg) are quasi-isometric, and for g ≥ 2, each word metric
is quasi-isometric to each hyperbolic metric on π1(Sg). What is more, the
quasi-isometry in each case is the identity map. In other words, there is
only one natural metric on π1(Sg) up to the equivalence relation of quasi-
isometry. Thus in our arguments we will be able to switch back and forth
between word metrics and hyperbolic metrics. For instance, Corollary 8.4
is proved using the word metric, and then it is applied in the proof of
Lemma 8.5, where we use a hyperbolic metric on π1(Sg).

Now that we have a well-defined metric on π1(Sg), we can begin our
study of its large-scale behavior.
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8.2.4 LINKING AT INFINITY

Let S be a hyperbolic surface. We say that an element of π1(S) is hyperbolic
if the corresponding deck transformation is a hyperbolic isometry of H2. Re-
call that the axis of a hyperbolic element α of π1(S) has a pair of endpoints
∂α lying in ∂H2. Two hyperbolic elements α, β of π1(S) are linked at in-
finity if ∂α and ∂β are linked in ∂H2 ≈ S1, that is, if the pair ∂α separates
the pair ∂β (and vice versa).

A priori this notion depends on the choice of hyperbolic metric on S. One
can prove that actually the property of being linked at infinity is independent
of the choice of metric. For simplicity, though, we will use a fixed covering,
so there is no ambiguity.

Lemma 8.5 Let g ≥ 2 and let H2 → Sg be a fixed covering map. Let Φ
be an automorphism of π1(Sg) and let γ and δ be nontrivial elements of
π1(Sg). Then the elements Φ(γ) and Φ(δ) are linked at infinity if and only
if γ and δ are linked at infinity.

Proof of Lemma 8.5. Since Sg is a closed hyperbolic surface, all nontrivial
elements are hyperbolic, and so it makes sense to talk about linking at infin-
ity. Because Φ is invertible, it suffices to show that if γ and δ are not linked at
infinity, then Φ(γ) and Φ(δ) are not linked at infinity. Also, we may assume
that γ and δ do not share an axis since having the same axis is equivalent
to having equal (nontrivial) powers, and this property is preserved by the
automorphism Φ.

By Corollary 8.4, Φ is a quasi-isometry of π1(Sg). Say that with respect
to the hyperbolic metric coming from the fixed covering H2 → Sg, the
quasi-isometry constants are K ≥ 1 and C ≥ 0. Let D be the diameter of
some fixed fundamental domain for π1(Sg) in H2.

Fix some R > 2DK2 + 2CK. Let x0 some fixed basepoint for H2 and
consider the orbit

Oγ = {γk · x0 : k ∈ Z}.

Connect the points ofOγ by an infinite piecewise-geodesic path, where each
segment of the path connects two points in the orbit of x0 that lie in adjacent
fundamental domains and where the entire path lies in some fixed metric
neighborhood of the axis for γ. We can denote such a path by its set of
vertices, say {αi}.

Since γ and δ are unlinked hyperbolic isometries of H2, and since the
path {αi} lies in a metric neighborhood of the axis for γ, we may choose an
N = N(R) so that each point of

OδN = {(δN )k · x0 : k ∈ Z, k �= 0}
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has a distance at least R + D from each point of Oγ . Note that OδN is
not the entire orbit of x0 under δN since it is missing the point x0. We can
connect the points of OδN by a piecewise-geodesic path {βi} where each βi
is in the orbit of x0, so that the path {βi} stays a hyperbolic distance at least
R from the path {αi} and so that consecutive vertices βi and βi+1 lie in
adjacent fundamental domains. To find the βi, we start with any bi-infinite
continuous path that connects the points of OδN and stays outside the (R+
D)-neighborhood of the path {αi}, and we keep track of the fundamental
domains through which this path passes.

For both of the paths we just constructed, the length of each geodesic
segment is at most 2D (any pair of points in adjacent fundamental domains
have distance at most 2D). The vertices of the two paths are identified with
particular elements of π1(Sg).

x0
γx0

γ2x0

γ−1x0

γ−2x0

δNx0δ−Nx0

γ

δ

Figure 8.1 Left: the polygonal paths constructed in the proof of Lemma 8.5. Right: polygo-
nal paths that are linked at infinity.

Assume, for the purposes of contradiction, that the hyperbolic isometries
Φ(γ) and Φ(δ) are linked at infinity. It follows that the polygonal paths
{Φ(αi)} and {Φ(βi)} have to cross. Since Φ is a quasi-isometry with con-
stants K and C , each geodesic segment of {Φ(αi)} and {Φ(βi)} has length
at most K(2D) +C . But if these paths cross, two of the geodesic segments
themselves must cross—see the right-hand side of Figure 8.1. Now, each
segment has at least one endpoint whose distance from the crossing point is
less than or equal to (K(2D) + C)/2, and so these two endpoints lie at a
distance of at most K(2D) + C .

What we have now is that there exist elements α, β ∈ π1(Sg) with
d(α, β) ≥ R and d(Φ(α),Φ(β)) ≤ K(2D)+C . SinceR > 2DK2+2CK,
we obtain a contradiction with the assumption that Φ is a quasi-isometry
with constants K and C . Thus it must be the case that Φ(γ) and Φ(δ) are
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not linked at infinity, and we are done. �

Sides. In addition to linking, we can also talk about two hyperbolic elements
α, β ∈ π1(S) being on the same side of a hyperbolic element γ ∈ π1(S).
That is, if α and β are unlinked with γ (and do not share an axis with γ),
then their axes either lie on the same side of the axis for γ or do not. One
can also formulate this notion purely topologically at infinity in terms of the
endpoints of the axes on ∂H2.

Corollary 8.6 Let g ≥ 2 and let H2 → Sg be a fixed covering map. Let Φ
be an automorphism of π1(Sg). If α, β, and γ are elements of π1(Sg) with
distinct axes, then the axes for Φ(α) and Φ(β) lie on the same side of Φ(γ)
if and only if the axes for α and β lie on the same side of γ.

Proof. The axes for α and β lie on the same side of the axis for γ if and
only if there is an element δ ∈ π1(Sg) that is linked at infinity with α and β
but not with γ. Apply Lemma 8.5. �

8.2.5 FINISHING THE PROOF

We can now prove the Dehn–Nielsen–Baer theorem.

Proof of the Dehn–Nielsen–Baer theorem. As discussed above, we need
only prove that the homomorphism σ : Mod±(Sg) → Out(π1(Sg)) is sur-
jective. Let any [Φ] ∈ Out(π1(Sg)) be given and let Φ be a representative
automorphism. Also, fix once and for all a covering map H2 → Sg.

Let (c1, . . . , c2g) be a chain of isotopy classes of simple closed curves in
Sg. As in Section 1.3, this means that i(ci, ci+1) = 1 and i(ci, cj) = 0 oth-
erwise. For concreteness, we take the curves shown on the top of Figure 8.2.
Orient each ci so that each algebraic intersection number î(ci, ci+1) is +1.

Recall that free homotopy classes of oriented curves in Sg correspond to
conjugacy classes of elements of π1(Sg); each ci is the conjugacy class of
the element γi shown on the bottom of Figure 8.2.

Since Φ is an automorphism of π1(Sg), it acts on the set of conjugacy
classes of π1(Sg). We claim that {Φ(ci)} is also a chain of isotopy classes of
simple closed curves and that the algebraic intersections î(Φ(ci),Φ(ci+1))
are all +1 or all −1. We prove this claim in four steps:

1. Φ(ci) is a simple closed curve for each i.

2. i(Φ(ci),Φ(cj)) = 0 for |i− j| > 1.

3. i(Φ(ci),Φ(ci+1)) = 1 for each i.
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��

c1

c2 c3
c4

γ1 γ2

γ3

γ4

Figure 8.2 A chain on a genus 2 surface (top) and representatives in the fundamental group
(bottom).

4. î(Φ(ci),Φ(ci+1)) does not depend on i.

Each of the four steps will follow from Lemma 8.5. For step 1, recall that
a conjugacy class of a primitive element of π1(Sg) has a simple representa-
tive if and only if each pair of representatives for the class is not linked at
infinity (cf. the proof of Proposition 1.6). Now simply note that, as proved
in Lemma 8.5, Φ preserves whether or not axes are linked.

Similarly, for step 2, we use the fact that two conjugacy classes have ge-
ometric intersection number 0 if and only if any pair of representatives is
unlinked at infinity and this latter property is preserved by Φ. For step 3
we use the following Φ-invariant characterization of when two conjugacy
classes have representatives with geometric intersection number 1 (plus
Lemma 8.5):

Two conjugacy classes a and b have geometric intersection
number 1 if and only if for some representative α of a that is
linked at infinity with a given representative β of b, the set of
representatives of a that are linked at infinity with β is precisely
{βkαβ−k : k ∈ Z}.

Step 4 is more intricate. It suffices to prove that given three conjugacy
classes a, b, and c with i(a, b) = i(b, c) = 1 and i(a, c) = 0, we can char-
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acterize the agreement of the signs of î(a, b) with î(b, c) in terms of data we
know to be preserved by Φ. Let α, β, and γ be any representatives for a, b,
and c so that the axes for α and γ are disjoint and the axis for β intersects
each of the axes for α and γ once each. Now note the following.

With the above notation, î(a, b) has the same sign as î(b, c) if
and only if the axes for αβα−1 and γβγ−1 lie on different sides
of the axis for β.

Replacing a, b, and c with ci, ci+1, and ci+2, we apply Lemma 8.5 and
Corollary 8.6 to complete step 4, thus proving the claim.

By the change of coordinates principle, more precisely by example 6 in
Section 1.3, there is a homeomorphism φ that fixes the basepoint of π1(Sg)
and satisfies φ∗(ci) = Φ∗(ci) (with orientation) for each i. Here φ∗ and Φ∗
denote the induced actions on (conjugacy classes of) elements of π1(Sg).

To complete the proof of the theorem, we must now prove that the map-
ping class [φ], acting on π1(Sg), induces the outer automorphism [Φ]. For
any β ∈ π1(Sg), let Iβ denote the inner automorphism of π1(Sg) given by
γ 
→ βγβ−1. Since the representatives γi generate π1(Sg), it suffices to
show that there is an inner automorphism Iα of π1(Sg) so that

Iα ◦ φ−1
∗ ◦ Φ(γi) = γi

for each i.
Note that it is simply not true in general that if an automorphism of a

group fixes the conjugacy class of each generator, then it is an inner auto-
morphism. As an example, take the free group on {x, y, z} and consider the
automorphism given by x 
→ yxy−1, y 
→ y, and z 
→ z.

We will use the fact that the particular representatives γi of the ci shown
in Figure 8.2 form a chain in the sense that the lifts of γi and γi+1 to H2 are
linked at infinity for each i. This follows from the fact that γi and γi+1 are
linked on the surface; more precisely, if we take a small closed neighbor-
hood of the basepoint of π1(Sg), γi and γi+1 are linked on the boundary of
this neighborhood. Arbitrary lifts of ci and ci+1 may or may not be linked
at infinity.

Denote φ−1∗ ◦ Φ by F . Since φ induces an automorphism of π1(Sg), we
see that F still preserves linking at infinity. Again, the goal is to find an
element α so that Iα ◦ F is the identity automorphism of π1(S).

Since F (ci) = ci with orientation for all i, we have in particular F (c1) =
c1, and so F (γ1) = α−1

1 γ1α1 for some α1 ∈ π1(Sg). Thus

Iα1
◦ F (γ1) = γ1.

We know that F (c2) = c2, that Iα1
◦ F preserves linking at infinity, and
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that γ1 and γ2 are linked. It follows from the characterization of conjugacy
classes with geometric intersection number 1 given above that Iα1

◦F (γ2) =
γ−k1 γ2γ

k
1 for some k ∈ Z. Therefore,

Iγk
1
α1
◦ F (γ1) = Iγk

1
◦ Iα1

◦ F (γ1) = γ1

and

Iγk
1
α1
◦ F (γ2) = Iγk

1
◦ Iα1

◦ F (γ2) = γ2.

We can now see inductively that Iγk
1
α1
◦ F (γi) = γi for each i ≥ 3, and

so Iγk
1
α1

is the desired inner automorphism. Indeed, since γ1 and γ2 are both

fixed by Iγk
1
α1
◦ F , it follows that each element of {γl1γ2γ

−l
1 } is fixed. But

since γ3 is linked with γ2, it is characterized in π1(Sg) by the properties that
it is linked with γ2 and that its axis in H2 lies between the axes for γl2γ1γ

−l
2

and γl+1
2 γ1γ

−(l+1)
2 for some particular l. Thus γ3 is fixed by Iγk

1
α1
◦ F and,

by induction, each γi for i > 3 is also fixed (the inductive step for γi uses
that both γi−1 and γi−2 are fixed). We have thus found the required inner
automorphism, and so the proof is complete. �

8.2.6 THE INDUCED HOMEOMORPHISM AT INFINITY

Our proof of the Dehn–Nielsen–Baer theorem suggests an elegant way to
think about the automorphism Φ, namely, through an induced action ∂Φ on
∂H2 ≈ S1. We now explain this idea.

If γ is an element of π1(Sg), then the forward endpoint of the (oriented)
axis of γ in H2 is identified with a point γ∞ ∈ ∂H2. Let

Γ∞ = {γ∞ : γ ∈ π1(Sg)}.

Since the action of π1(Sg) on H2 is cocompact, the set Γ∞ is dense in ∂H2.
We define ∂Φ : Γ∞ → Γ∞ by

∂Φ(γ∞) = (Φ(γ))∞.

Note that ∂Φ is well defined on this set because the axes of two elements of
π1(Sg) can share an endpoint at infinity only if they share a common power.
Since Φ is an automorphism, ∂Φ is a bijection.

Denote the backward endpoint of the axis for γ ∈ π1(Sg) by γ−∞. The
set

Γ±∞ = {(γ∞, γ−∞) : γ ∈ π1(Sg)}

is dense in ∂H2× ∂H2; see [13, Theorem 5.3.8]. This fact was used implic-
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itly in our proof of Corollary 8.6.
The following theorem underlies much of Nielsen’s work on surface

homeomorphisms. We already used this fact in Section 5.5.

Theorem 8.7 Let g ≥ 2. Any automorphism Φ of π1(Sg) induces a homeo-
morphism of ∂H2.

Proof. It suffices to show that ∂Φ induces a homeomorphism of Γ∞. Since
Γ∞ is dense in ∂H2, there is then a unique extension to a homeomorphism
of ∂H2.

Let δ ∈ π1(Sg). Let δR denote the set of elements γ of π1(Sg) so that
γ∞ lies to the right of the oriented axis of δ. The sets δR are identified with
subsets of Γ∞ via the correspondence γ ↔ γ∞.

By the density of Γ±∞ in ∂H2× ∂H2, the sets {δR : δ ∈ π1(Sg)} form a
basis for the topology of Γ∞.

To show that ∂Φ is a homeomorphism, we will show that in fact Φ (hence
Φ−1) takes each element of {δR} to another such element. More precisely,
we will show that Φ(δR) is equal to either Φ(δ)R or Φ(δ−1)R.

Indeed, let α be any element of δR that is unlinked with δ. Assume for
concreteness that Φ(α) is contained in Φ(δ)R. We will show that Φ(δR) ⊆
Φ(δ)R (if Φ(α) were contained in Φ(δ−1)R, the same argument would show
that Φ(δR) ⊆ Φ(δ−1)R).

First, let β be an element of δR that is not linked with δ. Applying Corol-
lary 8.6 to δ, α, and β, we find that Φ(β) ∈ Φ(δ)R.

Now suppose β is an element of δR that is linked with δ. By Lemma 8.5,
we immediately obtain that Φ(β) is linked with Φ(δ). Because the axis for
β crosses the axis for δ from left to right, it follows that β−1δβ is unlinked
with δ and lies in δR. By the previous case, Φ(β−1δβ) = Φ(β)−1Φ(δ)Φ(β)
lies in Φ(δ)R. But then it must be that Φ(β) crosses Φ(δ) from left to right,
which means Φ(β) ∈ Φ(δ)R.

We have thus proven that Φ(δR) ⊆ Φ(δ)R. Since Φ is invertible, we in
fact have that Φ(δR) = Φ(δ)R. This completes the proof. �

In fact, a much more general statement than Theorem 8.7 is true: any
quasi-isometry of H2 induces a homeomorphism of ∂H2. A related fact is
that any π1(Sg)-equivariant homeomorphism of H2 extends to a π1(Sg)-
equivariant homeomorphism of the closed disk H2∪∂H2. This last fact will
be used in the proof of Theorem 14.20.

8.2.7 THE PUNCTURED CASE

There is a version of the Dehn–Nielsen–Baer theorem for punctured sur-
faces as follows. Let Out
(π1(S)) be the subgroup of Out(π1(S)) con-
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sisting of elements that preserve the set of conjugacy classes of the simple
closed curves surrounding individual punctures. Note that these conjugacy
classes are precisely the primitive conjugacy classes that correspond to the
parabolic elements of Isom(H2).

THEOREM 8.8 Let S = Sg,p be a hyperbolic surface of genus g with p
punctures. Then the natural map

Mod±(S)→ Out
(π1(S))

is an isomorphism.

The proof of this more general theorem follows the same outline as in the
proof of the closed case (Theorem 8.1). We content ourselves to point out
the two main differences.

1. In the case S = Sg, we knew automatically that any automorphism
of π1(Sg) must send hyperbolic elements to hyperbolic elements
since all nontrivial elements of π1(Sg) are hyperbolic. If S is not
closed, then an arbitrary automorphism of π1(S) can exchange hyper-
bolic elements with parabolic elements. But the fact that we consider
Out
(π1(S)) instead of Out(π1(S)) in the statement of Theorem 8.8
exactly accounts for this.

2. The map π1(S)→ H2 given by taking the orbit in H2 of a single point
is not a quasi-isometry. To remedy this, we truncate S by deleting a
small neighborhood of each puncture. We can choose the neighbor-
hoods to be small enough so that the preimage in H2 of the truncated
surface is a connected space X. If we endow X with the path metric,
then the action of π1(S) onX satisfies the conditions of Theorem 8.2,
and so π1(S) is quasi-isometric to X.

The proof of Lemma 8.5 now proceeds similarly as before. Points are
farther in X than they are in H2, so there is no problem in choosing N
so that the setsOγ andOδN are far apart. Also, there is no obstruction
to choosing the paths {αi} and {βi}. If {Φ(αi)} and {Φ(βi)} were to
cross, we would still have a short path in X between two vertices of
the paths, which would give the desired contradiction.

We have already mentioned the theorem of Nielsen that Out(F2) ≈
GL(2,Z). Thus we have

Out(F2) ≈ GL(2,Z) ≈ Mod±(S1,1).

In the language of Theorem 8.8, this means that the group Out
(π1(S1,1)) is
the entire group Out(π1(S1,1)). In other words, every element of the outer
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automorphism group of F2 = 〈x, y〉 preserves the conjugacy class [x, y].
Thus GL(n,Z), Mod±(S), and Out(Fn) can be viewed as three different
generalizations of the same group.

Once-punctured versus closed. The Dehn–Nielsen–Baer theorem can be
used to relate the group Mod(Sg) to the group Mod(Sg,1), where Sg,1 is
the genus g ≥ 2 surface with one marked point. This is done by the follow-
ing isomorphism of exact sequences, where each square is a commutative
diagram:

1 Inn(π1(Sg))

≈

Aut(π1(Sg))

≈

Out(π1(Sg))

≈

1

1 π1(Sg) Mod±(Sg,1)

≈

Mod±(Sg) 1

Out
(π1(Sg,1))

The first row is the usual relationship between the automorphism group
and outer automorphism group of any group. The second row is a version of
the Birman exact sequence for the extended mapping class group.

The isomorphism Inn(π1(Sg)) ≈ π1(Sg) is equivalent to the state-
ment that π1(Sg) has trivial center, and the isomorphism Out(π1(Sg)) ≈
Mod±(Sg) is the Dehn–Nielsen–Baer theorem. Now there certainly is a
map Mod±(Sg,1)→ Aut(π1(Sg)) that makes the diagram (as described so
far) commutative—simply choose the basepoint for π1(Sg) to be the marked
point. The five lemma then tells us that the middle vertical map is an iso-
morphism from Mod±(Sg,1) to Aut(π1(Sg)).

Finally, we examine the isomorphism Out
(π1(Sg,1)) → Aut(π1(Sg)).
At first it seems odd to have an outer automorphism group of a surface
group be the same as the automorphism group of another surface group.
However, given φ ∈ Out
(π1(Sg,1)), we get an element of Aut(π1(Sg))
by taking the unique representative automorphism of φ that fixes the loop
corresponding to the puncture (not just up to conjugacy), and this gives the
desired isomorphism.
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8.3 TWO OTHER VIEWPOINTS

In this section we provide two other proofs of the Dehn–Nielsen–Baer theo-
rem, one inspired by 3-manifold theory (adapted from [93, Theorem 13.6])
and one using harmonic maps. There are various other proofs, each involv-
ing a different kind of mathematics. For example, in Theorem 1.8 of [43]
Calegari exploits the relationship between simple closed curves on Sg and
HNN extensions of π1(Sg) to give an inductive argument for the Dehn–
Nielsen–Baer theorem. Zieschang–Vogt–Coldewey give a combinatorial-
group-theoretical proof in [218, Section 5.6], and Seifert gives an elemen-
tary covering space argument in [192].

Let S be a surface with χ(S) < 0. Since S is a K(π1(S), 1)-space, every
outer automorphism of π1(S) is induced by some (unbased) map S → S.
By the Whitehead theorem [91, Theorem 4.5] and the fact that πi(S) = 0 for
i > 1, we have that this self-map of S is a homotopy equivalence. Thus, for
the surjectivity part of the Dehn–Nielsen–Baer theorem, it suffices to show
that every homotopy equivalence of S is homotopic to a homeomorphism
of S.

THEOREM 8.9 If g ≥ 2, then any homotopy equivalence φ : Sg → Sg is
homotopic to a homeomorphism.

We give two approaches to Theorem 8.9 below, one topological and one
analytical.

8.3.1 THE TOPOLOGICAL APPROACH: PANTS DECOMPOSITIONS

Recall that a pair of pants is a compact surface of genus 0 with three bound-
ary components. Let S be a compact surface with χ(S) < 0. A pair of pants
decomposition of S, or a pants decomposition of S, is a collection of disjoint
simple closed curves in S with the property that when we cut S along these
curves, we obtain a disjoint union of pairs of pants. Equivalently, a pants de-
composition of S is a maximal collection of disjoint, essential simple closed
curves in S with the property that no two of these curves are isotopic.

We can easily prove the equivalence of the two definitions of a pants de-
composition. First, suppose we have a collection of simple closed curves
that cuts S into pairs of pants. We immediately see that every curve is es-
sential since there are no disk components when we cut S. Further, since
any simple closed curve on a pair of pants is either homotopic to a point
or to a boundary component, it follows that the given collection is maximal.
For the other direction, suppose we have a collection of disjoint, nonisotopic
essential simple closed curves in S. If the surface obtained from S by cut-
ting along these curves is not a collection of pairs of pants, then it follows
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from the classification of surfaces and the additivity of Euler characteris-
tic that one component of the cut surface either has positive genus or is a
sphere with more than three boundary components. On such a surface there
exists an essential simple closed curve that is not homotopic to a boundary
component. Thus the original collection of curves was not maximal.

A pair of pants has Euler characteristic −1. If we cut a surface along
a collection of disjoint simple closed curves, the cut surface has the same
Euler characteristic as the original surface. Thus a pants decomposition of
S cuts S into −χ(S) pairs of pants. It follows that, for a compact surface S
of genus g with b boundary components, a pants decomposition for S has

−3χ(S)− b
2

= 3g + b− 3

curves. Indeed, each pair of pants has three boundary curves and, aside from
the curves coming from ∂S, these curves match up in pairs to form curves
in S. In particular, a pants decomposition of Sg for g ≥ 2 has 3g−3 curves,
cutting Sg into 2g − 2 pairs of pants.

First proof of Theorem 8.9. We modify φ in steps by homotopies until it
is a homeomorphism; at each stage, the resulting map will be called φ.
Choose some pants decomposition P of Sg consisting of smooth simple
closed curves. We first approximate φ by a smooth map that is transverse to
P. By choosing a close enough approximation we can assume that the ap-
proximation is homotopic to φ (see [95, p. 124]). By transversality we have
that φ−1(P) is a collection of simple closed curves. If any component of
φ−1(P) is inessential, we can homotope φ to remove that component since
such a curve bounds a disk, and we can use that disk to define the homotopy.

Since φ induces an automorphism on π1(Sg), it takes primitive conjugacy
classes in π1(Sg) to primitive conjugacy classes in π1(Sg). Thus the restric-
tion of φ to any particular component of φ−1(P) has degree ±1 as a map
S1 → S1. We can therefore homotope φ so that it restricts to a homeomor-
phism on each component of φ−1(P).

Since φ is a homotopy equivalence, it has degree ±1, and so φ is surjec-
tive. It follows that φ−1(P) has at least 3g − 3 components. If it had more,
then two such components would necessarily be isotopic, and the annulus
between them would give rise to a homotopy of φ reducing the number of
components of φ−1(P).

At this point φ is a homeomorphism on each component of φ−1(P), and
φmaps each component of Sg−φ−1(P) to a single component of Sg−P. It
therefore suffices to show that if R and R′ are pairs of pants and if φ : R→
R′ is a continuous map such that φ|∂R is a homeomorphism, then there is a
homotopy of φ to a homeomorphism R→ R′, so that the homotopy restricts
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to the identity map on ∂R.
Let X be the union of three disjoint arcs in R′, one connecting each pair

of boundary components. Note that it must be that R′− (∂R′∪X) is home-
omorphic to a disjoint union of two open disks. Again, we may assume
that φ is smooth, and so φ−1(X) is a properly embedded 1-manifold with
boundary lying in ∂R. If any component of φ−1(X) is closed, then it is nec-
essarily null homotopic (since all nonperipheral simple closed curves on a
pair of pants are null homotopic), and we may modify φ by homotopy to
remove this component.

Since φ|∂R is assumed to be a homeomorphism, and so it takes distinct
boundary components to distinct boundary components, φ−1(X) consists
of exactly three arcs, one for each pair of boundary components of R. We
can modify φ so that it restricts to a homeomorphism on each component of
X. By the Alexander lemma φ is homotopic to a homeomorphism. �

8.3.2 THE ANALYTIC APPROACH: HARMONIC MAPS

We now give an analytic proof of Theorem 8.9. While this proof relies on
the machinery of harmonic maps, it is conceptually straightforward.

A harmonic map f : M → N between Riemannian manifolds is one that
minimizes the energy functional

E(f) =

∫
M
‖df‖2.

Second proof of Theorem 8.9. We endow S with a hyperbolic metric. It is
a theorem of Eells–Sampson that, with respect to this metric, there is a
harmonic map h in the homotopy class of φ [54]. Since h is a homotopy
equivalence, we must have that the degree of h is ±1. Then by a theorem
of Schoen–Yau, any degree one harmonic map between compact surfaces of
negative curvature is necessarily a diffeomorphism [189]. �



Chapter Nine

Braid Groups

In this chapter we give a brief introduction to Artin’s classical braid groups
Bn. While Bn is just a special kind of mapping class group, namely, that
of a multipunctured disk, the study of Bn has its own special flavor. One
reason for this is that multipunctured disks can be embedded in the plane,
so that elements of Bn lend themselves to specialized kinds of pictorial
representations.

9.1 THE BRAID GROUP: THREE PERSPECTIVES

The notion of a mathematical braid is quite natural and classical. For in-
stance, this concept appeared in Gauss’s study of knots in the early nine-
teenth century (see [182]) and in Hurwitz’s 1891 paper on Riemann surfaces
[102]. The first rigorous definition of the braid group was given by Artin in
1925 [6].

In this section we give three equivalent ways of thinking about the braid
group, starting with Artin’s classical definition. We will then explain how to
go back and forth between the different points of view.

Figure 9.1 Left: a sample 3-braid. Right: the product of two 3-braids.
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9.1.1 BRAIDED STRINGS

Let p1, . . . , pn be distinguished points in the complex plane C. A braid is a
collection of n paths fi : [0, 1] → C× [0, 1], 1 ≤ i ≤ n, called strands, and
a permutation f of {1, . . . , n} such that each of the following holds:

• the strands fi([0, 1]) are disjoint

• fi(0) = pi

• fi(1) = pf(i)

• fi(t) ∈ C× {t}.

See the left-hand side of Figure 9.1 for a typical example of a braid on three
strands. In our figures, we draw t = 0 as the top of the braid.

A braid (f1(t), . . . , fn(t)) is determined by its braid diagram, which is
the picture obtained by projecting the images of the fi to the plane R ×
[0, 1]. In order that this picture carry all of the information, we must indicate
which strands are passing over which other strands at the crossings, as in
Figure 9.1.

The braid group on n strands, denoted Bn, is the group of isotopy classes
of braids. The key is that strands are not allowed to cross each other during
the isotopy. It also follows from the definitions that an isotopy of braids fixes
the set {pi} × {0, 1} and is level-preserving.

The product of the braid (f1(t), . . . fn(t)) with the braid
(g1(t), . . . , gn(t)) is the braid (h1(t), . . . , hn(t)), where

hi(t) =

{
fi(2t) 0 ≤ t ≤ 1/2

gf(i)(2t− 1) 1/2 ≤ t ≤ 1.

In other words, to multiply f, g ∈ Bn one takes braid representatives for f
and g, scales their heights by 1/2, and then stacks the braid corresponding
to f on top of that corresponding to g, thus giving a braid representative for
fg ∈ Bn. See the right-hand side of Figure 9.1 for an example of braid mul-
tiplication. There we use the typical convention of not rescaling the vertical
direction (this makes it possible to draw increasingly complicated braids).

The inverse of a given braid is obtained by taking its reflection either
through the plane C × {0} or through the plane C × {1}. See Figure 9.2.
Notice that the resulting composition is isotopic to the trivial braid, thus
showing that the two braids are indeed inverses.

For 1 ≤ i ≤ n − 1, let σi ∈ Bn denote the braid whose only crossing is
the (i+1)st strand passing in front of the ith strand, as shown in Figure 9.3.
We claim that the group Bn is generated by elements σ1, . . . , σn−1 . The
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Figure 9.2 A braid (above the dotted line) and its inverse (below the dotted line).

claim follows immediately from the fact that any braid β can be isotoped
so that its finitely many crossings occur at different horizontal levels (i.e.,
different values of t). Reading off the crossings in β from top to bottom then
gives β as a product of the σi’s and their inverses.

We remark that if in the definition of Bn we allow an isotopy between
two braids to pass through n-tuples (f1(t), . . . , fn(t)) that satisfy all parts
of the definition of a braid except the condition fi(t) ∈ C × {t}, then the
resulting group is the same.

... ...

Figure 9.3 A generator σi for the braid group: the (i + 1)st strand passes in front of the ith
strand.
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9.1.2 FUNDAMENTAL GROUPS OF CONFIGURATION SPACES

Let Cord(S, n) denote the configuration space of n distinct, ordered points
in a surface S:

Cord(S, n) = S×n − BigDiag(S×n),

where S×n is the n-fold Cartesian product of S and BigDiag(S×n) is the
big diagonal of S×n, that is, the subset of S×n where at least two coor-
dinates are equal. The symmetric group Σn acts on S×n by permuting the
coordinates. This action clearly preserves BigDiag(S×n) and thus induces
an action of Σn by homeomorphisms on Cord(S, n). Since the action of Σn

permutes the n coordinates and since these coordinates are always distinct
for points in Cord(S, n), we see that this action is free. The quotient space

C(S, n) = Cord(S, n)/Σn

is just the configuration space of n distinct, unordered points in S. Since
C(S, n) is the quotient of a manifold by a free action (by homeomorphisms)
of a finite group, it follows that C(S, n) is a manifold.

It is almost immediate from the definitions that

Bn ≈ π1(C(C, n)).

Indeed, since each strand of a braid is a map fi : I → C × I with fi(t) ∈
C×{t}, we can think of each fi as a map I → C, and this identification gives
the isomorphism. Said another way, the intersection of any slice C × {t}
with any braid is a point in C(C, n), and so the full collection of slices
gives an element of π1(C(C, n)). In this way, we can think of a braid σ =
(f1(t), . . . , fn(t)) as tracing out a loop of n-point configurations in C as t
increases from 0 to 1.

The generator σi of Bn described above corresponds to the element of
π1(C(C, n)) given by the loop of n-point configurations in C where the
ith and (i + 1)st points switch places by moving in a clockwise fashion, as
indicated in Figure 9.4, and the other n− 2 points remain fixed.

Figure 9.4 A standard generator of Bn in the configuration space model.
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The configuration space Cord(C, n) can also be written as

Cord(C, n) = Cn −
⋃
i<j

{(z1, . . . , zn) : zi = zj}.

Thus Cord(C, n) is the complement of a complex hyperplane arrangement,
that is, the complement of a finite union of hyperplanes in Cn. Since

Bn = π1(C(C, n)) = π1(C
ord(C, n))/Σn,

the group Bn is also isomorphic to the fundamental group of the quotient of
a complex hyperplane complement by the action of Σn.

Since Cord(C, n) is a space of ordered n-tuples, there is a map

ψn : Cord(C, n)→ Cord(C, n − 1)

defined by forgetting the last point. The fiber ψ−1
n (x1, . . . , xn−1) is clearly

Cord((C − (x1, . . . , xn−1)), 1) ≈ C − (x1, . . . , xn−1). Fadell–Neuwirth
[57] proved that

C− (x1, . . . , xn−1)→ Cord(C, n)→ Cord(C, n− 1)

is a fibration (what is more, it is a fibration with section). Note that the
space C − (x1, . . . , xn−1) is aspherical, that is, all of its higher homotopy
groups vanish. An application of the homotopy long exact sequence of a
fibration gives by an inductive argument that Cord(C, n) is aspherical for
every n ≥ 1. Since C(C, n) is finitely covered by Cord(C, n), all of its
higher homotopy groups vanish as well. Thus C(C, n) is a K(Bn, 1)-space.

9.1.3 MAPPING CLASS GROUP OF A PUNCTURED DISK

Finally, we describe Bn as a mapping class group. Let Dn be a closed disk
D2 with n marked points. Then Bn is also isomorphic to the mapping class
group of Dn:

Bn ≈ Mod(Dn) = π0(Homeo+(Dn, ∂Dn)).

The isomorphism between Mod(Dn) and π1(C(C, n)) ≈ Bn can be de-
scribed as follows. Let φ be a homeomorphism of D2 that leaves invariant
the set of n marked points. If we forget that the marked points are distin-
guished, then φ is just a homeomorphism of D2 fixing ∂D2 pointwise, so by
the Alexander lemma φ is isotopic to the identity. Throughout any such iso-
topy the marked points move around the interior of D2 (which we identify
with C) and return to where they started, thus effecting a loop in C(C, n).
We have thus produced a braid. We will prove in Theorem 9.1 below that
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this association gives a well-defined homomorphism Bn → Mod(Dn) and
that this is in fact an isomorphism.

Under the isomorphism Bn ≈ Mod(Dn), each generator σi corresponds
to the homotopy class of a homeomorphism of Dn that has support a twice-
punctured disk and is described on this support by Figure 9.5. We denote
such a half-twist as Hα, and we can think of α as either a simple closed
curve with two punctures in its interior or a simple proper arc connecting
two punctures.

αα

Figure 9.5 A half-twist.

9.1.4 SURFACE BRAID GROUPS AND MAPPING CLASS GROUPS

We have given three different ways of thinking about the braid group. We
have already seen that the first two are equivalent. Now we prove that both
are equivalent to the third. Specifically, we will prove the isomorphism

π1(C(C, n)) ≈ Mod(Dn).

To do this we will require a generalization of the Birman exact sequence
that is also due to Birman [24]. In the process we will need to consider the
fundamental group π1(C(S, n)) for an arbitrary surface S. This group is
called the n-stranded surface braid group of S.

Let S be a compact surface, perhaps with finitely many punctures but
with no marked points. Let (S, {x1, . . . , xn}) denote S with n marked
points x1, . . . , xn in the interior. We are using both punctures and marked
points here to distinguish the two, as they will play different roles. As in
Section 4.2, there is a forgetful homomorphism Mod(S, {x1, . . . , xn}) →
Mod(S) given by forgetting that the marked points are marked. As in the
proof of Theorem 4.6, there is a fiber bundle

Homeo+((S, {x1, . . . , xn}), ∂S) → Homeo+(S, ∂S)→ C(S◦, n)

where S◦ is the interior of S and Homeo+((S, {x1, . . . , xn}), ∂S) is the
group of orientation-preserving homeomorphisms of S that preserve the set
{x1, . . . , xn} and fix the boundary of S pointwise. As a consequence, we
obtain the following generalization of the Birman exact sequence.
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THEOREM 9.1 (Birman exact sequence, generalized) Let S be a surface
without marked points and with π1(Homeo+(S, ∂S)) = 1. The following
sequence is exact:

1 −→ π1(C(S, n))
Push−→ Mod(S, {x1, . . . , xn})

Forget−→ Mod(S) −→ 1.

Recall that the hypothesis π1(Homeo+(S, ∂S)) = 1 holds whenever
χ(S) is negative (Theorem 1.14). Also, it follows from the Alexander trick
that Homeo+(D2, ∂D2) is contractible.

Note that we have replaced C(S◦, n) with C(S, n) in the statement of
Theorem 9.1 since these spaces are homotopy-equivalent.

When n = 1, Theorem 9.1 reduces to the usual Birman exact sequence
(Theorem 4.6) since C(S, 1) ≈ S. When S = D2, Theorem 9.1 gives an
exact sequence

1→ π1(C(D2, n))→ Mod(Dn)→ Mod(D2)→ 1.

Since Mod(D2) is trivial (Lemma 2.1), and since π1(C(D2, n)) ≈
π1(C(C, n)) ≈ Bn, it follows that Bn ≈ Mod(Dn). Note that since
π1(Homeo+(C)) ≈ Z (see [217]), Theorem 9.1 does not give that Bn ≈
Mod(C− {n points}).

Spherical braid groups. As in the case of Theorem 4.6, the fiber bundle
picture still gives us information in the case where π1(Homeo+(S, ∂S))
is nontrivial. We still have a point-pushing map π1(C(S, n)) →
Mod(S, x1, . . . , xn), but the kernel of this map is isomorphic to the image
of π1(Homeo+(S)) in π1(C(S, n)).

Consider for instance the case S = S2. The group π1(C(S2, n)) is called
the spherical braid group on n strands. The group Homeo+(S2) has the
homotopy type of SO(3) [197], and so π1(Homeo+(S2)) ≈ Z/2Z. When
n ≥ 2, this group maps nontrivially into π1(C(S2, n)). Combining this with
the fact that Mod(S2) = 1 gives a short exact sequence

1→ Z/2Z → π1(C(S2, n))→ Mod(S0,n)→ 1. (9.1)

The nontrivial element of the kernel in (9.1) is given by rotating the n
marked points by a 2π twist. In S2 × [0, 1] the points trace out n paths,
as shown in Figure 9.6 for the case n = 3. This is a nontrivial element α of
π1(C(S2, n)) because there is no way to untangle the strands in the figure.
The image of α in Mod(S0,n) is a Dehn twist about a simple closed curve
that surrounds all of the punctures, which is the trivial mapping class. How-
ever, the 4π twist α2 is trivial in π1(C(S2, n)). The fact that the spherical
braid α2 can be unraveled is an example of the belt trick.
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Figure 9.6 The nontrivial element of the kernel π1(C(S2, n)) → Mod(S2 − n points).

9.2 BASIC ALGEBRAIC STRUCTURE OF THE BRAID GROUP

In this section we investigate some of the basic algebraic properties of Bn.

A finite presentation. In his seminal paper on braid groups, Artin [6] gives
the following presentation for Bn.

Bn = 〈σ1, . . . , σn−1 | σiσi+1σi = σi+1σiσi+1 for all i,
σiσj = σjσi for |i− j| > 1 〉

Here, and in general with braid groups, we use algebraic notation: the ele-
ment on the left of a word comes first (for the given presentation this does
not matter).

We can see in Figure 9.7 that the given relations hold in Bn. Note that
the relation σiσi+1σi = σi+1σiσi+1 corresponds to the type 3 Reidemeister
move from knot theory. In fact, it is possible to derive the above presentation
for Bn using the fact that any two planar diagrams for a given knot differ by
a finite sequence of Reidemeister moves; see [118, Theorem 1.6]. Another
derivation of the presentation is given in [61, Théorème 5].

Computations. It follows from the presentation of Bn that

B1 = 1

B2≈Z

B3≈ ˜SL(2,Z),
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Figure 9.7 Relations in the braid group: the commuting relation and the braid relation.

where ˜SL(2,Z) is the central extension

1→ Z→ ˜SL(2,Z)→ SL(2,Z)→ 1.

The abelianization. It is easy to see from the presentation of Bn that the
abelianization of Bn is Z and that this Z is generated by the image of any σi
under the abelianization map Bn → Z (cf. Section 5.1). The abelianization
map Bn → Z is the length homomorphism which counts the signed word
length of elements of Bn in terms of the standard generators.

Torsion-freeness. Since Dn is a surface with boundary, Corollary 7.3 im-
plies that Bn is torsion-free for any n. If G is a group with nontrivial tor-
sion, then any K(G, 1)-space must be infinite-dimensional [91, Proposition
2.45]. Therefore, the fact that Bn is torsion-free also follows from the fact
that C(C, n) is a finite-dimensional K(Bn, 1).

The center. For n ≥ 3, the braid group Bn has an infinite cyclic center
Z(Bn) generated by

z = (σ1 · · · σn−1)
n.

Note that Z(B2) = 〈σ1〉. Figure 9.8 demonstrates that z is indeed central.
From the point of view of mapping class groups, z corresponds to the

Dehn twist about the boundary of Dn. This Dehn twist commutes with the
standard half-twist generators for Bn, and so we again see that z is central.

We now prove that 〈z〉 is the entire center of Bn. There is a homomor-
phism Bn → Mod(S0,n+1) obtained by capping the boundary of Dn with a
once-punctured disk. By Proposition 3.19 the kernel of this homomorphism
is 〈z〉. Now any surjective homomorphism between groups takes central ele-
ments to central elements. SinceZ(Mod(S0,n+1)) is trivial (cf. Section 3.4),
it follows that z generates Z(Bn).
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g g=

Figure 9.8 Twisting the box by 2π along the vertical axis takes the braid zg to the braid gz.

Braid group modulo center. The previous paragraph gives that the quo-
tient Bn/Z(Bn) is isomorphic to the index n subgroup of Mod(S0,n+1)
consisting of elements that fix one distinguished puncture. By taking the
distinguished puncture to be the point at infinity, we see that this is the same
as the mapping class group of the n-times-punctured plane. One can also
derive this description of Bn/Z(Bn) from the long exact sequence used in
the proof of Theorem 9.1 and the fact that π1(Homeo+(R2)) ≈ Z.

Roots of central elements. In Section 7.1.1, we classified all finite-order
elements of the mapping class group of a multipunctured sphere: they are
all conjugate to Euclidean rotations of the sphere. By our above description
of Bn/Z(Bn), roots of central elements in Bn correspond to finite-order
elements in the subgroup of Mod(S0,n+1) consisting of elements that fix
some distinguished puncture. Therefore, up to powers, any root of a central
element of Bn is conjugate to one of the elements shown in Figure 9.9. In
terms of the generators for Bn, the first root is given by σ1 · · · σn−1, and the
second is given by σ2

1σ2 · · · σn−1.

9.3 THE PURE BRAID GROUP

The pure braid group PBn is the kernel of the homomorphism from Bn to
the permutation group Σn given by the definition of f above:

1→ PBn → Bn → Σn → 1.
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Figure 9.9 Two views of each of the types of roots of central elements.

In other words, a pure braid is a braid where each strand begins and ends at
the same point of C. A small variation of Theorem 9.1 gives the following
isomorphisms:

PBn ≈ π1(C
ord(C, n)) ≈ PMod(Dn).

Generators. Artin proved that PBn is generated by the elements

ai,j = (σj−1 · · · σi+1)σ
2
i (σj−1 · · · σi+1)

−1

for 1 ≤ i < j ≤ n. Since each ai,j is the conjugate of a square
of a half-twist, we see that each ai,j is a Dehn twist about a simple
closed curve surrounding exactly two punctures. In fact, we can see exactly
which simple closed curves. If σ2

i corresponds to the Dehn twist Tci , then
(σj−1 · · · σi+1)

−1 corresponds to the mapping class f = H−1
cj−1

· · ·H−1
ci+1

and ai,j corresponds to the mapping class fTcif
−1 = Tf(ci) (note that we

have passed to functional notation). The effect of f on ci is shown in Fig-
ure 9.10. We see ai,j is the Dehn twist about a simple closed curve that
surrounds the ith and jth punctures.

One can derive the above generating set for PBn ≈ PMod(Dn) from the
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Birman exact sequence, as in our proof of Theorem 4.9.

· · ·

· · ·

· · ·

ci

H−1
ci+1

f

Figure 9.10 Writing the generators of the pure braid group.

The center. The central element z of Bn is also an element of PBn. For
the same reason as before (the Alexander method), z generates the center of
PBn. It is not at all obvious how to write z in terms of the generators {ai,j}
for PBn. We claim that

z = (a1,2 a1,3 · · · a1,n) · · · (an−2,n−1 an−2,n) (an−1,n).

We now prove this claim. We think of the product on the right hand side as
a product g1g2 · · · gn−1, where

gi = ai,i+1 ai,i+2 · · · ai,n.

In terms of configuration spaces, gi is the element obtained by pushing the
ith point around the (i + 1)st point, around the (i + 2)nd point, and so on,
all the way up to the nth point. The orientations of these paths agree, and so
this loop in C(C, n) is isotopic to the loop that pushes the ith point around
the last n − i points all at once. In the mapping class group, this push map
(see Section 4.2) is equal to the product of two Dehn twists: Tdi−1

T−1
di

(see
Figure 9.11). We then have that the product g1g2 · · · gn−1 is equal to

(Td0T
−1
d1

)(Td1T
−1
d2

) · · · (Tdn−1
T−1
dn

).

All terms in this expression cancel except the first, which is the Dehn
twist about ∂Dn, and the last, which is trivial (it is the Dehn twist about a
simple closed curve with one puncture in its interior). This proves our claim.
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. . .. . .

didi−1

Figure 9.11 The simple closed curves di and di−1.

Afinite presentation. Artin’s original presentation forPBn is considerably
more complicated than that forBn. We give here a slightly modified version
of his presentation:

PBn ≈ 〈ai,j| [ap,q, ar,s] = 1 p < q < r < s

[ap,s, aq,r] = 1 p < q < r < s

ap,raq,rap,q = aq,rap,qap,r = ap,qap,raq,r p < q < r

[ar,sap,ra
−1
r,s , aq,s] = 1 p < q < r < s〉.

Each of the relations in this presentation can be viewed as a type of com-
mutation relation. The four diagrams in Figure 9.12 show the configurations
of arcs that appear in the four types of relations (recall that elements are
applied left to right).

Figure 9.12 Relations for PBn.

The first two relations are the familiar commutations of Dehn twists about
disjoint simple closed curves. The third relation corresponds to the relation
TxTyTz = TyTzTx, which we discussed in Section 5.1 as a consequence of
the lantern relation. By Facts 3.7 and 3.9, we can rephrase the fourth and
final relation as follows: if we twist the (p, r)-arc about the (r, s)-arc, the
result—namely, the dotted arc in Figure 9.12—is disjoint from the (q, s)-
arc.
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It is possible to refine the above presentation for PBn so all of the rela-
tions are disjointness relations and lantern relations [141, Theorem 4.10].

A splitting. One important (and nonobvious) fact about PBn that can be
deduced from the above presentation is that PBn splits as a direct product
over its center:

PBn ≈ PBn/Z(PBn)× Z(PBn).

To verify that PBn splits as above, it suffices to show that there is a homo-
morphism f : PBn → Z(PBn) such that the composition

Z(PBn) ↪→ PBn
f→ Z(PBn)

is the identity map. We can define such an f by f(a1,2) = z and f(ai,j) = 1
otherwise (the choice of a1,2 is noncanonical). The map f is a well-defined
homomorphism because all of the defining relations for PBn are commuta-
tions. The composition is the identity since f(z) = z.

The homomorphism Bn/Z(Bn) → Mod(S0,n+1) from page 247 identi-
fies PBn/Z(PBn) isomorphically with PMod(S0,n+1), and so we have

PBn ≈ PMod(S0,n+1)× Z.

We can think of the projection PBn → Z geometrically as the map PBn →
PB2 obtained by forgetting n− 2 of the strands.

The abelianization. Another consequence of the fact that all of the defining
relations for PBn are commutations is that the abelianization of PBn is a
free abelian group with one generator for each generator of PBn. Thus

H1(PBn; Z) ≈ Z(n
2).

A decomposition. Since the pure braid group can be thought of as the pure
mapping class group of the n-times-punctured disk, we can apply the Bir-
man exact sequence (Theorem 9.1), which in this context takes the form

1→ Fn−1 → PBn → PBn−1 → 1.

As usual, Fn−1 denotes the free group on n− 1 letters, which is isomorphic
to the fundamental group of the disk with n−1 punctures. There is a natural
splitting PBn−1 → PBn obtained by adding an extra strand, and so we see
that PBn ≈ PBn−1 �Fn−1. What is more, by repeating this argument, we
see that PBn is an iterated extension of free groups.
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This splitting of PBn follows from the theorem of Fadell–Neuwirth that
the map Cord(C, n)→ Cord(C, n− 1) is a fiber bundle with section.

9.4 BRAID GROUPS AND SYMMETRIC MAPPING CLASS GROUPS

Besides the relation to mapping class groups of punctured spheres, braid
groups arise in the study of the mapping class groups of higher-genus sur-
faces.

Let S1
g be a surface of genus g with one boundary component. We de-

fine a homomorphism ψ : Bn → Mod(S1
g ) for n ≤ 2g + 1 as follows.

Choose a chain of simple closed curves {αi} in S1
g , that is, a collection of

simple closed curves satisfying i(αi, αi+1) = 1 for all i and i(αi, αj) = 0
otherwise. We then define ψ via ψ(σi) = Tαi . By the disjointness relation
(Fact 3.9) and the braid relation (Proposition 3.11) for Dehn twists, the map
ψ does indeed define a homomorphism. We will prove below that ψ is in-
jective. Even without knowing injectivity, ψ is useful because it allows us to
transfer relations from Bn to Mod(S1

g ).

ι

Figure 9.13 The Birman–Hilden double cover

9.4.1 THE BIRMAN–HILDEN THEOREM

Let ι be the order 2 element of Homeo+(S1
g ) as shown in Figure 9.13 and

let SHomeo+(S1
g ) be the centralizer in Homeo+(S1

g ) of ι:

SHomeo+(S1
g) = CHomeo+(S1

g )(ι).



254 CHAPTER 9

The group SHomeo+(S1
g ) is called the group of orientation-preserving sym-

metric homeomorphisms of S1
g . The symmetric mapping class group is the

group

SMod(S1
g ) = SHomeo+(S1

g )/isotopy,

that is, the subgroup of Mod(S1
g) that is the image of SHomeo+(S1

g ).
The homeomorphism ι has 2g + 1 fixed points in S1

g . The quotient of
S1
g by 〈ι〉 is a topological disk D2g+1 with 2g + 1 cone points of order 2,

with each cone point coming from a fixed point of ι. Since the elements
of SHomeo+(S1

g ) commute with ι, they descend to homeomorphisms of
the quotient disk. Also, by the commutativity, they must preserve the set of
2g + 1 fixed points of ι, and so there is a homomorphism

SHomeo+(S1
g)→ Homeo+(D2g+1).

This homomorphism is easily seen to be injective. It is actually an isomor-
phism of topological groups since any element of Homeo+(D2g+1) can be
lifted to SHomeo+(S1

g ). We thus have

SHomeo+(S1
g )/symmetric isotopy = π0(SHomeo+(S1

g ))
≈ π0(Homeo+(D2g+1))
= Mod(D2g+1)
≈ B2g+1.

We would like to show that SMod(S1
g ) ≈ B2g+1. Since

SHomeo+(S1
g )/symmetric isotopy ≈ B2g+1,

this amounts to showing that if two symmetric homeomorphisms of S1
g are

isotopic, then they must actually be symmetrically isotopic. Birman–Hilden
proved that this is indeed the case [27].

THEOREM 9.2 Using the above notation, SMod(S1
g ) ≈ B2g+1.

We will give a proof of Theorem 9.2 at the end of the section.
As an illustration of Theorem 9.2, take g = 1. The theorem of Birman–

Hilden tells us that

Mod(S1
1) = SMod(S1

1) ≈ B3 ≈ Mod(D3).

The Birman–Hilden theorem also holds for surfaces with two (symmet-
ric) boundary components that are interchanged by ι (see top right of Fig-
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ure 9.15), and so we have

SMod(S2
g ) ≈ B2g+2.

This implies

SMod(S2
g)/Z(SMod(S2

g )) ≈ B2g+2/Z(B2g+2),

which in the case g = 1 gives

PMod(S1,2) ≈ B4/Z(B4).

From this isomorphism we obtain that Mod(S1,2) ≈ B4/Z(B4) × Z/2Z,
where the last factor is generated by the hyperelliptic involution ι.

Dehn twists and half-twists. Let α be a nonseparating simple closed curve
in S1

g that is fixed by ι and let N be a neighborhood of α that is fixed by ι.
Since ι
([α]) = −[α], the restriction of ι to α is a flip. Thus, the restriction
of ι to N is a rotation that switches the two boundary components, and
N = N/ι is a disk with two cone points of order 2. The Dehn twist Tα
commutes with ι|N and hence descends to a homeomorphism of N . The
induced homeomorphism of N is nothing other than the half-twist about the
arc that is the image of α in N (the half-twist interchanges the two cone
points). See the bottom arrow in Figure 9.14.

Figure 9.14 The Dehn twist about the core of the annulus covers the half-twist in the disk
with two punctures/marked points.

In the other direction, we see that any Dehn twist Tγ in B2g+1 either lifts
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to the square of a Dehn twist, a product of two Dehn twists, or the square
root of a Dehn twist, depending on whether the preimage of γ in S1

g has
two isotopic components, two nonisotopic components, or one component
(equivalently, whether γ surrounds two punctures, an even number of punc-
tures greater than 2, or an odd number of punctures greater than 1).

9.4.2 DERIVING RELATIONS INMod(Sg) FROM RELATIONS IN Bn

The connection between the braid relation in Mod(S1
g) and the braid relation

in the braid group is now apparent. If α and β are the arcs inD3 shown at the
bottom left of Figure 9.15, then the half-twists Hα and Hβ satisfy the braid
relation in B3. Via the Birman–Hilden theorem, these half-twists lift to the
Dehn twists Teα and Teβ

in Mod(S1
1) (see top left of Figure 9.15), which also

satisfy the braid relation.

αα ββ

α̃α̃

β̃

β̃

γ

γ̃

δδ

δ̃ δ̃1

δ̃2

Figure 9.15 The braid relation and the chain relations via the Birman–Hilden theorem.

Our next goal is to explain the chain relations. Recall the relation
(σ1σ2)

3 = z, where σ1 and σ2 are the standard generators for B3 and z
generates the center Z(B3). Via the isomorphism B3 ≈ Mod(D3), this re-
lation becomes (HαHβ)

3 = Tδ, where α, β, and δ are the arcs and the
curve in D3 shown at the bottom left of Figure 9.15. Via the isomorphism
B3 ≈ SMod(S1

1), the Dehn twist Tδ corresponds to a half-twist about the
curve δ̃ in S1

1 shown at the top left of the figure; this mapping class is
achieved by holding the boundary fixed and twisting the rest of the surface
halfway around. So if we want to get a relation in SMod(S1

1) between full
Dehn twists, we should consider the relation (HαHβ)

6 = T 2
δ in Mod(D3).

In SMod(S1
g), this corresponds to the relation (TeαTeβ

)6 = Teδ
, where the

curves are as shown at the top left of Figure 9.15. This is precisely the 2-
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chain relation.
Similarly, the relation (HαHβHγ)

4 = Tδ in B4 (see bottom right of Fig-
ure 9.15) corresponds to the relation (TeαTeβ

Teγ)
4 = Teδ1

Teδ2
in SMod(S2

1).
This is exactly the 3-chain relation. The other k-chain relations are obtained
similarly.

Comparing with Figure 9.9 (and the surrounding discussion), we see that
the k-chain relation in the mapping class group corresponds to a rotation of
order k + 1 in the punctured disk.

If instead of using the factorization (σ1 · · · σk)k+1 of z ∈ Z(Bk+1) we
use the factorization (σ2

1σ2 · · · σk)k = z, we obtain the alternate chain rela-
tions discussed in Section 4.4.

We also mention that the star relation comes from an embedding of the
Artin group of type D4 into the mapping class group of a torus with three
boundary components [178].

Closed surfaces. For closed surfaces, the Birman–Hilden theorem takes the
form

SMod(Sg)/〈ι〉 ≈Mod(S0,2g+2),

where S0,2g+2 is a sphere with 2g + 2 marked points. Birman–Hilden used
this version of their theorem in order to obtain the presentation for Mod(S2)
given in Section 5.1. Since each standard generator for Mod(S2) has a rep-
resentative in SHomeo+(S2), we have SMod(S2) = Mod(S2). Thus

Mod(S2)/〈[ι]〉 = SMod(S2)/〈[ι]〉 ≈ Mod(S0,6).

Certain relations in Mod(Sg) can also be interpreted from this point of
view. For instance, the hyperelliptic relation in Mod(Sg) (see Section 5.1)
becomes the relation in Mod(S0,2g+2) that pushing a puncture around a
simple loop surrounding all of the other punctures is the trivial mapping
class; the other side of the loop is a disk.

9.4.3 PROOF OF THE BIRMAN–HILDEN THEOREM

Here we give a new proof of the Birman–Hilden theorem. Our proof is
combinatorially flavored, relying on the bigon criterion and the Alexander
method. For concreteness, we deal with the case of a closed surface Sg with
g ≥ 2. At the end, we discuss various other surfaces for which the proof
applies.

Below, when we say that two symmetric simple closed curves are symmet-
rically isotopic, we mean that they are isotopic through symmetric simple
closed curves.
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Lemma 9.3 Let g ≥ 2 and let α and β be two symmetric nonseparating
simple closed curves in Sg. If α and β are isotopic, then they are symmetri-
cally isotopic.

This lemma is not true for the torus since there exist simple closed curves
that are isotopic but pass through different fixed points of ι.

Proof. Let α and β denote the images of α and β in S0,2g+2 ≈ Sg/〈ι〉.
As above, α and β are simple proper arcs in S0,2g+2. Any isotopy between
these arcs will lift to a symmetric isotopy between α and β.

We can modify α by a symmetric isotopy so that it is transverse to β. We
claim that α cannot be disjoint from β. Indeed, for then α and β are disjoint,
including endpoints. But such arcs cannot correspond to isotopic curves in
Sg. Indeed, any arc γ that shares an odd number of endpoints with α and an
even number of endpoints with β lifts to a simple closed curve γ in Sg with
i(α, γ) odd and i(β, γ) even.

Since α is isotopic to β and α ∩ β �= ∅, the bigon criterion gives that α
and β form a bigon B. We assume that B is an innermost bigon. As α and
β are both fixed by ι, we have that ι(B) is another innermost bigon in the
graph α ∪ β.

Notice that we cannot have ι(B) = B. One way to see this is to note that
B lies to one particular side of α and ι takes α to α, reversing its orientation.
It follows that the image of B in S0,2g+2 is an innermost bigon B between
α and β. What is more, since ι(B) �= B, there are no fixed points of ι in B
and hence no marked points of S0,2g+2 in B.

The bigon B can have zero, one, or two of its vertices on marked points
of S0,2g+2. In the first two cases, we can modify α by isotopy in order to
remove the bigon, reducing the intersection number of α with β. In the last
case, since B is innermost, we see that α ∪ β is a simple loop bounding a
disk, and we can push α onto β. Removing bigons inductively, we see that
α is isotopic to β, and this isotopy lifts to a symmetric isotopy between α
and β. �

We say that two symmetric homeomorphisms of Sg are symmetrically
isotopic if they are isotopic through symmetric homeomorphisms, that is, if
they lie in the same component of SHomeo(Sg).

Proposition 9.4 Let g ≥ 2 and let φ,ψ ∈ SHomeo+(Sg). If φ and ψ are
isotopic, then they are symmetrically isotopic.

Proof. It suffices to treat the case where ψ is the identity since any symmet-
ric homotopy from φ ◦ ψ−1 to identity gives a symmetric homotopy from φ
to ψ. Let φ denote the induced homeomorphism of S0,2g+2.
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Let (γ1, . . . , γ2g+1) be a chain of nonseparating symmetric simple closed
curves in Sg. By assumption, φ is isotopic to the identity, and so for each i
the curve φ(γi) is isotopic to γi. By Lemma 9.3, we have that φ(γi) is sym-
metrically isotopic to γi for each i. If γi and φ(γi) are the images in S0,2g+2

of γi and φ(γi), then the last sentence implies that for each i the arc φ(γi)
is isotopic to γi. What is more, each such isotopy must fix the endpoints of
the arcs throughout and must avoid the marked points of S0,2g+2 throughout
(if the interior of an arc were to cross a marked point in S0,2g+2, then its
preimage in Sg would fail to be simple). Applying the Alexander method
to the collection of arcs γi in S0,2g+2, we conclude that φ is isotopic to the
identity. The isotopy induces a symmetric isotopy of φ to the identity. �

Proof of the Birman–Hilden theorem. If we compose the natural surjective
homomorphism SHomeo+(Sg) → Homeo+(S0,2g+2) with the projection
Homeo+(S0,2g+2) → Mod(S0,2g+2), we obtain a surjective homomor-
phism SHomeo+(Sg) → Mod(S0,2g+2). By Proposition 9.4, the latter fac-
tors through a surjective homomorphism

SMod(Sg) = π0(SHomeo+(Sg))→ Mod(S0,2g+2).

It remains to determine the kernel of this map. Let f ∈ SMod(Sg) and let
φ ∈ SHomeo+(Sg) be a symmetric representative. Let φ be the image of
φ in Homeo+(S0,2g+2). Since f 
→ 1, we have that φ is isotopic to the
identity. This isotopy lifts to an isotopy of φ to either the identity or ι. We
thus have

SMod(Sg)/〈[ι]〉 ≈ Mod(S0,2g+2),

as desired. �

It is straightforward to generalize our proof of the Birman–Hilden theo-
rem. For instance, in the case of S1

g , we simply use a chain of 2g curves. The
quotient of S1

g by the hyperelliptic involution ι : S1
g → S1

g is a disk with
2g + 1 marked points. Since ι is not an element of Homeo+(S1

g , ∂S
1
g ), it

does not represent an element of SMod(S1
g ), and so we obtain SMod(S1

g ) ≈
Mod(D2g+1) ≈ B2g+1, as desired.
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Chapter Ten

Teichmüller Space

This chapter introduces another main player in our story: the Teichmüller
space Teich(S) of a surface S. For g ≥ 2, the space Teich(Sg) parameter-
izes all hyperbolic structures on Sg up to isotopy. After defining a topology
on Teich(S), we give a few heuristic arguments for computing its dimen-
sion. The length and twist parameters of Fenchel and Nielsen are then in-
troduced in order to prove that Teich(Sg) is homeomorphic to R6g−6. At
the end of the chapter, we prove the 9g − 9 theorem, which tells us that a
hyperbolic structure on Sg is completely determined by the lengths assigned
to 9g − 9 isotopy classes of simple closed curves in Sg.

In Chapter 12, we will prove that Teich(S) admits a properly discon-
tinuous action of Mod(S). The quotient M(S) = Teich(S)/Mod(S) is
the moduli space of Riemann surfaces. The interplay between properties of
Teich(S), properties of Mod(S), and properties of this action provide us
with information on Teich(S), Mod(S), andM(S). For example, in Chap-
ter 13 we will use the action of Mod(S) on Teich(S) to give a classification
of elements of Mod(S).

10.1 DEFINITION OF TEICHMÜLLER SPACE

Let S be a compact surface with finitely many (perhaps zero) points re-
moved from the interior. We assume for now that χ(S) < 0. After some
preparation, we will define the Teichmüller space of S to be the set of iso-
topy classes of hyperbolic structures on S. While implicit in the work of
Poincaré, Riemann, and Klein, Teichmüller space was first defined and stud-
ied by Fricke, Teichmüller, Fenchel, and Nielsen.

By a hyperbolic structure on S we will mean a diffeomorphism φ : S →
X, where X is a surface with a complete, finite-area hyperbolic metric with
totally geodesic boundary. We can record the hyperbolic structure φ : S →
X by the pair (X,φ). The diffeomorphism φ is referred to as the marking,
and either X or (X,φ) can be referred to as a marked hyperbolic surface
(depending on whether or not we need to be explicit about the marking).

Two hyperbolic structures φ1 : S → X1 and φ2 : S → X2 on S are
homotopic if there is an isometry X1 → X2 so that the markings I ◦ φ1 :
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S → X2 and φ2 : S → X2 are homotopic. This is to say that the following
diagram commutes up to homotopy:

S
φ1 φ2

X1
I

X2

Here homotopies are allowed to move points in the boundary of X2.
We can then define the Teichmüller space of S as the set of homotopy

classes of hyperbolic structures on S:

Teich(S) = {hyperbolic structures on S}/homotopy

In slightly different language,

Teich(S) = {(X,φ)}/∼,

where two marked hyperbolic surfaces are equivalent if the hyperbolic struc-
tures they define are homotopic.

S2

X1

X2

α

φ1

φ2

φ1(α)

φ2(α)

Figure 10.1 The hyperbolic surfaces X1 and X2 are isometric, but X1 = [(X1, φ1)] and
X2 = [(X2, φ2)] are not the same point of Teich(S2) since, for example, the
way we have arranged things, �X1

(α) is not equal to �X2
(α).

Teichmüller space as a set of metrics. A marking φ : S → X of course
gives rise to an actual hyperbolic Riemannian metric on S, namely, the pull-
back of the hyperbolic metric on X. Thus we can also describe Teichmüller
space as the set of isotopy classes of hyperbolic metrics on S:

Teich(S) = HypMet(S)/Diff0(S),

where the action of Diff0(S) on the set of hyperbolic metrics HypMet(S)
is by pullback. While this second definition is in a sense more direct—for
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instance, there are no auxiliary surfaces required—our first definition will
be easier to use in practice.

Length functions. Let S denote the set of isotopy classes of essential sim-
ple closed curves in S. The hyperbolic structure on S corresponding to a
point X ∈ Teich(S) is defined only up to isotopy, but this is exactly enough
information to define a length function

�X : S → R+.

If X is the equivalence class of the marked hyperbolic surface (X,φ) and
c is an isotopy class of simple closed curves in S, then �X(c) is the length
of the unique geodesic in X in the isotopy class φ(c). As we proved in
Proposition 1.3, there is a unique such curve in X realizing this minimum.

Understanding points of Teich(S) via the length functions they define is
a useful point of view. See Figure 10.1. Indeed, as we will prove in Sec-
tion 10.7 below, if RS denotes the set of real-valued functions on S , the
map � : Teich(S) → RS given by X 
→ �X is injective. Actually, we will
prove something much stronger: an element of Teich(S) is determined by
finitely many coordinates of the length function �.

Change of marking. Given two hyperbolic structures φ : S → X and
ψ : S → Y on S, there is a bijective correspondence between Homeo(S)
and Homeo(X,Y ) given by f ↔ ψ ◦ f ◦ φ−1. The only canonical homeo-
morphism S → S is the identity map. The corresponding canonical home-
omorphism X → Y is the change of marking map ψ ◦ φ−1.

10.2 TEICHMÜLLER SPACE OF THE TORUS

The Gauss–Bonnet theorem implies that any closed hyperbolic surface X
has fixed area −2πχ(X). In contrast, a flat metric on the torus T 2 can have
any positive number as its area. Of course, any flat metric on the torus can be
multiplied pointwise by a fixed real number so that the area of the resulting
metric equals 1. It is thus natural to define the Teichmüller space Teich(T 2)
as the set of isotopy classes of unit-area flat structures on T 2.

The space Teich(T 2) will serve as a simple example with which we can
compute explicitly, in contrast to the case of Teich(Sg) with g ≥ 2. As a
first example, we have the following.

Proposition 10.1 There is a natural bijective correspondence

Teich(T 2)↔ H2.
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We will give two proofs of Proposition 10.1, one using the upper half-
plane model for H2 and one using the open unit disk model.

In the first proof of Proposition 10.1 we will describe Teich(T 2) in terms
of lattices. By a lattice in R2, we mean a discrete subgroup Λ of the additive
group R2 with Λ ≈ Z2. Equivalently, a discrete subgroup Λ < R2 is a lattice
if R2/Λ is compact.

Note that the R-span of any pair of generators for the group Λ is all of
R2. The area of a lattice Λ in R2 is the Euclidean area of the torus R2/Λ.
Any lattice in R2 is homothetic to a unique unit-area lattice. Recall that a
homothety of R2 is a map z 
→ λz for some λ ∈ R+.

We say that a lattice in R2 is marked if it comes equipped with an ordered
set of two generators. Equivalently, we can say that a lattice in R2 is marked
if it comes with a fixed isomorphism with Z2.

First proof of Proposition 10.1. We proceed in two steps.

Step 1: Teich(T 2) ←→ {marked lattices in R2}/ ∼, where the equiva-
lence relation is generated by Euclidean isometries and homotheties.

Fix a standard ordered generating set for π1(T
2). The ordered generating

set for a marked lattice Λ in R2 descends to an ordered generating set for
π1(R2/Λ). It is possible to find a diffeomorphism φ : T 2 → R2/Λ that takes
the first and second generators of π1(T

2) to the first and second generators
for π1(R2/Λ). We can scale the flat torus R2/Λ so that it has unit area, and
the diffeomorphsm φ induces a marking of this unit area flat torus. We have
thus obtained a point of Teich(T 2).

On the other hand, if we start with a point [(X,φ)] ∈ Teich(T 2), where
φ : T 2 → X is a unit-area flat structure, then the metric universal cover of
X is isometric to R2. The group of deck transformations is a lattice Λ in
R2, and the image under φ of the ordered set of generators for π1(T

2) is a
marking of Λ.

Step 2: H2 ↔ {marked lattices in R2}/∼.

Let Λ be a marked lattice in C ≈ R2. We can describe Λ by an ordered
pair of complex numbers (ν, τ), namely, the ordered set of generators com-
ing from the marking. We think of each of these complex numbers as vectors
in the plane. Staying within the same equivalence class of lattices, we can
scale and rotate Λ so that ν becomes 1. In other words, Λ is equivalent to
the lattice corresponding to (1, τ). The choice of τ here is not unique since
(1, τ) and (1, τ ) correspond to equivalent marked lattices (they differ by re-
flection across the x-axis, which is a Euclidean isometry). Reflecting across
the x-axis, we can assume τ lies in the upper half-plane, which we identify
with H2. The map [Λ] 
→ τ from the set of equivalence classes of marked
lattices to H2 is the desired bijection. �
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For the second proof of Proposition 10.1 we need to discuss how to write
down real linear maps R2 → R2 using complex notation. Let f : R2 → R2

be a linear map. We can represent f by a matrix

f =

(
a b
c d

)
.

Using complex notation and setting z = x+ iy, we can rewrite f as

f(z) = αz + β z̄,

where

α =
(a+ ic)− i(b+ id)

2
and β =

(a+ ic) + i(b+ id)

2
.

Indeed, it is straightforward to check that the latter map sends 1 to a + ic
and i to b+ id. We have

|α|2 − |β|2 = ad− bc = det f.

Thus f is a linear isomorphism if and only if |α| �= |β|, and in this case f is
orientation-preserving if and only if |α| > |β|.

Second proof of Proposition 10.1. We again prove the proposition in two
steps.

Step 1: Teich(T 2) ↔ {orientation-preserving isomorphisms R2 →
R2}/ ∼, where two linear maps are equivalent if they differ by rotation
and/or dilation.

This bijection is essentially a restatement of the bijection in step 1 of the
first proof of Proposition 10.1. Indeed, a linear map is exactly given by a
marked lattice (the image of the standard basis).

Step 2: H2 ↔ {orientation-preserving isomorphisms R2 → R2}/∼.

Let f : R2 → R2 be an orientation-preserving linear automorphism of
R2. As above, we can write f uniquely in complex notation

f(z) = α z + β z̄

for some α, β ∈ C. Since multiplication by a complex number is the compo-
sition of a rotation with a dilation, we can postcompose f by multiplication
by α−1, staying in the same equivalence class. We then obtain the linear
map

z 
→ z + µ z̄,
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where µ = β/α. Again, since f is orientation-preserving, the complex num-
ber µ lies inside the unit disk in C and hence gives a point of H2 via the unit
disk model. This process is reversible, so we have exhibited the desired bi-
jection. �

The complex number µ attached to the map f is called the complex di-
latation of f . We will see in Chapter 11 that µ conveys salient information
about the map f in that it records the amount of stretching that f effects on
R2.

There is a third space lurking that is also equivalent to Teich(T 2) and H2,
namely,

SL(2,R)/SO(2,R).

Indeed, our description of Teich(T 2) in step 1 of the second proof of Propo-
sition 10.1 is equivalent to this quotient: given an orientation-preserving lin-
ear map, we can scale in order to get an element of SL(2,R). Then the
rotations in SL(2,R) are exactly the elements of SO(2,R).

There is a direct way to see the bijection SL(2,R)/SO(2,R) ↔ H2: the
group SL(2,R) acts transitively on H2 with point stabilizers isomorphic to
SO(2,R).

A topology on Teich(T 2). The bijection Teich(T 2) ↔ H2 induces a
topology on Teich(T 2) by declaring the bijection to be a homeomorphism
(one can check that the various bijections are compatible). We will see below
that this idea generalizes to give a topology on Teich(S) for arbitrary S.

Sample tori. We explore the dictionary between Teich(T 2) and H2 given
by our first proof of Proposition 10.1. To start, the points i and i + 1 both
represent the standard lattice in R2. However, the point i corresponds to the
marking (1, i), whereas the point i + 1 corresponds to the marking (1, i +
1), and so these are different points of Teich(T 2). Viewed as marked tori,
both are isometric to the standard square torus, but i corresponds to the
square torus with the standard marking, and i+ 1 corresponds to the square
torus where the marking differs from the standard marking by a Dehn twist.
Similarly, one can check that the points ni and i/n represent isometric tori
but different points in Teich(T 2) for any n > 0. Finally, one can check that,
for ε ∈ (0, 1), the points i and i + ε represent nonisometric tori and hence
different points in Teich(T 2).
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10.3 THE ALGEBRAIC TOPOLOGY

There is an alternate characterization of Teich(S) which gives rise to a
natural topology on Teich(S), called the algebraic topology. To describe
this characterization we will use a higher-genus analogue of the description
of Teich(T 2) in terms of marked lattices. We begin with the closed case
S = Sg for g ≥ 2.

Recall that Isom+(H2) ≈ PSL(2,R) and Isom(H2) ≈ PGL(2,R). A
representation ρ : π1(Sg) → PSL(2,R) is called faithful if it is injec-
tive. Such a representation ρ is called discrete if ρ(π1(Sg)) is discrete in
PSL(2,R).

The group PGL(2,R) acts on the space DF(π1(Sg),PSL(2,R)) of dis-
crete, faithful representations ρ : π1(Sg) → PSL(2,R) by conjugation: for
each γ ∈ π1(Sg) and each h ∈ PGL(2,R), we let

(h · ρ)(γ) = hρ(γ)h−1.

The quotient

DF(π1(Sg),PSL(2,R))/PGL(2,R)

is the set of PGL(2,R) conjugacy classes of discrete, faithful representa-
tions of π1(Sg) into PSL(2,R). The following is an analogue of Proposi-
tion 10.1.

Proposition 10.2 Let g ≥ 2. There is a natural bijective correspondence:

Teich(Sg)↔ DF(π1(Sg),PSL(2,R))/PGL(2,R).

To make the analogy between Propositions 10.2 and 10.1 more clear, we
can think of an equivalence class of marked lattices in R2 as a discrete,
faithful representation of π1(T

2) ≈ Z2 into Isom+(R2) up to conjugation
by Isom(R2) and homothety. Again, the reason that homothety does not
appear in Proposition 10.2 is that the Gauss–Bonnet theorem implies that
all hyperbolic structures on Sg have the same area when g ≥ 2.

Proof. Let [(X,φ)] ∈ Teich(Sg). There is an isometric identification η :

X̃ → H2, where X̃ is the metric universal cover ofX. The group π1(X) acts
isometrically and properly discontinuously on X̃ . The marking φ identifies
π1(Sg) with π1(X) and hence with the group of deck transformations of
X̃ . These identifications give rise to a discrete, faithful representation ρ :
π1(Sg)→ PSL(2,R).

In determining ρ we made several choices: the choice of (X,φ) in the
class [(X,φ)], the choice of η, the choice of isomorphism φ∗(π1(Sg)) →



270 CHAPTER 10

π1(X), and the choice of identification of π1(X) with the group of deck
transformations of X̃ . We claim that none of these choices affect the equiv-
alence class of ρ. For example, the choice of η is unique up to postcom-
posing by an element of Isom(H2). If we replace η with η ◦ ν, where
ν ∈ Isom(H2) ≈ PGL(2,R), then ρ simply becomes ν · ρ. Changing
(X,φ) within its equivalence class is tantamount to changing φ within its
homotopy class. But changing φ by homotopy does not affect ρ. One way to
see this is to observe that if we lift any isotopy of X to X̃ ≈ H2, then points
of H2 move a uniformly bounded distance and so the induced action on ∂H2

is trivial. On the other hand, an isometry of H2 is determined by its action
on ∂H2. Finally, the choices of isomorphisms between φ∗(π1(Sg)), π1(X),
and the group of deck transformations are well defined up to conjugation,
and so the resulting ρ is well defined up to conjugation.

For the other direction, let ρ ∈ DF(π1(Sg),PSL(2,R)). We claim that
ρ is a covering space action on H2. Since ρ(π1(Sg)) is discrete, the action
of ρ(π1(Sg)) on H2 is properly discontinuous. Thus to prove the claim we
must show that this action is free. If the action of ρ were not free, then
the image of ρ would contain a nontrivial elliptic isometry of H2, that is, a
rotation. Since ρ is faithful and π1(Sg) is torsion-free, this elliptic element
must have infinite order. This violates the discreteness of ρ. Thus the action
of ρ(π1(Sg)) on H2 must be free.

Since ρ is a covering space action, it follows that X = H2/ρ(π1(Sg))
has fundamental group π1(Sg). Thus, by the classification of surfaces, X is
diffeomorphic to Sg.

We can recover a homomorphism ρ∗ : π1(Sg) → π1(X) from ρ since ρ
maps elements of π1(Sg) to covering transformations overX, which in turn
correspond to elements of π1(X). Since Sg andX areK(π1(Sg), 1)-spaces,
it follows that there is a unique homotopy class of homotopy equivalences
from Sg toX that realizes the map ρ∗. But any homotopy equivalence Sg →
X is homotopic to a diffeomorphism (Proposition 8.9 plus Theorem 1.13),
and this diffeomorphism serves as the desired marking.

Suppose we replace ρ by one of its PGL(2,R) conjugates, ρ′. The result-
ing Riemann surface X ′ is isometric to X, and it follows that the resulting
point of Teich(Sg) is the same.

The two maps described above are inverses of each other, so the proof is
complete. �

The topology. There is a natural topology on the quotient space
DF(π1(Sg),PSL(2,R))/PGL(2,R), which we now describe.

We endow π1(Sg) with the discrete topology and PSL(2,R) with its usual
topology as a Lie group and then give the set Hom(π1(Sg),PSL(2,R))
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the compact-open topology. There is a more concrete way to describe this
topology. Pick a set of 2g generators for π1(Sg). Since a homomorphism
π1(Sg) → PSL(2,R) is determined by where it sends a generating set,
there is a natural inclusion of Hom(π1(Sg),PSL(2,R)) into the direct prod-
uct PSL(2,R)2g of 2g copies of PSL(2,R). We endow PSL(2,R)2g with
the usual Lie group topology. Then the set Hom(π1(Sg),PSL(2,R)) in-
herits the subspace topology. It is straightforward to check that different
choices of generating sets for π1(Sg) give rise to equivalent topologies on
Hom(π1(Sg),PSL(2,R)). It is also not hard to verify that the two topolo-
gies on Hom(π1(Sg),PSL(2,R)) described above give rise to equivalent
topologies.

Since DF(π1(Sg),PSL(2,R)) is a subset of Hom(π1(Sg),PSL(2,R)),
it inherits the subspace topology. Finally, we endow the quotient

DF(π1(Sg),PSL(2,R))/PGL(2,R)

with the quotient topology. We then obtain via Proposition 10.2 a topology
on Teich(Sg) called the algebraic topology on Teich(Sg).

In Chapter 11, we will define a metric on Teich(Sg) called the Te-
ichmüller metric, and we will check that the induced topology on Teich(Sg)
is homeomorphic to the algebraic topology on Teich(Sg).

Continuity of length functions. Let γ be some fixed element of π1(Sg),
where g ≥ 2. The function [ρ] 
→ trace(ρ(γ)) is a continuous function on
DF(π1(Sg),PSL(2,R))/PGL(2,R). For X ∈ Teich(Sg), denote by ρX

some corresponding representation. Since

�X(γ) = 2 cosh−1(trace(ρX(γ))/2),

we have the following consequence of Proposition 10.2.

Proposition 10.3 Let S be any hyperbolic surface and let c be an isotopy
class of simple closed curves in S. The function Teich(S)→ R given by

X 
→ �X(c)

is continuous.

Nonclosed surfaces. The procedure just described for obtaining a topol-
ogy on Teich(S) is more delicate when S is not closed. The reason is that
there are nonhomeomorphic surfaces with the same fundamental group, for
example, π1(S0,3) ≈ π1(S1,1) ≈ F2. In these cases we do not simply con-
sider all discrete faithful representations of π1(S) into PSL(2,R). Instead,
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we consider the subset of DF(π1(S),PSL(2,R)) consisting of those repre-
sentations corresponding to complete, finite-area hyperbolic surfaces with
geodesic boundary homeomorphic to S. For example, this restricts the con-
jugacy class in π1(S) corresponding to a loop around a puncture to map to
a unipotent element of PSL(2,R), so that the corresponding isometry of H2

will be of parabolic type. Indeed, if a loop around a puncture corresponds
to a hyperbolic isometry, the hyperbolic structure on the surface will have
infinite area.

10.4 TWO DIMENSION COUNTS

In Section 10.6, we will give a formal proof that Teich(Sg) ≈ R6g−6

when g ≥ 2. Before doing this we first arrive at the correct dimension for
Teich(Sg) via two different heuristic counts. This dimension was first stated
by Riemann in his paper on abelian functions [185].

10.4.1 TEICHMÜLLER SPACE AS A REPRESENTATION SPACE

For the first dimension count we use the bijection between Teich(Sg) and
DF(π1(Sg),PSL(2,R))/PGL(2,R) given in Proposition 10.2.

The Lie group PGL(2,R) is 3-dimensional and acts on the space
DF(π1(Sg),PSL(2,R)) with 3-dimensional orbits (this is not hard to
check). Thus the dimension of the quotient

DF(π1(Sg),PSL(2,R))/PGL(2,R)

can be computed as the dimension of DF(π1(Sg),PSL(2,R)) minus 3.
The set DF(π1(Sg),PSL(2,R)) is open in Hom(π1(Sg),PSL(2,R))

(see [212]), so the dimensions of the two spaces are the same, and it suf-
fices to find the dimension of the latter. Let γ1, . . . , γ2g ∈ π1(Sg) so that

π1(Sg) = 〈γ1, . . . , γ2g|[γ1, γ2] · · · [γ2g−1, γ2g]〉.

A homomorphism ρ : π1(Sg) → PSL(2,R) is determined by choosing the
2g images ρ(γi) ∈ PSL(2,R). However, by the relation

[ρ(γ1), ρ(γ2)] · · · [ρ(γ2g−1), ρ(γ2g)] = I,

we see that ρ(γ2g) is completely determined by the other ρ(γi). This cuts
down on 3 degrees of freedom in our choices of the ρ(γi).

We thus arrive at the following count.
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Figure 10.2 The tiling of H2 by regular octagons.

Dimension count 1: the space of representations

+6g : Choose elements ρ(γ1), . . . , ρ(γ2g) ∈ PSL(2,R).

−3 : The ρ(γi) must satisfy one relation.

−3 : Conjugate representations are equivalent.

= 6g − 6 total dimensions

10.4.2 TEICHMÜLLER SPACE AS A SPACE OF TILINGS

We define a hyperbolic Sg-tile as a geodesic hyperbolic 4g-gon with the
following properties

1. The sum of the interior angles is 2π.

2. Reading clockwise, the edges are labeled

γ1, γ2, γ1, γ2, . . . , γ2g−1, γ2g, γ2g−1, γ2g.

3. Edges with the same labels have the same hyperbolic length.

If we identify the sides of a hyperbolic Sg-tile according to the labels, we
obtain a closed hyperbolic surface of genus g.

We will give a bijection between Teich(Sg) and equivalence classes of
Sg-tiles and use this identification to find the dimension of Teich(Sg).
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Fix a collection of simple loops {γ1, . . . , γ2g} in Sg that are based at a
common point x, that are disjoint away from x, and that cut Sg into a 4g-
gon whose labels agree with that of a hyperbolic Sg-tile.

Let [(X,φ)] ∈ Teich(Sg). If we consider homotopy classes relative to
φ(x), then each φ(γi) has a unique shortest representative δi in X. The δi
are all simple and intersect pairwise only at φ(x). When we cut X along the
δi, we obtain a hyperbolic Sg-tile.

Any path lifting of any δi to the universal cover X̃ ≈ H2 is a geodesic
segment, and the union of all path lifts of all the δi gives a tiling of H2 by
hyperbolic Sg-tiles. See Figures 10.2 and 10.3 for sample tilings of H2 by
hyperbolic S2-tiles.

In passing from [(X,φ)] to a hyperbolic Sg-tile, we had to choose a spe-
cific marking in the homotopy class φ : Sg → X. If we modify φ by ho-
motopy, then the based geodesics δi, and hence the hyperbolic Sg-tile, will
change. The resulting geodesics δi are not sensitive to the specific homo-
topy; they only depend on the path that φ(x) traces out during the homo-
topy. What is more, the δi only depend on the relative homotopy class of
this path. In other words, the choice we made in going from [(X,φ)] to a
hyperbolic Sg-tile amounts to a choice of point in X̃ .

To summarize the previous paragraph, there is a map from Teich(Sg) to
the set of hyperbolic Sg-tiles. This map is not well defined, but the ambiguity
is exactly accounted for by X̃ , which is 2-dimensional.

Conversely, given a hyperbolic Sg-tile, the space X obtained by identify-
ing the sides in pairs is isometric to a hyperbolic surface that is homeomor-
phic to Sg. Moreover, the labeling induces an identification of π1(Sg) with
π1(X). As in Section 10.3, there is then a diffeomorphism φ : Sg → X
realizing this isomorphism, which is a marking.

We thus have a bijective correspondence between points of Teich(Sg)
and the set of equivalence classes of hyperbolic Sg-tiles, where two hyper-
bolic Sg-tiles are equivalent if they differ by marked, orientation-preserving
isometry and by “pushing the basepoint.” We will count the dimension of
the set of these equivalence classes.

In our dimension count, we will use the fact that, given any geodesic
polygon in H2, we can scale the polygon so that its interior angles sum to
2π. This is true because scaling a polygon in H2 continuously varies the
interior angle sum from nearly the Euclidean angle sum (small polygons)
to nearly zero (big polygons). When g ≥ 2, the Euclidean angle sum of a
geodesic 4g-gon is greater than 2π, and so it follows that we can scale any
geodesic 4g-gon so that the angle sum is exactly 2π.
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Figure 10.3 Some possible tilings of H2 coming from hyperbolic structures on S2. These
pictures are sketches of images from the (existing but inactive) web page for
the “Teichmüller Navigator” on the Geometry Center’s web site.

Dimension count 2: the space of tilings

+8g : Choose a set of 4g vertices in H2.

−2g : Side lengths must match in pairs.

−1 : Scale so the sum of interior angles is 2π.

−3 : Isometric tilings are equivalent.

−2 : Pushing the base point gives different tilings

representing the same point of Teich(Sg).

= 6g − 6 Total dimensions

10.5 THE TEICHMÜLLER SPACE OF A PAIR OF PANTS

Let P denote a pair of pants, that is, a compact surface of genus 0 with three
boundary components. Recall from Chapter 8 that a pants decomposition
of a surface S is a maximal collection of pairwise disjoint, pairwise non-
isotopic, essential simple closed curves in S. When S is given a hyperbolic
metric, the curves in a pants decomposition can be represented by geodesics
in S.

Decomposing a hyperbolic surface S with totally geodesic boundary
along a collection of disjoint geodesics gives another hyperbolic surface S′

with totally geodesic boundary. The surface S′ has smaller complexity than
S in the sense that the number of curves in a pants decomposition for S′

is strictly less than the number for S. This cutting procedure thus gives us
an inductive method for understanding the hyperbolic structure of a surface.
Since the only geodesic simple closed curves on a hyperbolic pair of pants
are the three boundary components, the pair of pants serves as our base case
for the induction.

So our first goal is to determine Teich(P ) for a pair of pants P . To do this
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we will reduce the problem to understanding a certain space of right-angled
hexagons, as we now explain.

Hyperbolic hexagons. By a marked hexagon we will mean a hexagon with
one vertex distinguished. Let H denote the set of equivalence classes of
marked right-angled geodesic hexagons in H2, where two such hexagons
are equivalent if there is an orientation-preserving isometry of H2 taking
one hexagon to the other and taking the marked point of the first to the
marked point of the second.

Any space of metrics on a surface is a priori infinite-dimensional. It seems
difficult to find a precise set of constraints on a metric so that the space of
such metrics is finite-dimensional but still not empty. Thus the finite di-
mensionality of Teich(S) of any compact surface is quite remarkable. At
some point one has to make the jump from an infinite-dimensional space of
possibilities to a finite-dimensional one. The following key proposition is
precisely where this jump occurs.

Proposition 10.4 The mapW : H → R3
+ defined by taking the lengths of

every other side of a hexagon, starting at the marked point and traveling
counterclockwise, is a bijection.

Proof of Proposition 10.4. We will define a two-sided inverse R3
+ → H to

W . That is, given an arbitrary triple (Lα, Lβ, Lγ) ∈ R3
+, we will construct

a marked right-angled hexagon H that is unique up to marked orientation-
preserving isometry and that satisfies W (H) = (Lα, Lβ, Lγ). Throughout,
the reader should refer to Figure 10.4.

There is a basic fact from hyperbolic geometry that we will use: given
two disjoint geodesics in H2 with four distinct endpoints at infinity, there is
a unique geodesic perpendicular to both.

For any t > 0, let αt and βt be a pair of geodesics in H2 a distance t apart
and let γ′t be the unique geodesic segment realizing this distance. Let α′t
and β′t be geodesics on the same side of γ′t such that α′t has a perpendicular
intersection with βt at a distance Lβ away from γ′t and β′t has a perpendicular
intersection with αt at a distance Lα away from γ′t. We further require that
if γ′t is oriented from αt to βt, then α′t and β′t lie to the left of the γ′t.

There is a value t0 > 0 so that α′t0 and β′t0 share an endpoint on ∂H2. For
t > t0, let γt be the unique geodesic segment perpendicular to α′t and β′t.

As t varies from t0 to infinity, the length of γt varies continuously and
monotonically from zero to infinity, so there is a unique t so that the length
of γt is exactly Lγ .

Trimming geodesics to segments as necessary and marking the intersec-
tion of αt and β′t, we obtain a right-angled hexagon that represents the de-
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sired point of H.
In the construction just described, we made no choices after the initial

choice of αt and βt. What is more, up to orientation-preserving isometries
of H2, there is a unique ordered pair of geodesics whose distance from each
other is a given positive length. In other words, even the choices of αt and
βt were unique up to isometries of H2. It follows that the point ofH we con-
structed is uniquely defined, and we have indeed given a two-sided inverse
of W . �

Lα

Lβ
t

αt

βt

γtβ′t

α′t

γ′t

Figure 10.4 The picture for the proof of Proposition 10.4.

Pairs of pants. Having determined H we can now show that Teich(P ) ≈
R3.

Proposition 10.5 Let P be a pair of pants with boundary components α1,
α2, and α3. The map Teich(P )→ R3

+ defined by

X 
→ (�X(α1), �X(α2), �X(α3))

is a homeomorphism.

Proof. We first establish a bijection between Teich(P ) and H, the set of
oriented isometry classes of marked right-angled hyperbolic hexagons.

Let X = [(X,φ)] ∈ Teich(P ), where X is a hyperbolic surface with
totally geodesic boundary and φ : P → X is a homeomorphism. For each
pair of distinct boundary components of X, there is a unique isotopy class
of arcs connecting them; let δij = δji denote the geodesic representative of
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the arc connecting φ(αi) and φ(αj). By the first variation principle, each of
the δij is perpendicular to ∂X at both of its endpoints. The closures of the
two components of X −∪δij are hyperbolic right-angled hexagons H1 and
H2.

An application of Proposition 10.4 gives that H1 and H2 are abstractly
isometric since the lengths of the δij determine the hyperbolic structure on
each. Let H be a marked right-angled hexagon in H2 that is the isometric
image of the marked hexagon H1, where the image of δ13 ∩ φ(α1) is the
marked point and where the images of the φ(α1)-, φ(α2)-, and φ(α3)-edges
appear in counterclockwise order. The equivalence class of this hexagon is
an element of H.

On the other hand, given an element of H, we realize it as a marked
hexagon H in H2, create a second hexagon H ′ by reflecting H over the edge
lying first in the clockwise direction from the marked point, label the sides
as in Figure 10.5, and obtain a hyperbolic pair of pants X by identifying the
pairs of sides labeled δ12 and δ23. Then, as the marking we take the unique
isotopy class of diffeomorphisms P → X (remember: isotopies are free on
the boundary) respecting the labels of the boundary components.

We have thus established a bijection between Teich(P ) and H. Com-
posing with the map W from Proposition 10.4, we obtain a bijection be-
tween Teich(P ) and R3

+. This bijection is a homeomorphism because if two
points of R3

+ are close, then the corresponding right-angled hexagons are
nearly isometric and so the corresponding representations π1(P ) ≈ F2 →
PSL(2,R) (defined by identifying two side pairs of a doubled hexagon in
H2) are close in the algebraic topology on Teich(P ). �

Consider the thrice-punctured sphere S0,3, which is homeomorphic to
the interior of P . An argument similar to that given above shows that
Teich(S0,3) is a single point. The reason for this is that we can identify
the point(s) of Teich(S0,3) with the space of ideal triangles in H2 (we can
think of an ideal triangle as a hexagon with three degenerate sides); but there
is a unique ideal triangle in H2 up to isometry since PGL(2,R) acts triply
transitively on ∂H2.

10.6 FENCHEL–NIELSEN COORDINATES

As every closed surface of negative Euler characteristic can be built from
pairs of pants, we can extend Proposition 10.5 to coordinatize Teich(Sg)
for g ≥ 2. Using this idea, we will prove the following theorem of Fricke
[67].

For g ≥ 2, Teich(Sg) is homeomorphic to R6g−6.
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α1

α1

α2

α2

α3

α3

H

H ′

δ13

δ23

δ23 δ12

δ12

Figure 10.5 A pair of pants from a marked hexagon.

(We will give an explicit homeomorphism below; see Theorem 10.6.)
The basic idea is to decompose Sg into pairs of pants using 3g − 3 sim-

ple closed curves. Then there are 3g − 3 length parameters that determine
the hyperbolic structure on each pair of pants, and there are 3g − 3 twist
parameters that determine how the pairs of pants are glued together. Taken
together, these 6g − 6 coordinates are the Fenchel–Nielsen coordinates [64,
Section 26.9] for Teich(Sg). We now explain this more precisely.

10.6.1 LENGTH PARAMETERS AND TWIST PARAMETERS

In order to define the Fenchel–Nielsen coordinates we must first choose a
coordinate system of curves on Sg. This consists of the following data:

• a pants decomposition {γ1, . . . γ3g−3} of oriented simple closed
curves and

• a set {β1, . . . , βn} of seams; that is, a collection of disjoint simple
closed curves in Sg so that the intersection of the union ∪βi with any
pair of pants P determined by the {γj} is a union of three disjoint
arcs connecting the boundary components of P pairwise.

Given a pants decomposition, we can construct seams by first choosing
three disjoint arcs on each pair of pants and then matching up endpoints in
any fashion. See Figure 10.9 below for an example in the case g = 2.
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Fix once and for all a coordinate system of curves on Sg consisting of an
oriented pants decomposition {γi} with seams {βi}.

We define the 3g − 3 length parameters of a point X ∈ Teich(Sg) to be
the ordered (3g − 3)-tuple of positive real numbers

(�1(X), . . . , �3g−3(X)),

where �i(X) = �X(γi).
According to Proposition 10.5, the length parameters for a point of

Teich(Sg) determine the isometry types of the 2g − 2 pairs of pants cut
out by the coordinate system of curves for Sg. In order to record how these
pants are glued together we introduce the twist parameters θi(X).

Before we begin in earnest with twist parameters, let us make an obser-
vation. Suppose we have two hyperbolic pairs of pants with totally geodesic
boundary, as on the left-hand side of Figure 10.6. If these pairs of pants have
boundary components of the same length, then we can glue them together
to obtain a compact hyperbolic surface X of genus 0 with four boundary
components. It is intuitively clear that the isometry type of X depends on
how much we rotate the pairs of pants before gluing. For instance, as Fig-
ure 10.6 indicates, the shortest arc connecting two boundary components of
X changes as we change the gluing instructions. Thus we have a circle’s
worth of choices for the isometry type of X. Of course, we care about more
than just the isometry type—we also care about markings. So the twist pa-
rameters we define on Teichmüller space will be real numbers, but modulo
2π, they are simply recording the angles at which we glue pairs of pants.

As a first step toward defining the twist parameters, suppose that β is an
arc in a hyperbolic pair of pants P connecting boundary components γ1

and γ2 of P . We define the twisting number of β at γ1 as follows. Let δ
be the unique shortest arc connecting γ1 and γ2. Let N1 and N2 be regular
metric neighborhoods of γ1 and γ2. We can modify β by isotopy (leaving the
endpoints fixed) so that it agrees with δ outside of N1∪N2; see Figure 10.7.
The twisting number of β at γ1 is the signed horizontal displacement of the
endpoints β ∩ ∂N1. The sign is determined by the orientation of γ1. The
twisting number of β at γ2 is defined in the same way.

Given X = [(X,φ)] ∈ Teich(Sg), we define the ith twist parameter θi(X)
as follows: let βj be one of the two seams that cross γi. On each side of the
φ(γi) geodesic there is a pair of pants, and the φ(βj) geodesic gives an arc
in each of these. Let tL and tR be the twisting numbers of each of these arcs
on the left and right sides of φ(γi), respectively. The ith twist parameter of
X is defined to be

θi(X) = 2π
tL − tR
�X(γi)

.
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twist
glue pull tight

Figure 10.6 The effect of the twist parameter on geodesic arcs. If the twist parameter were
instead taken to be zero, the geodesic arc at the end would be the union of the
two geodesic arcs from the original pairs of pants.

γ1

γ2

γ3β

Figure 10.7 Modifying an arc on a pair of pants so that it agrees with a perpendicular arc
except near its endpoints.

Since there were two choices of seams βj , we need to check that the twist
parameter is well defined. To see this, we pass to the universal cover of the
neighborhood Ni of φ(γi). As in the proof of Proposition 10.5, the four
geodesic arcs connecting φ(γi) to the boundary components of the adjacent
pairs of pants are perpendicular to φ(γi). Also, on each side of φ(γi), the
two geodesics lie on diametrically opposed points along φ(γi). If we modify
the seams as in the definition of the twist parameter and pass to the universal
cover of Ni, we obtain Figure 10.8. Here the geodesic arcs are dashed, and
the modified seams are solid. Each lift of a seam connects two dashed arcs,
and the twist parameter is the signed distance between these dashed arcs.
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Combining the fact that the two perpendicular arcs lie diametrically opposite
each other on φ(γi) with the fact that the seams do not cross each other, we
see that the twist parameters computed from the two seams are the same.

Figure 10.8 The universal cover of the annular neighborhood of a φ(γi).

10.6.2 FENCHEL–NIELSEN COORDINATES

Now that we have defined the length and twist parameters, we can give the
precise statement of Fricke’s theorem.

Theorem 10.6 Let g ≥ 2 and fix any coordinate system of curves on Sg.
The map

FN : Teich(Sg)→ R3g−3
+ × R3g−3

defined by setting

FN(X) = (�1(X), . . . , �3g−3(X), θ1(X), . . . , θ3g−3(X))

is a homeomorphism. In particular, Teich(Sg) ≈ R6g−6.

The ordered set of numbers (�1(X), . . . , �3g−3(X), θ1(X), . . . , θ3g−3(X))
are called the Fenchel–Nielsen coordinates of the point X ∈ Teich(Sg).

Proof. Denote the pants decomposition of the fixed coordinate system of
curves for Sg by {γi} and the seams by {βi}.

Let (�1, . . . , �3g−3, θ1, . . . , θ3g−3) ∈ R3g−3
+ × R3g−3. In order to prove

that FN is a bijection, we will find a unique X ∈ Teich(Sg) with these
Fenchel–Nielsen coordinates with respect to the given coordinate system of
curves. We construct X in four steps.
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Step 1. Let Pi,j,k denote the pair of pants1 determined by γi, γj , and γk.
Note that γi, γj , and γk might not be distinct. By Proposition 10.5, we can
construct a hyperbolic pair of pantsXi,j,k whose boundary components have
lengths �i, �j , and �k, and there is only one way to do this up to isometry. By
construction, there is a homeomorphism Pi,j,k → Xi,j,k taking each γi to a
boundary curve of length �i. Via this homeomorphism, the boundary curves
of Xi,j,k inherit orientations from the γi.

Step 2. For each Xi,j,k and each pair of its boundary components, we
draw the unique geodesic arc that is perpendicular to those boundary com-
ponents. For each m ∈ {i, j, k}, we adjust this seam as follows: in a small
neighborhood of a boundary component corresponding to the left side of
γm, we replace each geodesic arc with an arc that travels along that bound-
ary component an oriented distance of (θm/2π)�m. The result is unique up
to isotopy relative to ∂Xi,j,k.

Given a seam in Pi,j,k, that is, an intersection of some βk with Pi,j,k, there
is a unique corresponding seam in Xi,j,k, namely, the arc that connects the
corresponding boundary components.

Step 3. Since the boundary curves and the seams of the Xi,j,k are identi-
fied with the boundary curves and seams of the Pi,j,k, there is a unique way
to construct a quotient

X =
∐

Xi,j,k/∼

of the disjoint union of the Xi,j,k. Specifically, we identify corresponding
boundary components of the Xi,j,k, and we do this in such a way that the
corresponding seams match up.

Step 4. We construct a diffeomorphism from φ : Sg → X that respects
the identifications of the coordinate system of curves. The marked surface
(X,φ) represents the desired point of Teich(Sg).

By construction, [(X,φ)] is a point in Teich(Sg) with the desired
Fenchel–Nielsen coordinates. We have thus defined a map FN ′ : R3g−3

+ ×
R3g−3 → Teich(Sg). It is clear that FN ′ is an inverse of FN . That both
maps are continuous is straightforward to check from the definitions. Thus
FN is a homeomorphism, and we are done. �

1This is a slight abuse of notation because when g = 2 it is possible to have two pairs of
pants determined by the same triple {i, j, k}.
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f

γ1

γ2

γ3

f(γ1)f(γ1)

f(γ2)

f(γ2)

f(γ3)f(γ3)

Figure 10.9 Constructing the map φ : Sg →
‘

Xi,j,k/∼. Here the second twist parameter
is a small positive number, and the third twist parameter is approximately −2π
(the first is zero).

10.6.3 FENCHEL–NIELSEN COORDINATES FOR NONCLOSED SURFACES

Let Sbg be a compact surface of genus g with b boundary components. As-
sume that χ(Sbg) < 0. As in Section 8.3, a pants decomposition for Sbg has
3g − 3 + b curves (boundary curves are not included). Fenchel–Nielsen co-
ordinates for Sbg are given by a total of 6g − 6 + 3b coordinates. There are
3g−3+2b length parameters, one for each curve of the pants decomposition
and one for each boundary curve. There are 3g−3+b twist parameters, one
for each curve of the pants decomposition. We thus obtain

Teich(Sbg) ≈ R6g−6+3b.

By setting some or all of the length parameters to be zero, we can turn
boundary components into punctures. So if Sg,n is a surface of genus g with
n punctures and χ(Sg,n) < 0, then

Teich(Sg,n) ≈ R6g−6+2n.

Together with our determination of Teich(T 2), this in particular gives

Teich(T 2) ≈ Teich(S1,1) ≈ Teich(S0,4) ≈ R2.

What is more, each of these isomorphisms is natural. For example, the for-
getful map S1,1 → T 2 and the quotient map T 2 → S0,4 identify Fenchel–
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Nielsen coordinate systems on the three surfaces.

10.6.4 FENCHEL–NIELSEN COORDINATES FOR THE TORUS

We can define Fenchel–Nielsen coordinates for T 2 using a method similar
to that used for hyperbolic surfaces. Pick a cylinder decomposition (instead
of a pants decomposition) of T 2, that is, an oriented simple closed curve γ.
Also choose a seam, which in this case is a simple closed curve β in T 2 with
i(β, γ) = 1.

(�, 0)

(θ �
2π ,

1
� )

Figure 10.10 The effect of length and twist parameters on the universal cover of the corre-
sponding point in Teich(T 2).

The Fenchel–Nielsen coordinates for a point X = [(X,φ)] ∈ Teich(T 2)
is a pair (�, θ) defined as follows. The length coordinate � is the length in X
of any geodesic in the homotopy class of φ(γ). When we cut X along any
such geodesic, we obtain a flat cylinder X ′. The curve φ(β) becomes an arc
on X ′. The universal cover of X ′ is isometric to R× 1/�. Any lift of the arc
φ(β) to this cover is an arc, and the twist parameter θ is given by the hori-
zontal displacement of its two endpoints. Specifically, if the displacement is
d, then θ = (d/�)2π.

If we identify Teich(T 2) with the upper half-plane H2 via the bijection
given in Proposition 10.1, we can write the Fenchel–Nielsen coordinates as
a map FN : H2 → R+ × R. Specifically, we have

FN(x, y) = (1/
√
y , 2πx).

It is instructive to define the inverse map R+ × R → H2 ≈ Teich(T 2).
Let (�, θ) ∈ R+×R. We start by constructing the unique flat, unit-area, right
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cylinder X ′ with boundary length �. Call its boundary components δ1 and
δ2. We draw a vertical arc β′ on X ′ and then modify β′ by dragging its end-
point on δ1 an oriented distance (θ/2π)� along δ1 (see Figure 10.10). We
then obtain a torus X by identifying δ1 and δ2 by the unique orientation-
preserving isometry that identifies the endpoints of β′. There is a homeo-
morphism φ : T 2 → X, unique up to isotopy, that sends γ to the image of
δ1 ∪ δ2 in X and β to the image of β′ in X. Then (X,φ) represents the de-
sired point in Teich(T 2). This point of Teich(T 2) corresponds to the point
(θ/2π, 1/�2) in the upper half-plane.

10.6.5 WOLPERT’S MAGIC FORMULA

The Fenchel–Nielsen coordinates (�1, . . . , �3g−3, θ1, . . . , θ3g−3) obviously
depend in an essential way on the choice of coordinate system of curves.
It follows that the same can be said for the associated 1-forms d�i and dθi
on Teich(Sg). There are infinitely many coordinate systems to choose from,
each giving a different set of coordinates (and thus different associated 1-
forms) on Teich(Sg). Wolpert discovered the remarkable fact that the 2-
form

ω =
1

2

3g−3∑
i=1

d�i ∧ dθi

on Teich(Sg) actually does not depend on the initial choice of pants decom-
position inducing the coordinates {(�i, θi)}. Wolpert does this by proving
that ω is equal to the Weil–Petersson form on Teichmüller space; see [216,
Theorem 3.14]. Since the Weil–Petersson form is defined without any refer-
ence to a choice of pants decomposition, it follows that ω does not depend
on the pants decomposition.2

10.7 THE 9g − 9 THEOREM

At the beginning of the chapter we described a map

� : Teich(S)→ RS ,

where S is the set of isotopy classes of essential curves in the surface S. The
map is given by X 
→ �X. It would be interesting to say that � is injective,

2Actually, the twist parameters θi in Wolpert’s formula are defined differently than our
twist parameters. In our coordinates, a full twist on the ith curve corresponds to replacing θi

with θi + 2π. Under Wolpert’s conventions, a full twist is θi �→ θi + �i.
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in other words, that a point X = [(X,φ)] of Teich(S) is completely deter-
mined by the geodesic lengths in X of the simple closed curves in S. In
this section we will show something much stronger: there are finitely many
simple closed curves in S whose lengths in a marked hyperbolic surface de-
termine the corresponding point of Teich(S). For S = Sg the next theorem
states that 9g − 9 curves suffice.

Theorem 10.7 (9g − 9 theorem) There is a collection of simple closed
curves {δ1, . . . , δ9g−9} in Sg so that the map fromTeich(Sg) toR9g−9 given
by

X 
→ (�X(δ1), . . . , �X(δ9g−9))

is injective.

Our proof of Theorem 10.7 generalizes to the case of any hyperbolic Sg,n,
where 9g − 9 is replaced by 3(3g − 3 + n).

It has been shown that in fact there are 6g − 5 simple closed curves in
Sg whose lengths determine a point in Teich(Sg). On the other hand, it has
also been shown that no 6g − 6 curves suffice; see [75].

The marked length spectrum of a hyperbolic surface X is the function
S → R that records the lengths of the isotopy classes of simple closed
curves in X. It follows immediately from Theorem 10.7 that the marked
length spectrum of X—indeed only a finite part of it—determines X up to
isometry.

To begin, we give the technical statement at the heart of the proof of the
9g − 9 theorem on the convexity of length functions. Then we state and
prove the 9g − 9 theorem, and then we prove the statement about convexity
of length functions.

10.7.1 CONVEXITY OF LENGTH FUNCTIONS

How does the hyperbolic geometry of a genus g ≥ 2 surface X change as
one varies X = [(X,φ)] over Teich(Sg)? One specific problem in this direc-
tion is to understand, for a given simple closed curve γ in Sg, the function
Teich(Sg)→ R+ defined by X 
→ �X(γ).

Fix on Sg a pants decomposition {γi} consisting of oriented simple
closed curves. We take this pants decomposition as part of a coordinate sys-
tem of curves that gives Fenchel–Nielsen coordinates on Teich(Sg).

Fix any point X ∈ Teich(Sg) and consider the one-parameter family
{Xs : s ∈ R} of points in Teich(Sg) obtained from X by varying the twist
parameter s associated to the curve γ = γ1.
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Proposition 10.8 Let b be any isotopy class of simple closed curves on Sg
such that i(b, γ) > 0. The function R→ R+ given by

s 
→ �Xs(b)

is strictly convex.

10.7.2 PROOF OF THE 9g − 9 THEOREM

Let {γ1, . . . , γ3g−3} be a pants decomposition of Sg and choose simple
closed curves {β1, . . . , β3g−3} in Sg so that i(βi, γi) > 0 and i(βi, γj) = 0
for i �= j. We do not require the βi to be disjoint. Let αi = Tγi(βi).

Choose a set of Fenchel–Nielsen coordinates for Teich(Sg) where the
coordinate system of curves consists of the pants decomposition {γi}
and any set of seams. For X ∈ Teich(Sg), we will show that the set
{�X(αi), �X(βi), �X(γi)} determines the Fenchel–Nielsen coordinates of X.

The length parameters for X are exactly the �X(γi). It therefore remains
to show that the twist parameters for X are uniquely determined by the
{�X(αi), �X(βi), �X(γi)}. Let Xt be the point of Teich(S) with the same
length parameters as X and with twist parameters t = (t1, . . . , t3g−3). Up
to a reparametrization of Teich(Sg), we can assume that X = X0. We
will show that if ti �= 0 for some i, then either �Xt(αi) �= �X(αi) or
�Xt(βi) �= �X(βi).

Consider the functions A(t) = �Xt(α1) and B(t) = �Xt(β1). Since
i(α1, γj) = i(β1, γj) = 0 for j �= 1, both functions are simply functions of
the parameter t1, which we denote by s. By Proposition 10.8,A(s) andB(s)
are strictly convex, hence so is their sum (A + B)(s). Also, by definition,
we have that A(s + 2π) = B(s).

Assume A(s) = A(0) for some s �= 0. We will show that B(s) �= B(0),
that is, A(2π) �= A(2π + s). For concreteness say s > 0. Since A(s) =
A(0), it follows from the strict convexity thatA(t) < A(0) for t ∈ (0, s) and
that A(t) is strictly increasing for t > s. If s < 2π, then s < 2π < 2π + s,
and it follows that A(2π) < A(2π + s). If s > 2π, then 0 < 2π < s <
2π + s, so A(2π) < A(0) = A(s) < A(2π + s). Finally, if s = 2π, we
certainly cannot have A(2π) = A(2π + s), for then A(t) would take the
same value at 0, 2π, and 4π, violating strict convexity.

We have shown that if t = (t1, . . . , t3g−3) and �Xt(α1) = �X(α1) and
�Xt(β1) = �X(β1), then t1 = 0. Since the same argument works for the
other twist parameters, the theorem is proven.
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10.7.3 PROOF OF THE CONVEXITY OF LENGTH FUNCTIONS

As preparation for our proof of Proposition 10.8, we will give a way of
comparing the lengths of curves in Xs versus their lengths in X = X0. Recall
that in our discussion of the Fenchel–Nielsen coordinates, we regarded X as
the equivalence class of a marked hyperbolic surface (X,φ). We constructed
X from a collection of hyperbolic pairs of pantsXi,j,k whose isometry types
were determined by the length parameters for X. Then we identified the
Xi,j,k along their boundary components, and the amount of rotating we did
before gluing was determined by the twist parameters for X. The marking φ
was then constructed using the seams as a guide.

Twist deformations and earthquake maps. Given the above description
of X, we can construct Xs as follows. We modify the gluing of the Xi,j,k

along γ by rotating to the left by an angle s/2π. The new identification
gives a new hyperbolic surface Xs. Note that Xs is isometric to Xs+2π.

There is then a natural way to modify the marking φ to obtain a marking
φs : Sg → Xs, as we now explain. Abusing notation, let γ denote the simple
closed curves inX and Xs marked by the curve γ in Sg (in X this is exactly
φ(γ), but in Xs this curve does not yet have a name). There is a canonical
isometry τ0 : X−γ and Xs−γ since both X and Xs are obtained by gluing
together the same set of Xi,j,k. If we modify τ0 by an s/2π left-hand twist
on the left side of γ, we obtain a map from X − γ to Xs − γ that uniquely
extends to a homeomorphism τs : X → Xs. The marking for Xs is then
φs = τs ◦ φ.

Let π : H2 → X be the universal covering. Just as Xs is described
by cutting X along γ and regluing with a twist, the universal covering
πs : H2

s → Xs can be constructed by decomposing H2 along the lifts of γ,
sliding the pieces to the left by (s/2π)�X(γ), and regluing. More precisely,
let H2

s be the metric space obtained from H2 by the following inductive pro-
cedure. Choose some lift γ̃1 of γ in X̃ = H2. Decompose H2 into the union
of the open half-space to the left of γ̃1 and the closed half-space to the right
of γ̃1. We reglue the pieces after translating a distance (s/2π)�X(γ) to the
left. Next choose some lift γ̃2 that is adjacent to γ̃1 (here adjacent means
there are no other lifts between the two). We decompose the new space
along the γ̃2 as above and reglue by the same recipe. We can perform this
procedure inductively along all lifts of γ. At the end we have a new metric
space H2

s. Each point of H2
s has a neighborhood that is isometric to an open

disk in H2. It follows that H2
s is globally isometric to H2.

There is a built-in discontinuous map

Es : H2 → H2
s ≈ H2,
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which is called an earthquake map.
Away from the preimage of γ, the covering map πs : H2

s → Xs is given
by

πs = τ0 ◦ π ◦ E−1
s

(it is easy to check that this composition is a local homeomorphism).

Computing lengths. We would like to compute the length of β in Xs by
looking in H2 as opposed to H2

s. In other words, we want to use H2 as
a frame of reference, independent of s. The image of β in Xs under the
marking for Xs is φs(β) = τs ◦ φ(β). The preimage of this curve in H2

s

under the covering map πs = τ0 ◦ π ◦ E−1
s is then

Es ◦ π−1 ◦ τ−1
0 ◦ τs ◦ φ(β).

Let us unwrap this composition. The curve φ(β) is the image of β in X
under the marking for X. The map τ−1

0 ◦τs : X → X is a discontinuous map
that twists the left-hand side of γ by s/2π. Thus π−1◦(τ−1

0 ◦τs)◦φ(β) differs
from the preimage π−1 ◦φ(β) in H2 by a lift of the partial twist τ−1

0 ◦τs. So
the preimage π−1◦(τ−1

0 ◦τs)◦φ(β) consists of a collection of “broken paths”
in H2 that “jump” to the left by (s/2π)�X(γ) every time they approach a lift
of γ from the left; see Figure 10.11. The effect of Es : H2 → H2

s is to take
these broken paths in H2 to continuous paths in H2

s.
Since Es is a local isometry, we can compute the length of a continuous

path in H2
s by considering its image in H2 under Es, computing the lengths

of each piece of this broken path, and adding up. In particular, if β̂ is a path
lifting of φs(β) to H2

s , then the length of the broken path E−1
s (β̂) is the same

as the length of φs(β) in Xs.
We can choose β̂ to start and end on lifts of γ in H2

s. There is a deck
transformation Dβ of H2

s that corresponds to the conjugacy class φs(β) and
that fixes the lift of φs(β) containing β̂. The hyperbolic isometry Dβ takes
the start point of β̂ to the endpoint of β̂.

Now to find the value of �Xs(β), we modify β̂ by homotopy until length
is minimized. We can perform this homotopy so that the endpoints stay in
the preimage of γ throughout and so that the startpoint and endpoint differ
by Dβ throughout.

We know that the minimizing path is a geodesic segment that starts and
ends on lifts of γ, that intersects i(β, γ) + 1 lifts of γ, and whose endpoints
differ by Dβ . Therefore, the closure of the image of the minimizing path
under E−1

s in H2 is a collection of i(β, γ) geodesic segments δ1, . . . , δi(β,γ) :

[0, 1] → H2 with the following properties:
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1. δi(1) and δi+1(0) lie on a common lift of γ and differ by a displace-
ment of (s/2π)�X(γ) to the left (also δi(0) and δi+1(1) lie on distinct
lifts).

2. δ1(0) and δi(b,γ)(1) differ by the map D′β = E−1
s ◦Dβ ◦ Es.

The collection of segments {δi} (thought of as a collection of subsets of
H2) is completely determined by the collection of points {δi(0)}. Indeed,
the other endpoints are determined by the two conditions above.

We have thus reduced the problem of finding the length of β in Xs to
the problem of sliding the points {δi(0)} along a fixed collection of i(b, γ)
geodesics in H2 until the length of the corresponding piecewise geodesic
path is minimized.

Say that the point δi(0) is restricted to the lift γ̃i of γ. We can identify
γ̃1 × · · · × γ̃i(b,γ) with Ri(b,γ). Let

L : Ri(b,γ) × R→ R+

denote the function that takes as input the points δi(0) and s and records the
length of the corresponding piecewise geodesic path.

For a point w in some γ̃i ≈ R, let ws denote the point that lies an oriented
distance of (s/2π)�X(γ) from w along γ̃i. We can write L more concretely
as the function

d(z1, z
±s
2 ) + d(z2, z

±s
3 ) + · · ·+ d(zi(b,γ),D

′
β(z1)),

where each zi lies in γ̃i ≈ R and the signs are determined by the orientations
of the γ̃i (all distances are taken in H2).

We finally have

�Xs(b) = inf
{
L(z, s) : z ∈ Ri(b,γ)

}
.

Finishing the proof. We require the following fact, suggested by Mladen
Bestvina; it is an ingredient in a new proof of the Nielsen realization theorem
due to Bestvina–Bromberg–Fujiwara–Souto [19].

LEMMA 10.9 Let f : Rm × Rn → R be a strictly convex function. If the
function F : Rm → R defined by

F (x) = min{f(x, y) : y ∈ Rn}

is well defined, that is, if the minimum always exists, then F is strictly con-
vex.
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Figure 10.11 If bβ is the lift of β for the point X of Teich(Sg) as in the discussion, then the
broken path is homotopic to a lift of the image of β in the new point Xs of
Teich(Sg) obtained by varying the twist parameter s on one curve γ. At each
lift of γ, the path jumps to the left a distance s.

Proof of Proposition 10.8. The starting point is the following basic fact
from hyperbolic geometry (see [35, Chapter II, Proposition 2.2]):

Let α and β be two disjoint geodesics in H2 parameterized
at unit speed. The function d : R2 → R given by (s, t) 
→
dH2(α(s), β(t)) is strictly convex.

Given k+1 disjoint oriented geodesics αi in H2, each parameterized at unit
speed, we consider the function f1 : R2k → R given by

f1(x1, y1, . . . , xk, yk) =

k∑
i=1

d(xi, yi),

where each xi lies in αi and each yi lies in αi+1. Since strict convexity is
preserved under finite sums, we have that f1 is strictly convex.

Next, let f2 : R2k × R → R be the function given by f2(x, s) = f1(x)
for any x ∈ R2k. The function f2 is strictly convex in every direction except
the s-direction, where it is constant.
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Restrict f2 to the hyperplane in R2k×R described by xi = ysi−1 (abusing
the previous notation) for 2 ≤ i ≤ k, and yk = ψ(x1)

−s, where ψ is some
fixed isometry α1 → αk+1. Call the new function f3. It is straightforward
to check that this hyperplane is not parallel to the s-direction, and so f3 is
strictly convex.

Finally, let F : R → R be the function given by F (s) = inf{f3(x, s)},
where x is any point on the hyperplane in R2k where f3 is defined. We have
that F (s) is strictly convex by Lemma 10.9. But, by the above discussion,
for the appropriate choices of oriented geodesics αi and isometry ψ, the
function F (s) is exactly the function �Xs(b), and so we are done. �



Chapter Eleven

Teichmüller Geometry

Teichmüller space Teich(S) was defined in Chapter 10 as the space of hy-
perbolic structures on the surface S modulo isotopy. But Teich(S) param-
eterizes other important structures as well, for example, complex structures
on S modulo isotopy and conformal classes of metrics on S up to isotopy.

We would like to have a way to compare different complex or confor-
mal structures on S to each other. A natural way to do this is to search for
a quasiconformal homeomorphism f : S → S that is homotopic to the
identity map and that has the smallest possible quasiconformal dilatation
with respect to the two structures. Informally, a homeomorphism with min-
imal dilatation is one that distorts angles least. This problem was solved by
Grötzsch when S is a rectangle, and for general surfaces by Teichmüller.

After presenting the solution to this extremal problem, we will see how
the least dilatation can be used to define a metric on Teichmüller space called
the Teichmüller metric. Understanding the basic properties of this metric,
for example, determining its geodesics, is important in a number of prob-
lems in low-dimensional topology. In particular, it will play a central role in
Chapter 13, where we present Bers’ proof of the Nielsen–Thurston classifi-
cation of surface homeomorphisms.

The underlying objects encoding the solution to the extremal problem
are holomorphic quadratic differentials and their associated measured folia-
tions. Thus we will spend some time describing these objects.

There are many approaches to the theory of quasiconformal mappings
and Teichmüller theory, each with their own advantages and disadvantages.
In this chapter, we adopt an approach of Bers that is described in the lecture
notes written by Abikoff [1].

11.1 QUASICONFORMALMAPS AND AN EXTREMAL PROBLEM

In this section we define quasiconformal maps between surfaces in order
to set up the extremal problem mentioned above. The natural setting for
quasiconformal maps is that of complex structures on surfaces, as opposed
to hyperbolic structures. Thus we begin by explaining the correspondence
between these two types of structures.
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11.1.1 COMPLEX STRUCTURES VERSUS HYPERBOLIC STRUCTURES

By a Riemann surface X we mean a 1-dimensional complex manifold. This
means that X comes equipped with an atlas of charts to C that has biholo-
morphic transition maps; that is, transition maps are holomorphic with holo-
morphic inverses. Two Riemann surfaces X and Y are said to be isomorphic
if there is a biholomorphic homeomorphism between them.

The uniformization theorem gives that any Riemann surface of genus
g ≥ 2 is the quotient of the unit disk ∆ by a group Γ of biholomorphic
automorphisms acting properly discontinuously and freely on ∆; see, for
example, [198, Chapter 9]. Any group of biholomorphic automorphisms of
∆ preserves the hyperbolic metric on ∆. Thus ∆/Γ has an induced hyper-
bolic structure, and conversely, any such hyperbolic structure gives a com-
plex structure on X. In other words, for g ≥ 2, there is a bijective corre-
spondence:⎧⎨⎩ Isomorphism classes

of Riemann surfaces
homeomorphic to Sg

⎫⎬⎭←→

⎧⎨⎩ Isometry classes
of hyperbolic surfaces
homeomorphic to Sg

⎫⎬⎭
Using isothermal coordinates, one can define a complex structure on any

surface endowed with a Riemannian metric. In this way Teich(Sg) can also
be identified with the set of conformal classes of Riemannian metrics on Sg.

11.1.2 QUASICONFORMAL MAPS

Let U and V be open subsets of C and let f : U → V be a homeomorphism
that is smooth outside of a finite number of points. In Section 10.2, we ex-
plained how to write linear maps R2 → R2 using the notation of complex
analysis. We now apply this idea to describe the differential df .

Using the usual notation for maps R2 → R2, we can write f as f(x, y) =
(a(x, y), b(x, y)), where a, b : R2 → R. Where it is defined, the derivative
df is then the real linear map

df =

(
ax ay
bx by

)
.

We can also write

df = fx dx+ fy dy,

where fx = (ax, bx) and fy = (ay, by).
Switching to complex notation and setting z = x + iy, we can write
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fx = ax + ibx and fy = ay + iby , and we can rewrite df as

df = fz dz + fz̄ dz̄,

where

fz =
1

2
(fx − ify) and fz̄ =

1

2
(fx + ify).

Recall from Section 10.2 that the quantity µf = fz̄/fz is called the com-
plex dilatation of f .

The condition that fz̄ ≡ 0 is equivalent to the condition that f satisfies
the Cauchy–Riemann equations. Thus f is holomorphic if and only if fz̄ ≡
µf ≡ 0. Also, since

|fz|2 − |fz̄|2 = axby − aybx,

we see that f is orientation-preserving if and only if |fz| > |fz̄|, which is
the same as saying |µf | < 1.

Dilatation. Suppose now that the homeomorphism f : U → V is
orientation-preserving. Let p be a point of U at which f is differentiable.
The dilatation of f at p is defined to be

Kf (p) =
|fz(p)|+ |fz̄(p)|
|fz(p)| − |fz̄(p)|

=
1 + |µf (p)|
1− |µf (p)|

.

The quantity log(Kf (p))/2 is precisely the distance between µf (p) and 0
in the Poincaré disk model of H2 (this makes sense since f is orientation-
preserving and so |µf | < 1). Note in particular that Kf (p) ≥ 1.

The quantity Kf (p) can be interpreted as follows. The map dfp takes the
unit circle in TUp ≈ C to an ellipse E in TVf(p), and Kf (p) is the ratio of
the length of the major axis of E to the length of the minor axis of E. To
see this, we parameterize the unit circle in C as θ 
→ eiθ for θ ∈ [0, 2π]. The
image of this circle under dfp is then the ellipse E and is determined by the
equation E(θ) = fz(p)e

iθ + fz̄(p)e
−iθ for θ ∈ [0, 2π]. The modulus (i.e.,

absolute value) of a point E(θ) is

|E(θ)| =
∣∣∣fz(p)eiθ + fz̄(p)e

−iθ
∣∣∣ =

∣∣fz(p)∣∣ ∣∣∣1 + µf (p)e
−i2θ

∣∣∣ .
Since

1− |µf (p)| ≤
∣∣∣1 + µf (p)e

−i2θ
∣∣∣ ≤ 1 + |µf (p)|,

it follows that the ratio of the maximum modulus of a point on E to the
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minimum modulus of a point on E is precisely Kf (p).
The dilatation of the map f is defined to be the number

Kf = supKf (p),

where the supremum is taken over all points p where f is differentiable.
Thus 1 ≤ Kf ≤ ∞. If Kf < ∞, we say that f is a quasiconformal or
Kf -quasiconformal map between the domains U and V of C. Note that
biholomorphic maps are conformal with conformal inverses, hence are 1-
quasiconformal. The notion of a quasiconformal homeomorphism was first
considered by Grötzsch in 1928.

Quasiconformal maps. Let f : X → Y be a homeomorphism between
Riemann surfaces that is smooth outside of a finite number of points. As-
sume further that f respects the orientations induced by the complex struc-
tures on X and Y and that f−1 is smooth outside of a finite number of
points. Since the transition maps in any atlases for X and Y are biholo-
morphic (hence 1-quasiconformal) and since the local expressions for f are
orientation-preserving, there is a well-defined notion of the dilatation Kf (p)
of f at a point p ∈ X where f is smooth. Since f is smooth outside of a
finite number of points, we can define Kf = supKf (p) as above. We will
say that f is quasiconformal or Kf–quasiconformal if Kf <∞.

A map between Riemann surfaces is holomorphic if, in any chart, it is
given by a holomorphic map from some domain in C to C. A bijective,
holomorphic map between Riemann surfaces is called a conformal map.
Conformal maps between Riemann surfaces are also biholomorphic; that is,
they have holomorphic inverses. The last fact follows from the open map-
ping theorem; see Section 10.32 and Theorem 10.34 in Rudin’s book [187].

Lemma 11.1 Let f : X → Y be a homeomorphism between Riemann
surfaces. Then f is a 1-quasiconformal homeomorphism if and only if it is
a conformal map.

Proof. Suppose that f is conformal. In this case, f ′ is defined at every point
and never vanishes. Further, f takes circles in the tangent space of X to
(nondegenerate) circles in the tangent space of Y [187, Theorem 14.2], and
so f is 1-quasiconformal.

Now suppose that f is 1-quasiconformal. This is the same as saying that
fz̄ ≡ 0 wherever f is differentiable. Let A ⊂ X be the set of points where f
is not differentiable. The restriction f |X−A is then holomorphic. Since f is
a homeomorphism, its singularities at A must be removable [187, Theorem
10.20]. Since f is continuous, it follows that f is already holomorphic. As
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f is a homeomorphism, it is bijective. By our definition of a conformal map
of Riemann surfaces, f is conformal. �

The group QC(X). Let X be a Riemann surface. We would like to show
that the set of quasiconformal homeomorphisms X → X forms a group
QC(X). We require some basic facts about the dilatations of linear maps.
The first fact is that if f : C → C is any linear map, then the dilatations of
f and f−1 are equal, that is, Kf = Kf−1 . The second fact, which we will
use repeatedly, is the following.

LEMMA 11.2 Let f and g be two linear maps C→ C. Denote the complex
dilatations of f , g, and f ◦ g by µf , µg, and µf◦g and denote the dilatations
by Kf , Kg, and Kf◦g. We have

Kf◦g ≤ KfKg,

with equality if and only if either arg(µf ) = arg(µg) or one of µf and µg is
zero.

The last statement of Lemma 11.2 can be rephrased as: Kf◦g = KfKg if
and only if the directions of maximal stretch for f and g are the same or at
least one of Kf orKg is 1. Lemma 11.2 is an easy exercise in linear algebra
[70, Section 1.2].

We can now deduce the following about compositions of quasiconformal
homeomorphisms of X.

Proposition 11.3 Let X be a Riemann surface and let f and g be quasi-
conformal homeomorphisms of X with dilatations Kf and Kg. We have:

1. The composition f ◦ g is quasiconformal and

Kf◦g ≤ KfKg.

2. The inverse f−1 is quasiconformal and

Kf−1 = Kf .

3. If g is conformal, then

Kf◦g = Kf = Kg◦f .

In particular, the set of quasiconformal homeomorphisms QC(X) forms a
group.
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11.1.3 TEICHMÜLLER’S EXTREMAL PROBLEM

In 1928 Grötzsch considered the following natural extremal problem, at
least in the case of rectangles. Because Teichmüller later considered the
case of general Riemann surfaces [203], this problem is sometimes referred
to as Teichmüller’s extremal problem.

Fix a homeomorphism f : X → Y of Riemann surfaces and
consider the set of dilatations of quasiconformal homeomor-
phisms X → Y in the homotopy class of f . Is the infimum of
this set realized? If so, is the minimizing map unique?

Teichmüller’s theorems (see below) give a positive solution to both ques-
tions (under the assumption of negative Euler characteristic). The minimiz-
ing map is called the Teichmüller map.

In Section 11.8, we will use Teichmüller’s theorems to define a metric
on Teichmüller space called the Teichmüller metric, as follows. Let g ≥
2 and let X,Y ∈ Teich(Sg). The points X and Y can be represented by
marked Riemann surfaces X and Y . Because of the markings, there is a
unique preferred homeomorphism of Riemann surfaces X → Y , namely,
the change of marking map, which corresponds to the identity map of Sg
(for abstract Riemann surfaces without markings, there is no way to choose
such a preferred map). Thus we can ask for the infimum of the dilatations
of quasiconformal homeomorphisms X → Y in the preferred homotopy
class. Teichmüller’s theorems say that there exists a unique quasiconformal
homeomorphism h : X → Y of minimal dilatation among all mapsX → Y
in this homotopy class. We can then define a distance function

dTeich(X,Y) =
1

2
log(Kh).

In Section 11.8, we will prove that dTeich is a metric on Teich(Sg).
As we will see below, the Teichmüller map is smooth outside a finite set

of points in Sg but is not smooth at all points of Sg. This is precisely why
we defined the notion of quasiconformality for homeomorphisms that are
smooth outside a finite set of points. Quasiconformality can be defined for
homeomorphisms with significantly weaker smoothness conditions than we
have assumed. We chose smoothness outside a finite set of points since this
is easier to work with and avoids technical difficulties, but it is still general
enough for all of our applications.
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11.2 MEASURED FOLIATIONS

We will see that Teichmüller maps, the maps that appear as solutions to Te-
ichmüller’s extremal problem, are homeomorphisms of a surface that stretch
along one foliation of the surface and shrink along a transverse foliation. In
order to make this precise, we first need to give a careful discussion of mea-
sured foliations.

11.2.1 MEASURED FOLIATIONS ON THE TORUS

Before giving the general definition of a measured foliation, we restrict our
attention to the case of the torus where (as usual) the situation is much sim-
pler. We will also explain what it means for a linear map of the torus to
stretch the torus along one foliation and shrink along another.

Let � be any line through the origin in R2. The line � determines a foliation
F̃� of R2 consisting of the set of all lines in R2 parallel to �. Translations of
R2 take lines to lines, and so any translation preserves F̃� in the sense that
it takes leaves to leaves.

Since all of the deck transformations for the standard covering R2 → T 2

are translations, the foliation F̃� descends to a foliation F� of T 2. If the slope
of � is rational, then every leaf of F� is a simple closed geodesic in T 2. If
the slope of � is irrational, then every leaf of F� is a dense geodesic in T 2.

The foliations F̃� come equipped with extra structure. Let ν� : R2 → R
be the function that records distance from �. Integration against the 1-form
dν� gives a transverse measure on F̃�. What this means is that any smooth
arc α transverse to the leaves of F̃� can be assigned a length µ(α) =

∫
α dν�.

The quantity µ(α) is the total variation of α in the direction perpendicular
to �. Thus µ(α) is invariant under isotopies of α that move each point of α
within the leaf of F̃� in which it is contained. The 1-form dν� is preserved by
translations and so descends to a 1-form w� on T 2 and induces a transverse
measure on the foliation F�. The structure of a foliation on T 2 together with
a transverse measure is called a transverse measured foliation on T 2.

Note that a transverse measured foliation on T 2 is completely determined
by the 1-form w�. The leaves of F� in T 2 are simply the integral submani-
folds to the distribution determined by the kernel of w�.

Consider a linear map A ∈ SL(2,Z) with two distinct real eigenvalues
λ > 1 and λ−1 < 1 corresponding to eigenspaces � and �′. As in the proof of
Theorem 2.5, A induces a homeomorphism φA of the torus T 2. The homeo-
morphism φA preserves the foliations F̃� and F̃�′ and multiplies their trans-
verse measures by λ−1 and λ, respectively. We think of φA as stretching
by a factor of λ in the �-direction and contracting by a factor of λ in the
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�′-direction.
On a higher-genus surface, it is not clear what it would mean for a home-

omorphism to stretch in the direction of a single vector. However, we can
define a foliation on a higher-genus surface, and we will see that it makes
sense for a homeomorphism to stretch the surface in the direction of that
foliation. Teichmüller maps will be given exactly such a description.

11.2.2 SINGULAR MEASURED FOLIATIONS

We will transfer our discussion of measured foliations on the torus to closed
surfaces of genus g ≥ 2. The Euler–Poincaré formula (see below) shows
that such surfaces do not admit foliations. This can be corrected by allowing
foliations with a finite number of singularities of a specific type.

Singular foliations. A singular foliation F on a closed surface S is a de-
composition of S into a disjoint union of subsets of S, called the leaves of
F , and a finite set of points of S, called singular points of F , such that the
following two conditions hold.

1. For each nonsingular point p ∈ S, there is a smooth chart from a
neighborhood of p to R2 that takes leaves to horizontal line segments.
The transition maps between any two of these charts are smooth maps
of the form (x, y) 
→ (f(x, y), g(y)). In other words, the transition
maps take horizontal lines to horizontal lines.

2. For each singular point p ∈ S, there is a smooth chart from a neigh-
borhood of p to R2 that takes leaves to the level sets of a k-pronged
saddle, k ≥ 3; see Figure 11.1.

We say that a singular foliation is orientable if the leaves can be consis-
tently oriented, that is, if each leaf can be oriented so that nearby leaves are
similarly oriented. It is not hard to see that a foliation is locally orientable
if and only if each of its singularities has an even number of prongs. For in-
stance, the foliation in Figure 11.1 is not orientable in a neighborhood of the
singular point. However, there do exist foliations that are locally orientable
but not (globally) orientable.

The Euler–Poincaré formula. The following proposition gives a topologi-
cal constraint on the total number of prongs at all singularities of a measured
foliation.

Proposition 11.4 (Euler–Poincaré formula) Let S be a surface with a sin-
gular foliation. Let Ps denote the number of prongs at a singular point s.
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Figure 11.1 A foliation at a three-pronged singular point (left) and at a four-pronged singular
point (right).

Then

2χ(S) =
∑

(2− Ps),

where the sum is over all singular points of the foliation.

Since Ps ≥ 3, Proposition 11.4 implies that a surface S with χ(S) > 0
cannot carry a (singular or nonsingular) foliation. Proposition 11.4 also im-
plies that any foliation on a surface S with χ(S) = 0 must have no singular
points and that any foliation on a surface S with χ(S) < 0 must have at
least one singular point. Because of this, we will unambiguously use the
term “foliation” for foliations that have singularities as well as for those that
do not.

The Euler–Poincaré formula is a straightforward consequence of the
Poincaré–Hopf formula for vector fields applied to the context of line fields;
see [61, Exposé 5, Section 1.6].

Measured foliations. As in the case of foliations on the torus, we would
like to equip foliations on higher-genus surfaces with a transverse measure,
that is, a length function defined on arcs transverse to the foliation. In order
to do this precisely, we will need some preliminaries.

Let F be a foliation on a surface S. A smooth arc α in S is transverse to
F if α misses the singular points of F and is transverse to each leaf of F at
each point in its interior. Let α, β : I → S be smooth arcs transverse to F .
A leaf-preserving isotopy from α to β is a map H : I × I → S such that

• H(I × {0}) = α and H(I × {1}) = β
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• H(I × {t}) is transverse to F for each t ∈ [0, 1]

• H({0} × I) and H({1} × I) are each contained in a single leaf.

Note that the second and third conditions imply thatH({s}×I) is contained
in a single leaf for any s ∈ [0, 1].

A transverse measure µ on a foliation F is a function that assigns a pos-
itive real number to each smooth arc transverse to F , so that µ is invariant
under leaf-preserving isotopy and µ is regular (i.e., absolutely continuous)
with respect to Lebesgue measure. In other words, this last condition means
that each point of S has a neighborhood U and a smooth chart U → R2 so
that the measure µ is induced by |dy| on R2.

A measured foliation (F , µ) on a surface S is a foliation F of S equipped
with a transverse measure µ.

Figure 11.2 Two transverse foliations near a singular point. Each foliation has a three-
pronged singularity.

We say that two measured foliations are transverse if their leaves are
transverse away from the singularities; see Figure 11.2. Note that transverse
measured foliations must have the same set of singularities.

Natural charts. There is another way of defining a measured foliation on
a surface S. Let {pi} be a finite set of points in S. Suppose we have an atlas
for S − {pi} where all transition maps are of the form

(x, y) 
→ (f(x, y), c ± y)

for some constant c depending on the transition map. Then it makes sense
to pull back the horizontal foliation of R2 with its transverse measure |dy|
(the absolute variation in the y-direction). After reinserting the pi, the result
is a measured foliation on S.
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Conversely, given any measured foliation, one can construct an atlas
where the transition maps are given as above and where the transverse mea-
sure is given by |dy|. Any chart from such an atlas is called a set of natural
coordinates for the measured foliation.

If we have an ordered pair of transverse measured foliations and there
is an atlas where, away from the singular points, the first foliation is the
pullback of the horizontal foliation of R2 with the measure |dy| and the
second foliation is the pullback of the vertical foliation with the measure
|dx|, then we say that this atlas, and each of its charts, is natural with respect
to the pair of measured foliations.

The action of Homeo(S). There is a natural action of Homeo(S) on the
set of measured foliations of S. Namely, if φ ∈ Homeo(S) and if (F , µ) is
a measured foliation of S, then the action of φ on (F , µ) is given by

φ · (F , µ) = (φ(F), φ
(µ)),

where φ
(µ)(γ) is defined as µ(φ−1(γ)) for any arc γ transverse to φ(F).
As a consequence, the mapping class group Mod(S) acts on the set of iso-
topy classes of measured foliations (the quotient of the set of measured fo-
liations by Homeo0(S)).

Measured foliations as 1-forms. Any locally orientable measured foliation
(F , µ) can be described locally in terms of a closed 1-form as follows. In
any chart where F is orientable, there is a closed real-valued 1-form ω so
that, away from the singular points of F , the leaves of F are precisely the
integral submanifolds of the distribution given by the kernel of ω, and µ is
given by the formula

µ(γ) =

∫
γ
|ω|

for any arc γ transverse to F . Indeed, in a neighborhood of a nonsingular
point, we have seen that we can take the 1-form to be dy. A key point,
though, is that −dy serves the same purpose—it defines the same foliation
and the same measure as dy. In the neighborhood of a singular point, the
1-form can be taken to be the derivative of a saddle function.

If a measured foliation is globally orientable, then there is a well-defined
way of distinguishing between dy and −dy on the entire surface. Thus the
local 1-forms we described above glue together to give a globally defined
closed 1-form on the surface. Conversely, the kernel of a closed 1-form on
a surface defines an orientable foliation.
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Punctures and boundary. The theory of measured foliations can be eas-
ily adapted to the case of surfaces with punctures and/or boundary. At a
puncture, a foliation can take the form of a regular point or a k-pronged sin-
gularity with k ≥ 3, as in the case of foliations on closed surfaces. However,
at a puncture we also allow one-pronged singularities as in Figure 11.3.

Figure 11.3 A one-pronged singularity on a surface with a puncture.

A measured foliation on a compact surface S with nonempty boundary
is defined similarly to the case when S is closed. There are four different
pictures in the neighborhood of a point of ∂S depending on whether or
not the point is singular and whether or not the leaves are parallel to the
boundary or transverse to the boundary; see Figure 11.4.

Figure 11.4 Measured foliations near the boundary of a surface.

11.2.3 FOUR CONSTRUCTIONS OF MEASURED FOLIATIONS

In this subsection we give four concrete ways of constructing measured fo-
liations on a closed surface.

From a polygon. Given any closed surface S, we can realize S as the
quotient of a polygon P in R2 by side identifications. We are using the Eu-
clidean plane here and not the hyperbolic plane because we want to consider
structures inherited from Euclidean geometry. We impose two additional



306 CHAPTER 11

conditions: (i) anytime two edges of P are identified, they are parallel, and
(ii) the total Euclidean angle around each point of S is greater than π (the
second condition needs to be checked only at the vertices of P ). We do not
need to assume that P is connected. One example of this is the realization
of Sg as the quotient of a regular (4g + 2)-gon in R2 with opposite sides
identified. Another example is given in Figure 11.6.

Any foliation of R2 by parallel lines restricts to give a foliation of (the
interior of) P . We claim that this foliation induces a foliation of S. It is easy
to see that any point of S coming from a point of P that is not a vertex of P
has a regular neighborhood that satisfies the definition of a regular point of
a foliation.

So what happens at a point p ∈ S corresponding to a vertex of P ? The
first observation is that since identified sides of P are parallel, the total angle
around p is an integer multiple of π. In particular, there is some vertex p̃ of
P in the preimage of p, and a vector v based at p̃ that points into P (possibly
along an edge) and is parallel to the foliation of P . If we sweep out an angle
of π starting with v, we find a closed Euclidean half-disk in S that is foliated
by lines parallel to the diameter. If we continue to sweep out angles of π,
we see that a neighborhood of p looks like some number of Euclidean half-
disks each foliated by lines parallel to the diameter and glued along oriented
radii. By our assumption on the total angle around each point of S coming
from a vertex of P , we know that there are at least two half-disks glued at
p. If there are exactly two half-disks, then p is a regular point. If there are k
half-disks, where k ≥ 3, then p is a singularity with k prongs.

One measure on the induced foliation of S is the one given by the total
variation of the Euclidean distance in the direction perpendicular to the fo-
liation of P . The charts we described above are the natural charts for the
nonsingular points.

Suppose that, in this construction, we orient each edge of P so that the
identifications respect these orientations. If all side pairings identify sides of
P that are parallel in the oriented sense (as opposed to antiparallel), then the
resulting foliation of S is orientable. Indeed, either of the two orientations
of the foliation on the interior of P extend to give an orientation of the entire
foliation of S.

It is a fact that every measured foliation comes from this polygon con-
struction. The idea is that the natural coordinates for a measured foliation
pick out large rectangles in the surface that are foliated by horizontal lines.
See Section 14.3 for further discussion.

Enlarging a simple closed curve. Let S be a closed surface of genus g.
We can realize S topologically as a Euclidean (4g + 2)-gon with opposite
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sides identified. We can then straighten the sides of this polygon so that two
opposite sides are horizontal and the other 4g sides are vertical. The result
is a Euclidean rectangle R. If we identify the two horizontal edges of R
we obtain an annulus A. The foliation of R by vertical lines descends to
a foliation of A by curves parallel to the boundary. This foliation further
descends to a foliation of S where each nonsingular leaf is a simple closed
curve. All of these curves lie in the same homotopy class. There is a one-
parameter family of measures obtained by scaling the rectangle horizontally.

Let α denote one of the nonsingular leaves in S. We say that the above
measured foliation is obtained by enlarging the simple closed curve α. Note
that, by change of coordinates, we can enlarge any nonseparating simple
closed curve in a closed surface (it is also possible to extend the construction
to separating curves).

Figure 11.5 A twofold branched cover over the torus.

From a branched cover. Let g ≥ 2 and let p : Sg → T 2 be a branched
covering map. For our purposes, a branched cover of one topological sur-
face over another is the quotient of one orientable surface by a finite group
of orientation-preserving homeomorphisms. So, for instance, orbifold cov-
erings are branched coverings. One such example, with 2g−2 branch points,
is illustrated in Figure 11.5.

Any measured foliation (F , µ) of T 2 pulls back via p to a measured fo-
liation (p
(F), p
(µ)) on Sg. The singularities of p
(F) are precisely the
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ramification points of the covering. The foliation p
(F) has a singularity
of order 2k above any branch point of order k. Since the deck transforma-
tions of the cover Sg → T 2 are orientation-preserving, an orientation of the
foliation on T 2 pulls back to an orientation on the foliation of Sg. Since
every foliation of T 2 is orientable, every foliation of Sg obtained by this
construction is orientable.

The same construction as above can be used to pull back measured folia-
tions on any closed surface via any (branched or unbranched) cover.

From a pair of filling simple closed curves. Let α and β be two transverse
simple closed curves that are in minimal position and that fill a closed sur-
face S. Take, for instance, the example in Figure 1.7. We can think of α∪ β
as a 4-valent graph in S, where the vertices are the points of α ∩ β. In fact,
by also considering the closures of the components of S−(α∪β) as 2-cells,
we have a description of S as a 2-complex X.

We construct a dual complex X ′. The complex X ′ is formed by taking
one vertex for each 2-cell of X, one edge transverse to each edge of X,
and one 2-cell for each vertex of X. Since the vertices of X are 4-valent, it
follows that X ′ is a square complex, that is, each 2-cell of X ′ is a square.
What is more, each square of X ′ has a segment of α running from one side
to the opposite side.

We can foliate each square of X ′ by lines parallel to α. This gives rise to
a foliation Fα on all of S. We declare the “width” of each square to be the
same fixed number, and this gives a measure on Fα. The foliation associated
to β is a measured foliation Fβ that is transverse to Fα.

This last construction is really just a special case of both the polygon
construction and the branched cover construction. Indeed, we can think of
X ′ as a disconnected polygon with sides identified. Also, if we think of T 2

as the unit square with sides identified, then there is a branched cover from
S ≈ X ′ → T 2 that takes each square of X ′ to the unit square and takes the
α-foliation to the foliation of the unit square by horizontal lines.

11.3 HOLOMORPHIC QUADRATIC DIFFERENTIALS

We now describe the complex-analytic counterparts to measured foliations,
holomorphic quadratic differentials. Since quasiconformal maps are most
easily described via complex analysis, we will be able to exploit this point
of view in proving Teichmüller’s theorems.
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11.3.1 QUADRATIC DIFFERENTIALS AND MEASURED FOLIATIONS

The holomorphic cotangent bundle to a Riemann surface X is the complex
line bundle overX whose fiber above a point p ∈ X is the space of complex
linear maps Tp(X) → C. A holomorphic 1-form is a holomorphic section
of the holomorphic cotangent bundle of X. A holomorphic quadratic differ-
ential on X, which is the object of interest here, is a holomorphic section
of the symmetric square of the holomorphic cotangent bundle of X. For in-
stance, the tensor square of a holomorphic 1-form on X is a holomorphic
quadratic differential.

We can alternatively describe a holomorphic quadratic differential on X
in terms of local coordinates, as follows. Let {zα : Uα → C} be an atlas for
X. A holomorphic quadratic differential q on X is specified by a collection
of expressions {φα(zα) dz2

α} with the following properties:

1. Each φα : zα(Uα)→ C is a holomorphic function with a finite set of
zeros.

2. For any two coordinate charts zα and zβ , we have

φβ(zβ)

(
dzβ
dzα

)2

= φα(zα). (11.1)

The second condition can be phrased as “the collection {φα(zα) dz2
α} is

invariant under change of local coordinates.” To say this yet another way, if q
is given in one chart by φα(z) and in another chart by φβ(z), and the change
of coordinates from the first chart to the second chart is the holomorphic map
ψ, then

φβ(z)

(
dψ

dz

)2

= φα(z).

It follows that the order of a zero of a holomorphic quadratic differential is
well defined independent of the chart.

More concretely, a holomorphic quadratic differential q on a Riemann
surface X is a holomorphic map from the holomorphic tangent bundle of
X to C. To make this explicit, say that in local coordinates the holomorphic
quadratic differential q is given by φ(z) dz2. Suppose that some tangent
vector v to X is given by α ∈ C ≈ Tz0(C). Then we have

q(v) = φ(z0)α
2.

Note that, for any v ∈ Tp(X), we have q(v) = q(−v).
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Measured foliations from quadratic differentials. Given a holomorphic
quadratic differential q on a Riemann surface X, we obtain a foliation by
taking the union of the zeros of q with the set of smooth paths in X whose
tangent vectors at each point evaluate to positive real numbers under q. This
foliation is called the horizontal foliation for q. If we instead take the paths
in X whose tangent vectors evaluate to negative real numbers under q, the
resulting foliation is called the vertical foliation for q.

Say that, within some chart, a holomorphic quadratic differential is given
by the expression φ(z) dz2. In any given chart, the function

µ(α) =

∫
α

∣∣∣Im(√
φ(z) dz

)∣∣∣
induces a transverse measure µq on the horizontal foliation for q. By tak-
ing real parts instead of imaginary parts, we obtain a transverse measure on
the vertical foliation for q. Below we will define natural coordinates for a
holomorphic quadratic differential, where this formula always takes a stan-
dardized form. To check that µq really determines a transverse measure, one
can either apply (11.1) directly or appeal to natural coordinates.

Consider, for example, a holomorphic quadratic differential q that in some
coordinate chart has the form q(z) = dz2. Say that some tangent vector v is
given by α ∈ C ≈ Tz0(C) in this chart. As above, we have

q(v) = α2.

Now α2 > 0 precisely when α is a nonzero real number, and α2 < 0
precisely when α is a purely imaginary number. Therefore, in the given
chart, the horizontal foliation is the union of horizontal lines and the vertical
foliation is the union of vertical lines. The measures for these foliations are
the ones induced by |dy| and |dx|.

Now consider a holomorphic quadratic differential with local expression
q(z) = zk dz2. Say α ∈ C ≈ Tz0(C) is the local expression for a tangent
vector v. In this case,

q(v) = zk0 α
2.

Some lines of the horizontal foliation are easy to spot, namely, vectors of
the form α ∈ Tα(C), where αk+2 = 1. It is not hard, then, to see that the
horizontal foliation has the form of a (k + 2)-pronged singular point, as
in the theory of measured foliations. The vertical foliation is the transverse
foliation obtained by rotating the picture for the horizontal foliation by an
angle of π/(k + 2).
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Quadratic differentials versus 1-forms.Why do we consider holomorphic
quadratic differentials as opposed to holomorphic 1-forms, which are differ-
entials of the form φ(z) dz? The reason is that, for a holomorphic quadratic
differential q, we have that q(v) > 0 if and only if q(−v) > 0, and so the
associated horizontal and vertical foliations are not necessarily oriented. On
the other hand, the (analogously defined) horizontal and vertical foliations
for a holomorphic 1-form are automatically oriented. In our study of map-
ping class groups and Teichmüller space, we will be forced to deal with both
oriented foliations and unoriented foliations.

Natural coordinates. Let q be a holomorphic quadratic differential on a
compact Riemann surface X. We will now show that every point of X has
local coordinates, called natural coordinates, so that in these local coordi-
nates we have q(z) = zk dz2 for some k ≥ 0. Since we just showed that
the horizontal and vertical foliations for zk dz2 satisfy the definition of a
measured foliation, it will follow that the horizontal and vertical foliations
for q really are transverse measured foliations, as defined above.

First consider a regular point p of q; that is, assume q(p) �= 0. Let z :
U → C be a local coordinate with z(p) = 0 and write q(z) = φ(z) dz2

in this chart. Since q is assumed to have finitely many zeroes, we can pick
the chart small enough that φ(z) does not vanish in this chart. Our goal is
to show that there is a local coordinate ζ at p so that q(ζ) = dζ2. Such
coordinates are obtained by composing z with the change of coordinates

η(z) =

∫ z

0

√
φ(ω) dω,

where some branch of the square root function is chosen (this is possible
since φ �= 0). Of course, when we integrate from 0 to z, we really mean to
integrate along some (any) path from 0 to z.

The natural coordinates are ζ = η ◦ z : U → C. We can check that q has
the desired form in the ζ-coordinates. First, by the fundamental theorem of
calculus, we have

dη =
√
φ(z).

Now let q(ζ) = ψ(ζ) dζ2 in the ζ-coordinates. By (11.1), we have

ψ(ζ)(dη)2 = φ(z)

or

ψ(ζ)φ(z) = φ(z),
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and so ψ(ζ) ≡ 1, as desired.
The natural coordinates ζ are unique up to translation and sign. It is there-

fore possible to associate measures to the horizontal and vertical foliations.
Locally, the measures are given by |dy| and |dx|, respectively.

Now suppose that p ∈ X is a zero of q of order k ≥ 1. By a variation of
the above argument, there is a local coordinate ζ so that, in this coordinate, q
is given by q(z) = zk dz2. As above, these coordinates are called the natural
coordinates. For the details of this argument, see [200, Section 6].

We have shown that the horizontal and vertical foliations of a holomor-
phic quadratic differential give a pair of measured foliations that are trans-
verse to each other. It is a deep theorem of Hubbard–Masur that, given any
measured foliation (F , µ), one can build a holomorphic quadratic differen-
tial whose corresponding horizontal foliation is, up to a certain equivalence,
equal to (F , µ) [96].

The Euler–Poincaré formula revisited. From the Euler–Poincaré formula
(Proposition 11.4) and the correspondence between the order of a zero of
a holomorphic quadratic differential and the number of prongs of the asso-
ciated foliation, we deduce that a holomorphic quadratic differential must
vanish at exactly 4g − 4 points, where points are counted with multiplicity.

Euclidean areas and lengths. The natural coordinates for a holomorphic
quadratic differential q on a Riemann surface X endow X with a singular
Euclidean metric. A singular Euclidean metric on a surface S is a flat metric
outside of a finite number of points, around each of which the metric is
modeled on gluing flat rectangles together in the same way as is done to
give a singular point of a measured foliation. Locally, the area form of this
metric is given by

1

2i
|φ(z)| dz ∧ dz = |φ(z)|dx ∧ dy,

where φ(z) dz2 is the local expression for q.
We can also talk about the Euclidean length of a path in X with respect

to q. This length form is given by

|φ(z)|1/2|dz| = |φ(z)|1/2
√
dx2 + dy2.

The singular Euclidean metric induced by a holomorphic quadratic differen-
tial is nonpositively curved in the sense that it is locally CAT(0). It follows
that, given any arc α in X, there is a unique shortest path among all paths
homotopic to α with endpoints fixed (see [35, Chapter II, proof of Corollary
4.7]).
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Punctures and boundary. The modifications needed to define holomor-
phic quadratic differentials on a surface with punctures and/or boundary
mirror the changes we made for measured foliations. In the neighborhood of
a puncture, holomorphic quadratic differentials take the form zk dz2, where
k ≥ −1. That is, we allow simple poles at punctures.

11.3.2 QUADRATIC DIFFERENTIALS ON THE TORUS

Let X be a closed Riemann surface of genus 1. There is a lattice Λ < C
so that X ≈ C/Λ. Let π : C → X denote the quotient map. For a small
enough open set U in X, there is an open set Ũ ⊂ C so that π|eU : Ũ → U

is a homeomorphism. The collection of such maps {π|−1
eU
} is an atlas for

X. All of the transition maps for this atlas are translations. For any point
x ∈ X, the set of images of x under all charts is π−1(x).

Let q be a holomorphic quadratic differential on X. From (11.1) and the
fact that all transition maps are translations, it follows that q can be written
as a doubly periodic holomorphic function φ : C → C. A doubly periodic
function C → C is bounded, and so by Liouville’s theorem φ is constant.
We therefore have that the set of holomorphic quadratic differentials on X
is in bijection with C. Under this bijection, the horizontal foliation for the
differential corresponding to z ∈ C has leaves consisting of straight lines
that meet the x-axis with angle − arg(z)/2.

11.3.3 CONSTRUCTIONS OF QUADRATIC DIFFERENTIALS

Having explained some of the basics of holomorphic quadratic differen-
tials, the question remains: how does one actually construct a holomorphic
quadratic differential? Since we know how to derive a measured foliation
from a holomorphic quadratic differential, it makes sense to generalize our
two main constructions of measured foliations, namely, the construction via
polygons and the construction via branched covers.

Quadratic differentials via polygons: the Swiss cross example. Just as we
were able to construct measured foliations from certain polygons, we can
also construct holomorphic quadratic differentials from the same polygons.
Instead of explaining the construction in generality, we will explain one
particular case, the Swiss cross example, in detail. This example exhibits all
of the subtleties of the general case.

Consider the closed polygonal region P in C in Figure 11.6. Let S be the
topological surface obtained by identifying sides of P by Euclidean trans-
lation, as indicated in the figure. We start by describing an atlas for S that
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Figure 11.6 The Swiss cross.

gives S the structure of a Riemann surface. The first chart is self-evident: the
subset of S corresponding to the interior of P is already identified with an
open subset of C. Now consider a point p in S corresponding to a point in the
interior of an edge of P . Let U be an open neighborhood of p corresponding
to a union of two half-disks in P (each half-disk is the intersection of an
open disk in C with P ). To define the chart for U , we say that one “half” of
U maps to the corresponding half-disk in P , and the other half-disk maps to
the image of its corresponding half-disk in P under a translation, where the
translation is chosen so that the image of U under the chart is an open disk
in C.

We proceed similarly at the corners. The eight corners with angle π/2
glue together to form two disks in S, and so we can use the same method as
above to glue the pieces together. Consider the other four corners. We see
that in S these four vertices of P are identified to a single point, which we
call s. We also see that the total Euclidean angle around the four copies of s
in P is 4(3π/2) = 6π. Thus we cannot simply glue these pieces together by
translations and expect to get an open disk in C. The solution is as follows:
one by one, translate each of the corresponding vertices of P to 0 ∈ C, apply
the map z 
→ z1/3, and then apply rotations so that the four corners glue
together to form an open disk about 0 ∈ C; we take care so that the image
of the kth corner lies between the rays with argument kπ/2 and (k+1)π/2.

The above-defined charts indeed define a complex structure on S, that
is, transition maps are biholomorphic. The only place where there could
possibly be an issue is at the point s (since z1/3 is not differentiable at 0).
However, this point appears in only one chart, so there is nothing to check.
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We can now use the atlas we have constructed in order to define an explicit
holomorphic quadratic differential q on S chart by chart. Here the notion of
holomorphic is taken with respect to the complex structure on S that we just
constructed.

We define q on every chart except the last one constructed above by set-
ting q(z) = dz2. On the last chart we let q(z) = 9z4 dz2. Note that each
chart except for the last gives natural coordinates since the local expression
for q in these cases is dz2.

We can see that the point s will be a singularity of the horizontal foliation
for q. The prongs at s come from eight segments of the horizontal foliation
for q, two at each preimage of s. In S, two of these pairs are identified (the
ones labeled c and f ), and so in the end the singularity at s has six prongs
(cf. Proposition 11.4). This agrees with the fact that we gave q an order 4
zero at s.

Let us now check that (11.1) holds for all transition maps. Consider a
point near s that lies in the “big chart” (the first one we defined) and the
“special chart” (the last one we defined). Call the big coordinate z and the
special coordinate w. Then (11.1) demands that

(dz/dw)2 = 9w4.

But this is the same as saying that

(3w2)2 = 9w4,

which is obviously true. Checking (11.1) for the other transition maps is
similar. Therefore, q really is a holomorphic quadratic differential. The area
and arc length forms are exactly the ones coming from the Euclidean metric
in the big chart.

One way to get other holomorphic quadratic differentials on the Swiss
cross Riemann surface is simply to change the expression for q on the big
chart to be any α dz2 for α ∈ C. In this case we get other holomorphic
quadratic differentials which are qualitatively different; for instance, some
have closed leaves and some do not.

One can construct other examples of holomorphic quadratic differentials
using the same idea as above, that is, by gluing together Euclidean polygons
by Euclidean translations. For starters, the reader might like to consider the
example indicated in Figure 11.7.

As with measured foliations, the polygon construction for holomorphic
quadratic differentials has a converse: every holomorphic quadratic differen-
tial can be realized in this way. Indeed, the natural coordinates tell us how to
cut up the Riemann surface into (finitely many) rectangles, each foliated by
horizontal lines. By placing these rectangles in the Euclidean plane so that
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the foliations are horizontal and recording the side identifications, we ob-
tain a polygonal description of the surface where the holomorphic quadratic
differential is given by dz2. For details, see [200, Section 11].
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Figure 11.7 An example of a surface obtained by gluing Euclidean rectangles by Euclidean
translations. As with the Swiss cross example, this surface can be given the
structure of a Riemann surface with a holomorphic quadratic differential.

Quadratic differentials via branched covers. Another way to construct
holomorphic quadratic differentials is via branched covers. A map p : X →
Y between closed Riemann surfaces is a branched covering map if, for any
point x ∈ X, there are local coordinates where p is given by z 
→ zk for
some k ≥ 1. Note that, if p : X → Y is an orbifold covering in the sense of
Chapter 7 or is a branched cover of topological surfaces as in Section 11.2,
then we can pull back any complex structure on Y to a complex structure
on X, and the map p will then be a branched covering map of Riemann
surfaces. The point x is a ramification point of the branched covering if and
only if k > 0, and in this case k is called the degree of ramification.

Let p : X → Y be a branched covering map and suppose we have a
holomorphic quadratic differential q on Y . We can lift q to a holomorphic
quadratic differential q̃ on X as follows. If U is some open neighborhood
of a point x ∈ X, and if there are charts U → C and p(U) → C where in
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these coordinates p is given by z 
→ ψ(z), then by (11.1) we have

φ̃(z) = φ(ψ(z))(dψ(z))2 ,

where φ̃(z) dz2 and φ(z) dz2 are the local expressions for q̃ and q. If x is
a ramification point of degree k and if q has a zero of order m at p(x) (we
allowm = 0), then we see that q̃ has a zero of order km+2(k−1) at x. This
agrees with our discussion about branched covers and measured foliations:
the foliations for q and q̃ have singularities withm+2 prongs and k(m+2)
prongs, respectively.

Of course, in order to lift a holomorphic quadratic differential on a Rie-
mann surface Y , we first need to know how to find a holomorphic quadratic
differential on Y . When Y has genus 1, we already proved above that
the space of holomorphic quadratic differentials on Y is in bijective cor-
respondence with C. We also explained how to construct branched covers
of higher-genus topological surfaces over the torus (Figure 11.5), and again
these give rise to branched covers of Riemann surfaces over Y .

11.3.4 THE VECTOR SPACE OF HOLOMORPHIC QUADRATIC DIFFEREN-
TIALS

Let X be any Riemann surface. It is easy to check that the sum of two holo-
morphic quadratic differentials on X is a holomorphic quadratic differential
on X, as is any complex multiple of a holomorphic quadratic differential. It
follows that the set of all holomorphic quadratic differentials on X forms a
complex vector space denoted QD(X).

Our first goal is to give a lower bound on the dimension of QD(X).
Choose some finite set of points P ⊂ X. Let KP (X) denote the complex
vector space of meromorphic functions f : X → C, where f has only sim-
ple poles, each occurring at points of P . The following theorem is a special
case of Riemann’s inequality (see [60, III.4.8] or [68, Section 8.3]).

THEOREM 11.5 Let X be a closed Riemann surface of genus g and let
P ⊂ X be a finite set of points. We have

dimC(KP (X)) ≥ |P |+ 1− g.

We now obtain the desired bound on the dimension of QD(X).

Proposition 11.6 LetX be a closed Riemann surface of genus g. We have

dimC(QD(X)) ≥ 3g − 3.
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Proof. Let q0 be an element of QD(X) with only simple zeros. Recall that
the horizontal foliation for q0 has three prongs at each singularity. By the
Euler–Poincaré formula (Proposition 11.4), q0 has exactly 4g − 4 zeros.

Let P be the set of 4g − 4 zeros of q0. By Theorem 11.5, we have

dimC(KP (X)) ≥ 3g − 3.

We claim that there is a map QD(X) → KP (X) given by q 
→ q/q0.
Indeed, the ratio q/q0 is a well-defined function on X by (11.1), and the
poles of q/q0 are precisely the zeros of q0 at which q does not have a zero.
This map is a vector space isomorphism, so we are done. �

The inequality of Theorem 11.7 turns out to be an equality for g ≥ 2 (in
the case g = 1 we have already shown that QD(X) ≈ C). This equality can
be deduced from the Riemann–Roch theorem, a deep theorem which sharp-
ens Riemann’s inequality. On the other hand, in Section 11.4 we will define
a map Ω from the open unit ball in QD(X) to Teich(Sg). It follows from
the definition of Ω and Teichmüller’s uniqueness theorem (Theorem 11.9
below) that Ω is injective. By Brouwer’s invariance of domain theorem (see
Theorem 11.15 below), we then obtain the following theorem.

THEOREM 11.7 Let X be a closed Riemann surface of genus g. We have

dimC(QD(X)) = 3g − 3.

In what follows, we will only need Proposition 11.6, and not Theo-
rem 11.7.

A topology onQD(X). Let X be a Riemann surface and let q ∈ QD(X).
By (11.1) the absolute value of q at a point does not depend on the local
expression for q. In other words, |q| is a function X → R. We can thus
define a norm on QD(X) by the formula

‖q‖ =

∫
X
|q|.

This norm induces a metric on QD(X) and hence a topology. With respect
to this topology any n-dimensional complex subspace of QD(X) is home-
omorphic to R2n.

A dimension count for QD(X). For g ≥ 2, we can give a heuristic di-
mension count for QD(X) that is in the same spirit as our dimension counts
for Teich(Sg) in Chapter 10.
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Fix a closed Riemann surface X of genus g ≥ 2 and let q be a holo-
morphic quadratic differential on X. As discussed above, it is possible to
realize X by a Euclidean polygon so that q(z) = dz2 in the interior chart of
the polygon. We can thus count the dimension of QD(X) by counting the
dimension of the space of polygons that give X.

Specifically, we consider connected Euclidean polygons P with the fol-
lowing properties:

• If we identify pairs of parallel sides of P , we obtain a closed surface
S of genus g.

• Every vertex of P maps to a point on S with total Euclidean angle 3π.

As in the discussion above, P induces a complex structure on S and the
quadratic differential dz2 induces a holomorphic quadratic differential q on
S. The second condition on P means that each point of S coming from a
vertex of P is a simple zero of q (of the form q(z) = z dz2) and there are
no other zeros.

Examples of such polygons exist for every genus; see Figure 11.7 for one
example in genus 2. The set of these polygons has codimension zero in the
space of all polygons giving holomorphic quadratic differentials on S, and
so we aim to count the dimension of the space of such polygons P .

Let P and q be as above. By the Euler–Poincaré formula, q has 4g − 4
simple zeros. Since a simple zero of q accounts for a total interior angle of
3π in P and since every vertex of P corresponds to a simple zero of q, we
see that the sum of the interior angles of P must be

3π(4g − 4) = (12g − 12)π.

The sum of the interior angles of a Euclidean n-gon is (n − 2)π, and so
we see that P must have 12g − 10 sides. If we think of each side of P
as a vector, we get 2(12g − 10) dimensions worth of freedom. Since side
lengths and angles must match in pairs, we are down to 12g−10 dimensions.
The last pair of sides is determined by the others, and so we lose two more
dimensions, giving 12g − 12, exactly twice what we want.

But as we change the polygon, we are also changing the complex structure
on S. We are trying to compute QD(X) for a fixed Riemann surface X. In
order to take this into account we must subtract the dimension of the space
of all complex structures on S, namely, the dimension of Teich(S), which
is 6g − 6. We have thus given a heuristic that shows that there are 6g − 6
dimensions worth of possible holomorphic quadratic differentials q on any
fixed Riemann surface X.
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Dimension count for QD(X): polygons

+2(12g − 10) : Choose 12g − 10 vectors for the polygon’s sides.

−(12g − 10) : Sides must match in pairs.

−2 : The last pair of sides is determined by the others.

−(6g − 6) : Subtract the dimension of Teich(S).

= 6g − 6 Total dimensions

11.4 TEICHMÜLLER MAPS AND TEICHMÜLLER’S THEOREMS

We are now ready to describe the homeomorphisms that minimize the qua-
siconformal dilatation in a given homotopy class, thus giving a solution to
Teichmüller’s extremal problem. The solution to this problem was first given
by Teichmüller [188, 203] and Ahlfors [3]; see also Bers [14].

11.4.1 STATEMENT OF THE THEOREMS

Let X and Y be two closed Riemann surfaces of genus g. We say that a
homeomorphism f : X → Y is a Teichmüller mapping if there are holo-
morphic quadratic differentials qX and qY on X and Y , respectively, and a
positive real number K so that the following two conditions hold:

1. The homeomorphism f takes the zeros of qX to the zeros of qY .

2. If p ∈ X is not a zero of qX , then with respect to a set of natural co-
ordinates for qX and for qY based at p and f(p), the homeomorphism
f can be written as

f(x+ iy) =
√
Kx+ i

1√
K
y.

In complex notation, this can be written as

f(z) =
1

2

((
K + 1√
K

)
z +

(
K − 1√
K

)
z̄

)
.

Since fz = K+1
2
√
K

and fz̄ = K−1
2
√
K

, we see that the dilatation of f is

Kf =

{
K if K ≥ 1,

1/K if K < 1.

We can concisely describe f by saying that it has initial differential qX , ter-
minal differential qY , and horizontal stretch factorK . (Because of the ambi-
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guity that the horizontal stretch factors K and 1/K give rise to Teichmüller
mappings with the same dilatation, we need to keep the distinction between
horizontal stretch factor and dilatation.)

Note that the existence of a Teichmüller mapping presupposes that the
initial and terminal differentials have the same Euclidean area; this is not a
strong assumption, as any holomorphic quadratic differential can be scaled
by a real number so as to have unit area and this rescaling does not change
the corresponding horizontal or vertical foliations.

A Teichmüller mapping is not differentiable at the zeros of the initial dif-
ferential, but it is smooth at all other points. This is why in our definition of
quasiconformal homeomorphisms we chose to consider homeomorphisms
that are smooth outside of a finite number of points instead of considering
only smooth homeomorphisms.

��������������

��������������

Figure 11.8 A Teichmüller mapping of the Swiss cross surface.

As a first example of a Teichmüller mapping, consider the homeomor-
phism between the Swiss cross Riemann surface and the stretched Swiss
cross Riemann surface indicated in Figure 11.8. We can get other, more
complicated Teichmüller mappings by rotating the foliation in Figure 11.8
so that it is not parallel to any sides of the polygon or even so that its slope
is irrational.

Given two arbitrary complex structures on a topological surface, it is cer-
tainly not obvious that one can construct a Teichmüller mapping taking one
structure to the other. However, the next theorem states that these mappings
do indeed exist, and moreover they exist in every homotopy class.

THEOREM 11.8 (Teichmüller’s existence theorem) Let X and Y be
closed Riemann surfaces of genus g ≥ 1 and let f : X → Y be a home-
omorphism. There exists a Teichmüller mapping h : X → Y homotopic to
f .
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The main reason that Teichmüller mappings are so useful and important
is that they provide a complete solution to Teichmüller’s extremal problem
for quasiconformal mappings.

THEOREM 11.9 (Teichmüller’s uniqueness theorem) Let h : X → Y be
a Teichmüller map between two closed Riemann surfaces of genus g ≥ 1. If
f : X → Y is a quasiconformal homeomorphism homotopic to h, then

Kf ≥ Kh.

Equality holds if and only if f ◦ h−1 is conformal. In particular, if g ≥ 2,
then equality holds if and only if f = h.

The second statement follows from the first statement plus the fact that the
only homotopically trivial conformal homeomorphism of a closed Riemann
surface of genus g ≥ 2 is the identity (cf. Proposition 7.7). For a closed
Riemann surface X of genus g = 1, the group of conformal automorphisms
of X is isomorphic to the group T 2.

We will prove both Theorems 11.8 and 11.9 later in this chapter.

Teichmüller’s theorems for the torus. In Section 10.2, we showed that
Teich(T 2) is in natural bijective correspondence with SL(2,R)/SO(2,R).
Teichmüller’s theorems can be interpreted in this case as saying that for
each element of SL(2,R)/SO(2,R) there is a distinguished representative
in SL(2,R) that is a hyperbolic matrix and whose leading eigenvalue is min-
imal among all hyperbolic representatives. It is instructive to find, for exam-
ple, this distinguished representative for the coset given by ( 1 1

0 1 ); compare
the proof of Theorem 11.20 below.

A minimization theorem for 1-manifolds. The analogue of Teichmüller’s
uniqueness theorem for 1-manifolds is nothing other than the mean value
theorem. Identify S1 with R/Z. Consider the set of all smooth homeomor-
phisms S1 → S1 that fix 0. Define the dilatation of a smooth homeomor-
phism f by sup |fx|. By the mean value theorem, the dilatation is minimized
in a given homotopy class precisely when f is linear.

11.4.2 GENERATING TEICHMÜLLER MAPS

In our definition of the Teichmüller map, we were handed two Riemann sur-
faces and a homeomorphism between them. It is natural to ask if, given an
arbitrary closed Riemann surface X, an initial holomorphic quadratic differ-
ential qX , and some K > 1, it is always possible to find a Riemann surface
Y and a terminal holomorphic quadratic differential qY so that there is a
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Teichmüller mapping f : X → Y with initial differential qX , terminal dif-
ferential qY , and horizontal stretch factor K. It turns out that this is always
possible.

We now give the construction of the required Teichmüller mapping f for
the given input is X, qX , and K. Let X ′ be the complement in X of the
zeroes of qX . We will refer to the topological surfaces underlying X and
X ′ as S and S′, respectively. The surface X ′ is still a Riemann surface; its
complex structure is given by a sufficiently large set of natural coordinates
with respect to qX , now thought of as a holomorphic quadratic differential
on X ′. If we compose each chart for X ′ with the affine map

f(x+ iy) =
√
Kx+ i

1√
K
y,

we obtain a new set of charts on S′, and this new set of charts defines a new
complex structure on S′. Call the resulting Riemann surface Y ′. In order to
obtain the desired closed Riemann surface Y , we need only note that, by the
removable singularity theorem (see, e.g., [48, Theorem V.1.2]), the complex
structure Y ′ on S′ extends uniquely to a complex structure Y on all of S.

There is an induced homeomorphism f : X → Y and an induced holo-
morphic quadratic differential qY on Y . By construction, f is a Teichmüller
mapping with the desired properties. If we fix X and qX but vary K in
(0,∞), we obtain a one-parameter family of Riemann surfaces homeomor-
phic to X. Since each of these Riemann surfaces comes with an identifica-
tion with X, we can think of this one-parameter family as a set of points in
Teich(S), where S is the topological surface underlying X. The resulting
subset of Teich(S) is called a Teichmüller line. The point X corresponds to
K = 1. When we define the metric on Teichmüller space, we will see that
Teichmüller lines are in fact geodesics.

Since the initial differential qX on X specifies a unique ray in Teich(S),
we see that we can think of qX as giving a tangent direction and the pair
(qX ,K) as giving a tangent vector to Teich(S) atX. Above we gave a norm
on QD(X). The resulting map (qX , ‖qX‖) → Teich(S) can be thought of
as an exponential map TX(Teich(S))→ Teich(S). We remark that QD(X)
is usually identified with the cotangent space of Teich(S) at the point X.

11.4.3 SURFACES WITH PUNCTURES AND BOUNDARY

In order to state Teichmüller’s existence and uniqueness theorems (Theo-
rems 11.8 and 11.9) in the context of punctured surfaces, we need to dis-
tinguish two types of conformal structures near a topological puncture; see
Figure 11.9. The puncture on the left-hand side of the figure has a neigh-
borhood that is conformally equivalent to the unit disk in C minus 0, and
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Figure 11.9 Two different conformal types in the neighborhood of a puncture: a punctured
disk (left) and an annulus (right).

the other puncture has a neighborhood that is conformally equivalent to an
annulus {z ∈ C : r1 ≤ |z| < r2}. A homeomorphism f : X → Y has a
quasiconformal representative if and only if f takes punctures to punctures,
and at each puncture these conformal types are preserved. In this case, both
Teichmüller existence and uniqueness theorems hold, assuming that the un-
derlying topological surface has negative Euler characteristic. One way to
prove this in the case of punctures of the first type is to find a double cover-
ing of the Riemann surface in question where the complex structure can be
extended over the punctures.

Since there is no quasiconformal homeomorphism homotopic to f : X →
Y if the types of punctures are not preserved, one usually considers the
Teichmüller space of a surface where the conformal types of the punctures
are part of the given data.

Figure 11.10 An allowable measured foliation near the boundary of a surface in Teichmüller
theory.

In the case of surfaces with boundary, one must be careful about the mea-
sured foliations that are allowed. For the purposes of Teichmüller theory, we
insist that
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1. each component of ∂S contain at least one singularity, and

2. any leaf of not containing a singularity on ∂S but meeting a small
tubular neighborhood of ∂S must be parallel to ∂S; that is, ∂S should
be a union of leaves connecting singularities. See Figure 11.10.

In terms of quadratic differentials on a Riemann surface X, these conditions
can be restated as: each component of ∂X must contain at least one zero
and ∂X is part of the horizontal foliation away from the singularities. As
a consequence, the corresponding singular Euclidean metric degenerates at
the boundary.

For details on extending Teichmüller theory to the nonclosed case, see,
for example, [1, Chapter II].

11.5 GRÖTZSCH’S PROBLEM

In 1928 Grötzsch proved the following precursor to the Teichmüller unique-
ness theorem. It solves the quasiconformal extremal problem for rectangles.
The proof of Teichmüller’s uniqueness theorem is based on the solution to
Grötzsch’s problem.

THEOREM 11.10 (Grötzsch’s problem) Let X be the rectangle [0, a] ×
[0, 1] in R2 and let Y be the rectangle [0,Ka] × [0, 1] for some K ≥ 1. If
f : X → Y is any orientation-preserving homeomorphism that is smooth
away from a finite number of points, that takes horizontal sides to horizontal
sides, and that takes vertical sides to vertical sides, then

Kf ≥ K

with equality if and only if f is affine.

Note that Theorem 11.10 really gives a statement about general rectan-
gles, as any rectangle is conformally equivalent to one with vertical side
length 1.

Proof. Let f : X → Y be as in the statement of the theorem. See Fig-
ure 11.11. Let Kf (x, y) and jf (x, y) denote the dilatation and the Jacobian
of f at the point (x, y) ∈ X.

We begin with two simple inequalities. The first is

|fx(x, y)|2 ≤ Kf (x, y)jf (x, y). (11.2)

If M and m are the supremum and infimum of

{|df(v)| : v ∈ UT (X)},
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Figure 11.11 The setup for Grötzsch’s problem.

then (11.2) is true because

Kf (x, y) = M/m and jf (x, y) = Mm.

The second key inequality is∫
X
|fx(x, y)| dA ≥ K Area(X), (11.3)

which is obtained from the inequality
∫ a
0 |fx(x, y)| dx ≥ Ka by integrating

from 0 to 1 with respect to y.
We are now ready to show that Kf ≥ K . Without loss of generality,

assume K ≥ 1. Then

(K Area(X))2 ≤
(∫

X
|fx(x, y)| dA

)2

≤
(∫

X

√
Kf (x, y)

√
jf (x, y) dA

)2

≤
(∫

X
jf (x, y) dA

) (∫
X
Kf (x, y) dA

)
≤ (K Area(X))(Kf Area(X)).

The first three inequalities follow from (11.3), (11.2), and the Cauchy–
Schwarz inequality. The fourth inequality follows from the fact that
Kf (x, y) ≤ Kf for all (x, y) ∈ X. It follows that Kf ≥ K .

The lower bound Kf = K is achieved when f is the affine map

A : (x, y) 
→ (Kx, y).

It remains to prove the uniqueness statement.
Let f : X → Y be an orientation-preserving homeomorphism as in the
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statement of the theorem and assumeKf = K. By replacing f withA−1◦f ,
we can assume that K = 1, hence Kf = 1. Our goal now is to show that f
is the identity.

In the sequence of four inequalities above, the assumption that distin-
guishes the x-direction from the y-direction is the assumption that K ≥ 1.
Since we now have K = 1, we have attained symmetry between the hori-
zontal and vertical directions.

We must have that all four inequalities in the above calculation are equal-
ities. For the first of the four inequalities, namely, inequality (11.3), to be an
equality, it must be that f takes horizontal line segments of X to horizontal
line segments of Y . By symmetry, f must also take vertical line segments
of X to vertical line segments of Y . We therefore have

f(x, y) = (u(x), v(y)).

For the second inequality above, namely, inequality (11.2), to be an equality,
we must have that the direction of maximal stretch for f is the x-direction at
almost every point of X. By symmetry, the direction of maximal stretch for
f must also be the y-direction at almost every point. Thus |u′(x)| = |v′(y)|
at almost every point (x, y) ∈ X, and jf (x, y) = u′(x)v′(y) = u′(x)2 =
v′(y)2 (we are using the fact that f is orientation-preserving to say that
jf ≥ 0) and Kf (x, y) = 1. Since Kf = supKf (x, y) = 1, we must have
that Kf (x, y) ≡ 1. For the third inequality above, the Cauchy–Schwarz
inequality, to be an equality, we must have that

jf (x, y)/Kf (x, y) = jf (x, y) = u′(x)2 = v′(y)2

is constant almost everywhere. For the fourth inequality to be an equality, we
must have that jf (x, y) is equal toK = 1 almost everywhere. Thus u′(x) =
v′(x) = 1 almost everywhere and f(x, y) = (x, y) almost everywhere.
Since f is a homeomorphism, it follows that f(x, y) = (x, y) everywhere,
as desired. �

11.6 PROOF OF TEICHMÜLLER’S UNIQUENESS THEOREM

The proof of Teichmüller’s uniqueness theorem (Theorem 11.9) is almost
exactly the solution to Grötzsch’s problem just given. The only difficulty is
to prove the analogue of the inequality (11.3) with the rectangle X replaced
by a closed Riemann surface. To do this we will first need the following
lemma.

In what follows �q denotes the Euclidean length of a path with respect to
a holomorphic quadratic differential q.
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Lemma 11.11 Let qY be a holomorphic quadratic differential on a closed
Riemann surface Y . Let h : Y → Y be a homeomorphism that is homotopic
to the identity. Then there exists a constantM ≥ 0 with the following prop-
erty: any arc α : [0, 1] → Y embedded in a leaf of the horizontal foliation
for qY satisfies

�qY (h(α)) ≥ �qY (α) −M.

The point of Lemma 11.11 is that, while the constant M depends on the
homeomorphism h, it does not depend on the arc α.

Proof. LetH(x, t) : Y ×[0, 1] → Y be any homotopy from h to the identity.
For each x ∈ Y , the �qY -length of the path H(x, t) is a continuous function
Y → R. Since Y is compact, it attains a maximum N ≥ 0.

Denote by δ0 and δ1 the arcs H(α(0), 1 − t) and H(α(1), t), where 0 ≤
t ≤ 1. Note that �qY (δ0) ≤ N and �qY (δ1) ≤ N . The concatenation of arcs
δ0 �h(α) � δ1 is homotopic to α, relative to endpoints. Since α is embedded
in a horizontal leaf of qY , it minimizes the length of any arc in its relative
homotopy class. We thus have

�qY (α) ≤ �qY (δ0 � h(α) � δ1)

= �qY (δ0) + �qY (h(α)) + �qY (δ0)

≤ �qY (h(α)) + 2N.

Setting M = 2N completes the proof. �

We are now ready to prove the analogue for closed Riemann surfaces
of inequality (11.3), which estimates the mean horizontal stretching of a
map homotopic to a Teichmüller mapping. In the statement of the following
proposition, fx denotes the derivative of f in the direction of the horizontal
foliation for qX , and Area(q) denotes the Euclidean area of the holomorphic
quadratic differential q.

Proposition 11.12 Let h : X → Y be a Teichmüller mapping between
closed Riemann surfaces. Suppose that h has initial differential qX , terminal
differential qY , and horizontal stretch factor K . Let f : X → Y be any
homeomorphism that is homotopic to h and that is smooth outside a finite
number of points. Then∫

X
|fx| dA ≥

√
K Area(qX).

We note that in the case that each of the horizontal leaves of qX is closed,
the proof of Proposition 11.12 is quite similar to the solution of Grötzsch’s
problem. The case when qX has nonclosed leaves is more subtle.
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Proof of Proposition 11.12. Consider the function δ : X × R≥0 → R≥0

given by

δ(p, L) =

∫ L

−L
|fx| dx.

If αp,L is the horizontal arc of length 2L centered at p, then δ(p, L) is the
integral of |fx| along αp,L. Note that δ is not defined everywhere; specifi-
cally, it is not defined at any (p, L) where p lies at a horizontal distance less
than L from a zero of qX . This is a set of measure zero in X × R≥0 since
there are only finitely many zeros of qX , each meeting finitely many leaves
of the horizontal foliation for qX .

Where δ(p, L) is defined, we have

δ(p, L) = �qY (f(αp,L)).

The Teichmüller map h takes αp,L to an arc of qY -length 2L
√
K . It follows

from Lemma 11.11 that

�qY (f(αp,L)) ≥ 2L
√
K −M,

where M is independent of p and of L. Thus

∫
X
δ(p, L) dA=

∫
X
�qY (f(αp,L)) dA

≥
∫
X

(
2L
√
K −M

)
dA

=
(
2L
√
K −M

)
Area(qX).

On the other hand, Fubini’s theorem gives∫
X
δ(p, L) dA =

∫
X

(∫ L

−L
|fx| dx

)
dA = 2L

∫
X
|fx| dA.

Combining the above two equations gives

2L

∫
X
|fx| dA ≥

(
2L
√
K −M

)
Area(qX).

Dividing both sides of this inequality by 2L and allowing L to tend to
infinity gives the result. �

As alluded to above, the proof of Teichmüller’s uniqueness theorem is
now almost verbatim the solution of Grötzsch’s problem. The main change
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is that the inequality (11.3) is replaced with Proposition 11.12. Also, the
map A from Grötzsch’s problem is replaced with a Teichmüller map h, and
the horizontal and vertical directions must now be interpreted as the direc-
tions of the horizontal and vertical foliations determined by h. With these
changes, the solution to Grötzsch’s problem (the proof of Theorem 11.10)
applies exactly as stated to prove Teichmüller’s uniqueness theorem.

11.7 PROOF OF TEICHMÜLLER’S EXISTENCE THEOREM

The goal of this section is to prove Teichmüller’s existence theorem (The-
orem 11.8). The key idea here is to reinterpret the existence problem for
Teichmüller maps as the problem of proving surjectivity of a natural “ex-
ponential map” Ω : QD(X) → Teich(Sg). We will define such a map,
prove continuity and properness, and deduce surjectivity by general topol-
ogy, namely, invariance of domain. We now begin executing this strategy.

11.7.1 PROOF OF THE THEOREM

LetX be a closed Riemann surface and let q ∈ QD(X). Recall that we have
a norm on QD(X) given by

‖q‖ =

∫
X
|q|.

Let QD1(X) denote the open unit ball in QD(X). For q ∈ QD1(X), set

K =
1 + ‖q‖
1− ‖q‖ .

As in Section 11.4, we can construct a Riemann surface Y and a Teichmüller
mapping h : X → Y with initial differential q and horizontal stretch factor
K. By identifying X with Sg, we can regard X as a point X ∈ Teich(Sg).
Then, regarding the Teichmüller map h as a marking h : Sg → Y , we
obtain a point Y = [(Y, h)] in Teich(Sg). This procedure therefore defines a
function

Ω : QD1(X) → Teich(Sg).

Teichmüller’s existence theorem then amounts to the statement that Ω is
surjective. Indeed, let Z be a Riemann surface and let f : X → Z be
a homeomorphism. Teichmüller’s existence theorem states that there is a
Teichmüller map h : X → Z in the homotopy class of f . As above, by
identifying X with Sg, we can regard f as a marking Sg → Z . Then the
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pair (Z, f) represents a point Z ∈ Teich(Sg). If there exists q ∈ QD1(X)
such that Ω(q) = Z, then this exactly means that there is a Teichmüller map
h : X → Z in the homotopy class of f , as desired.

Proposition 11.13 Let g ≥ 1. The map Ω : QD1(X) → Teich(Sg) is
continuous.

Proposition 11.13 is far from obvious. For example, even if q ∈ QD(X)
has the property that its horizontal foliation has only closed leaves, there
will be a nearby q′ ∈ QD(X) with leaves that are not closed. If we stretch
along both foliations by a factor of K, there is no simple reason why the
resulting points of Teich(Sg) should be close to each other.

Proposition 11.13 represents the main content of our proof of Te-
ichmüller’s existence theorem. We will prove it below as a corollary of the
measurable Riemann mapping theorem.

Proposition 11.14 The map Ω : QD1(X) → Teich(Sg) is proper.

Proof. Let κ : Teich(Sg) → R be defined by the following formula. For
Y ∈ Teich(Sg), we represent Y by a marked Riemann surface Y . Then we
set

κ(Y) = inf{Kh |h : X → Y a quasiconformal homeomorphism

isotopic to the change of marking}.

We claim that the map κ is continuous. Indeed, given two nearby points
Y and Y′ in Teich(Sg), we can represent them by nearby elements of
DF(π1(Sg),PSL(2,R)). The (marked) fundamental domains for these rep-
resentations can be made K-quasiconformally equivalent for any K > 1
by taking Y′ sufficiently close to Y. By the definition of κ(Y), there exists
a quasiconformal homeomorphism h : X → Y , isotopic to the change
of marking, with Kh = κ(Y) + ε, where ε is an arbitrarily small positive
number. Since the composition of a (κ(Y) + ε)-quasiconformal map with
a K-quasiconformal map is K(κ(Y) + ε)-quasiconformal, it follows that
κ(Y′) can be made arbitrarily close to κ(Y) by taking Y′ close to Y.

Let A ⊂ Teich(Sg) be compact. Since κ is continuous, κ|A attains a
maximum, sayM ≥ 0. We claim that Ω−1(A) is contained in the closed ball
of radius (M − 1)/(M + 1) about the origin in QD1(X). Since Ω−1(A) is
closed by Proposition 11.13, this claim will imply that Ω−1(A) is compact,
so that Ω is proper.

We now prove the claim. Let q ∈ Ω−1(A). By the definition of Ω, there is
a Teichmüller map h : X → Ω(q) that is isotopic to the change of marking
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and that has dilatation

Kh =
1 + ‖q‖
1− ‖q‖ .

By Teichmüller’s uniqueness theorem (Theorem 11.9), any quasiconformal
homeomorphism X → Ω(q) isotopic to the change of marking must have
dilatation at least Kh. It follows then from the definition of M that

M ≥ Kh =
1 + ‖q‖
1− ‖q‖ .

Solving for ‖q‖, we find that

‖q‖ ≤ M − 1

M + 1
< 1,

which is what we wanted to show. �

Brouwer’s invariance of domain theorem [36] states that any injective
continuous map Rn → Rn is an open map. We have the following straight-
forward consequence, which is the final piece needed for our proof of Te-
ichmüller’s existence theorem.

THEOREM 11.15 Any proper injective continuous map Rn → Rn is a
homeomorphism.

With the above ingredients in place, we can prove Teichmüller’s existence
theorem (Theorem 11.8).

Proof of Teichmüller’s existence theorem. The map

Ω : QD1(X)→ Teich(Sg)

is injective by Teichmüller’s uniqueness theorem (Theorem 11.9), proper
(Proposition 11.14) and continuous (Proposition 11.13). Also, QD1(X) is
a real vector space of dimension greater than or equal to 6g − 6 (Theo-
rem 11.6) and Teich(Sg) ≈ R6g−6 (Theorem 10.6). Since QD1(X) con-
tains a subspace homeomorphic to R6g−6, Theorem 11.15 implies that the
map Ω is surjective, which is what we wanted to show. �
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11.7.2 BELTRAMI DIFFERENTIALS, THE MEASURABLE RIEMANN MAP-
PING THEOREM, AND THE CONTINUITY OF Ω

Fix a closed Riemann surface X of genus g ≥ 2. To prove the continuity of
Ω : QD1(X) → Teich(Sg), we will factor Ω as

Ω : QD1(X)
Ω1→ L∞(U)

Ω2→ Teich(Sg),

where U ⊂ C is the upper half-plane. The image of Ω1 will consist of
(equivalence classes of) complex-valued functions that come from Beltrami
differentials, which we now define.

Ellipse fields. Recall that an ellipse field on a Riemann surface X is a
choice of ellipse in each tangent space TXp at each point p ∈ X. An ellipse
field is smooth if, when written in local coordinates, it varies smoothly. A
quasiconformal homeomorphism f : X → Y determines an ellipse field on
X that is well defined and smooth almost everywhere, as follows. Given a
point p ∈ X, we take the ellipse in TXp that is the preimage of the unit
circle in TYf(p) under the derivative of f (when the latter is defined). Since
this ellipse is well defined only up to scale, we always choose the ellipse to
have unit area.

In any chart we can encode an ellipse field by a complex-valued function
µ called the complex dilatation. It is given locally by the formula

µ = fz̄/fz.

Recall from the beginning of the chapter that |µ| < 1 if and only if f is
orientation-preserving.

An ellipse field is smooth if and only if the corresponding µ is smooth in
each chart. The dilatation Kf (p) is locally given by the formula

Kf (p) =
1 + |µ(p)|
1− |µ(p)| .

It is also possible to calculate the angle, in any chart, of the direction of
maximal stretch of df . It is given by 1

2 arg(µ). This information completely
determines the corresponding ellipse field; namely, the ellipse at the point p
is (up to scale) the unit-area ellipse with major axis having angle 1

2 arg(µ)
and with the ratio of the lengths of the axes being (1+ |µ(p)|)/(1−|µ(p)|).

Beltrami differentials. To make a definition of µ that is independent of
charts, we define it as a (−1, 1)-form, which simply means that µ transforms
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under change of coordinates by the formula

µ(z) = µ(w)

(
dw

dz

)/
dw

dz
, (11.4)

where z and w are two overlapping sets of coordinates. Since
(dw/dz)/(dw/dz) lies on the unit circle, the (−1, 1)-form µ gives rise to a
well-defined function |µ| : X → R. We say that the differential µ is a Bel-
trami differential if |µ| is essentially bounded, that is, off of a set of measure
zero it is a bounded function.

We can interpret (11.4) geometrically as follows: if a transition map be-
tween charts rotates by an angle α at a point, then µ is multiplied by ei2α.
Since the angle of the ellipse field is locally given by 1

2 arg(µ), this means
that the differential of a change of coordinates map from one chart to an-
other takes the ellipse field corresponding to the first local expression for µ
to the ellipse field corresponding to the second local expression for µ.

As the Riemann surface X is a quotient X = U/π1(X) of the upper half-
plane U by conformal automorphisms, we can think of the coefficient µ of a
Beltrami differential as a bounded, π1(X)-equivariant, measurable function
on U . That is, we can use the interior of some preferred fundamental domain
for π1(X) in U as the target of a single chart, take µ as above on that chart,
and extend µ to all of U using the action of π1(X) on U and the change-
of-coordinates formula (11.4). By reflecting across the real axis, that is, by
setting µ(z̄) = µ(z), we can also think of µ as an element of L∞(C). Recall
that two functions represent the same point of L∞(C) if they are equal al-
most everywhere. We give L∞(C) its usual topology of almost everywhere
uniform convergence.

The measurable Riemann mapping theorem. We saw above how every
quasiconformal homeomorphism f of a Riemann surface X gives rise to a
bounded unit-area ellipse field µf on X. We also saw that any such unit-
area ellipse field is equivalent to giving a (π1(X)-equivariant) element µ ∈
L∞(U). Which such µ ∈ L∞(C) occur? This question gives rise to the
fundamental “inverse problem” for Beltrami differentials: given any µ ∈
L∞(C), is it possible to find a quasiconformal homeomorphism f : C→ C
so that f satisfies the Beltrami equation

µfz = fz̄

almost everywhere? Very generally, the answer is yes.

THEOREM 11.16 (Measurable Riemann mapping theorem) Let µ ∈
L∞(C) and suppose ‖µ‖∞ < 1. There exists a unique quasiconformal
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homeomorphism fµ : Ĉ → Ĉ that fixes 0, 1, and ∞ and satisfies almost
everywhere the Beltrami equation

µfµz = fµz̄ .

Further, fµ is smooth wherever µ is, and fµ varies complex analytically
with respect to µ.

By the uniqueness statement in Theorem 11.16 we see that if µ(z̄) =

µ(z), then fµ restricts to a self-map of the upper half-plane U of C. The
uniqueness statement, together with the π1(X)-equivariance of µ, also im-
plies that fµ is π1(X)-equivariant.

There is a long history concerning the existence of solutions to the Bel-
trami equation. The case where µ is continuous was first proven by Lavren-
tiev [130], and where µ is measurable by Morrey [162]. The analytic depen-
dence of the solution on µ is due to Ahlfors–Bers [2].

The proof of Theorem 11.16 is beyond the scope of this book. We refer the
reader to [2] or [3, Chapter 5] for the proof. Assuming this theorem, we can
now prove Proposition 11.13, which states that Ω : QD1(X) → Teich(Sg)
is continuous.

The continuity of Ω. We now apply the measurable Riemann mapping
theorem in order to prove that Ω is continuous.

Proof of Proposition 11.13. Let X be a Riemann surface of genus g ≥ 2.
We take X to be homeomorphically identified with Sg, and so X represents
a point of Teich(Sg). After defining the maps

Ω1 : QD1(X) → L∞(U) and Ω2 : L∞(U)→ Teich(Sg)

that we alluded to at the start of this section, we will prove that both Ω1 and
Ω2 are continuous. We will then show that Ω = Ω2 ◦ Ω1.

Let q ∈ QD(X). Just as we were able to convert a Beltrami differential
into a π1(X)-equivariant function U → C, so are we able to convert q into
a π1(X)-equivariant function q̃ : U → C defined almost everywhere on
U . What is more, if we fix the covering map U → X and the preferred
fundamental domain in U ahead of time, then the map QD(X) → L∞(U)
given by q 
→ q̃ is a well-defined function.

We can then define Ω1 : QD1(X) → L∞(U) by setting Ω1(0) = 0 and
by setting

Ω1(q)(z) = ‖q‖ q̃(z)/|q̃(z)|

for q �= 0. Here ‖q‖ is the norm of the vector q in the vector space QD(X),
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and |q̃(z)| is the absolute value of the complex number q̃(z). Note that if q̃
transforms by dz2, then q̃/|q̃| transforms by dz/dz, as desired. Informally,
dz2/(dzdz) = dz/dz.

We claim that the map Ω1 is continuous. Indeed, as a function on X̃ ≈
U , the element Ω1(q) ∈ L∞(U) is equivariant with respect to the π1(X)
action on U in the sense that (11.1) is satisfied. Thus, if we change q ∈
QD1(X) by a small amount in one chart (say the chart given by the preferred
fundamental domain), then by (11.1), the function Ω1(q) changes by a small
amount. It also follows from (11.1) that ‖Ω1(q)‖∞ = ‖q‖ < 1.

The map Ω2 : L∞(U) → Teich(Sg) is given by the measurable Rie-
mann mapping theorem. To make this precise, we begin by realizing X as a
representation

ρ : π1(X) → Isom+(H2).

Let µ ∈ L∞(U) and reflect over the real axis so that µ ∈ L∞(C). Let fµ :
C → C be the function guaranteed by the measurable Riemann mapping
theorem (Theorem 11.16) and restrict it to U . If we conjugate each element
in the image of ρ by fµ, we obtain a new Riemann surface X ′, and fµ

induces a homeomorphism X → X ′ that is smooth almost everywhere. We
can regard X ′ as a point of Teich(Sg). The last sentence in the statement
of the measurable Riemann mapping theorem (Theorem 11.16) implies that
Ω2 is continuous.

It only remains to check that Ω : QD1(X) → Teich(Sg) is equal to the
composition Ω2 ◦ Ω1. Let q ∈ QD1(X) and suppose that at some point
u ∈ U we have q̃(u) = reiθ. Then, Ω(q) ∈ Teich(Sg) is obtained from X

by stretching by a factor of (1 + ‖q‖)/(1 − ‖q‖) in the direction e−iθ/2 at
that point. On the other hand, Ω1(q)(u) is equal to ‖q‖e−iθ , and so the map
fµ = Ω2(Ω1(q)) satisfies fµz̄ /f

µ
z = ‖q‖e−iθ at u. That is, fµ stretches in

the direction e−iθ/2 by a factor (1+‖q‖)/(1−‖q‖) at u. Thus Ω = Ω2 ◦Ω1,
and we are done. �

Beltrami differentials versus quadratic differentials. Let X be a Rie-
mann surface representing a point X ∈ Teich(Sg). We already discussed
the correspondence between QD(X) and the cotangent space to Teich(Sg)
at X. There is a natural pairing between quadratic differentials and Beltrami
differentials that we can use to identify the tangent space of Teich(Sg).
Specifically, if a holomorphic quadratic differential q is given locally by
φ(z) dz2 and a Beltrami differential µ is given locally by µ(z) dz/dz, then
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we set

〈q, µ〉 =

∫
X
φµ |dz|2.

This pairing allows us to identify the tangent space to Teich(Sg) at X as the
space of Beltrami differentials on X modulo the subspace of infinitesimally
trivial Beltrami differentials (both spaces are infinite-dimensional, but the
quotient has dimension 6g − 6). The infinitesimally trivial Beltrami differ-
entials are the ones that are the derivatives of homeomorphisms of Sg ≈ X
that are homotopic to the identity.

11.8 THE TEICHMÜLLER METRIC

Let X,Y ∈ Teich(Sg) and say that X and Y are represented by marked
Riemann surfaces X and Y , respectively. Again, because of the markings,
there is a preferred map f : X → Y , the change-of-marking map. Let
h : X → Y be a Teichmüller mapping in the homotopy class of f whose
existence is guaranteed by Teichmüller’s existence theorem (Theorem 11.8).
Let K = Kh be the dilatation of h. We define the Teichmüller distance
between X and Y to be

dTeich(X,Y) =
1

2
log(K).

By Teichmüller’s uniqueness theorem (Theorem 11.9) the function dTeich is
well defined.

11.8.1 BASIC PROPERTIES

For the next proposition, recall that in Section 10.3 we defined a topology
on Teich(Sg), the algebraic topology.

Proposition 11.17 The Teichmüller distance dTeich defines a complete met-
ric on Teich(Sg) whose topology is compatible with the algebraic topology
on Teich(Sg).

The metric defined by dTeich is called the Teichmüller metric.

Proof. Teichmüller’s existence theorem (Theorem 11.8) implies that
dTeich(X,Y) = 0 if and only if there is a Teichmüller mapping h :
X → Y of dilatation 1 that is homotopic to the change of marking.
By Lemma 11.1 the homeomorphism h is conformal. This is the same
as saying that X = Y in Teich(Sg). By Proposition 11.3 the inverse of
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a K-quasiconformal homeomorphism is a K-quasiconformal homeomor-
phism, and so dTeich(X,Y) = dTeich(Y,X). The triangle inequality for dTeich

also follows from Proposition 11.3, which states that the composition of a
K-quasiconformal homeomorphism and a K ′-quasiconformal homeomor-
phism is a KK ′-quasiconformal homeomorphism. Thus dTeich is a metric.

Next we show completeness of (Teich(Sg), dTeich). Let X be a point of
Teich(Sg) represented by a marked Riemann surface X. Recall that in Sec-
tion 11.7 we defined a map

Ω : QD1(X)→ Teich(Sg)

and showed it was a homeomorphism. Under Ω−1, a point in Teich(Sg) at
distance log(K)/2 from the basepoint X maps to a point of QD1(X) whose
norm is (K − 1)/(K + 1). For K ≥ 1, we have an inequality

K − 1

K + 1
≤ 1

2
log(K).

If K is bounded from above, then (K − 1)/(K + 1) is bounded away
from 1. Thus Ω−1 takes closed balls about the basepoint X ∈ Teich(Sg) to
compact balls about the origin in QD1(X). Since Ω−1 is a homeomorphism,
this implies that closed balls about the basepoint in Teich(Sg) are compact,
and thus (Teich(Sg), dTeich) is complete. �

One may wonder about the factor of 1/2 in the definition of dTeich.
The factor of 1/2 is included so that certain 2-dimensional subspaces of
Teich(Sg), called Teichmüller disks, are isometric to the hyperbolic plane
H2 in the unit disk model, which has curvature −4. Briefly, a Teichmüller
disk is obtained as follows: start with a complex structure on a surface S
coming from a polygon with parallel sides identified, for example, the Swiss
cross example. If we apply an element of SL(2,R), acting as a linear trans-
formation of R2, the images of the sides of the polygon are still parallel,
and so we obtain a new complex structure on S. The stabilizer of a com-
plex structure is the orthogonal group. Since SL(2,R)/SO(2,R) ≈ H2, it
follows that the SL(2,R)-orbit of the original marked complex structure is
a copy of H2 in Teich(Sg). It turns out that this inclusion H2 ↪→ Teich(Sg)
is an isometric embedding.

11.8.2 TEICHMÜLLER GEODESICS

In Section 11.4, we explained how any point X = [(X,φ)] ∈ Teich(Sg) and
any holomorphic quadratic differential q ∈ QD(X) determine an embedded
copy of R ↪→ Teich(Sg) containing X, called a Teichmüller line. By the
definition of dTeich, this embedding is actually an isometric embedding.



TEICHMÜLLER GEOMETRY 339

Proposition 11.18 Let g ≥ 1. Teichmüller lines in Teich(Sg) are bi-infinite
geodesics with respect to the Teichmüller metric.

Even more is true: Teichmüller lines account for all geodesics in
(Teich(Sg), dTeich).

THEOREM 11.19 Let g ≥ 1. Every geodesic segment in the space
(Teich(Sg), dTeich) is a subsegment of some Teichmüller line. In particu-
lar, there is a unique geodesic in Teich(Sg) between any two points.

Proof. Let X and Z be points of Teich(Sg) and suppose Y ∈ Teich(Sg)
satisfies

d(X,Y) + d(Y,Z) = d(X,Z).

In other words, if KXY, KYZ, and KXZ are the stretch factors of the corre-
sponding Teichmüller maps, we have

log(KXYKYZ) = log(KXY) + log(KYZ) = log(KXZ),

and so

KXYKYZ = KXZ.

Say that X, Y, and Z are represented by marked Riemann surfaces (X,φ),
(Y,ψ), and (Z, ζ). Let hXY and hYZ denote the Teichmüller maps homotopic
to the change-of-marking maps ψ ◦ φ−1 : X → Y and ζ ◦ ψ−1 : Y → Z .
The composition

X
hXY→ Y

hYZ→ Z

has dilatation at mostKXYKYZ (Proposition 11.3). SinceKXYKYZ = KXZ,
the dilatation of hYZ ◦ hXY must in fact be equal to KXZ. Teichmüller’s
uniqueness theorem (Theorem 11.9) then gives that hYZ ◦ hXY must be the
Teichmüller map X → Z in the homotopy class of the change of marking
ζ ◦ φ−1. It follows that the horizontal foliations for the terminal differential
for hXY and the initial differential for hYZ are equal. This means that Y lies
on the Teichmüller line passing through X and Z, which proves the first
statement.

The second statement of the theorem is an immediate consequence of the
first statement plus Teichmüller’s uniqueness theorem. �

11.8.3 THE TEICHMÜLLER METRIC FOR THE TORUS

Some intuition about the Teichmüller metric and Teichmüller geodesics can
be gleaned from understanding them in the special case when g = 1, that
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is, for Teich(T 2). The situation in this case is simple enough that it can be
worked out explicitly.

Recall that we exhibited a bijection between Teich(T 2) and H2 (Propo-
sition 10.1). We now give a significant strengthening of this fact.

Theorem 11.20 The bijection H2 → Teich(T 2) given in Proposition 10.1
induces an isometry

(H2, dH2)→ (Teich(T 2), 2 dTeich).

The factor of 2 in the theorem comes from the fact that Teich(T 2) is
isometric to the open unit disk in C with the infinitesimal metric

ρ(z)|dz| = |dz|
1− |z|2 .

This space is isometric to the hyperbolic plane scaled by 1/2 and hence has
curvature −4.

Proof. First, the action of SL(2,R) on equivalence classes of marked lat-
tices in R2 is the same as the action of SL(2,R) on Teich(T 2) ≈ H2 via
Möbius transformations. Indeed, SL(2,R) is generated by matrices of the
form (

1 t
0 1

) (
0 1
−1 0

)
,

where t ∈ R. Therefore, this is a slight generalization of the fact that
Mod(T 2) acts on Teich(T 2) by Möbius transformations (see the proof of
Proposition 12.1).

Let X,Y ∈ Teich(T 2) and let x and y be the corresponding points in H2.
Say that dH2(x, y) = δ. Let A be an element of SL(2,R) that corresponds
to the hyperbolic element of Isom+(H2) with axis passing through x and y
and with translation distance δ. The matrix A is unique up to sign. We can
write A as

A = C

(
eδ/2 0

0 e−δ/2

)
C−1

for some C ∈ SL(2,R). As above, we can also think of A as acting by a
linear transformation on R2. What is more, if X and Y are represented by
marked flat tori X and Y , then A can be regarded as a mapX → Y . Indeed,
if we represent X and Y by marked lattices in R2 the action of A on R2 takes
any X-lattice to some Y-lattice.
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Since A has two real eigenvalues, there are two 1-dimensional
eigenspaces on X along which A expands and contracts. Thus A is a Te-
ichmüller map from X to Y . The holomorphic quadratic differential cor-
responding to this Teichmüller map is the one whose horizontal foliation
lies in the direction of the eigenspace for A corresponding to the leading
eigenvalue.

As an isometry of H2, the matrixA is a hyperbolic isometry that translates
along its axis a distance δ in the hyperbolic metric d2

H. On the other hand,
the dilatation of the action of A as a map X → Y is eδ, so that

dTeich(X,Y) =
1

2
log(eδ) = δ/2.

It follows that the Teichmüller metric on H2 ≈ Teich(T 2) is the hyperbolic
metric scaled by a factor of 1/2. �

Another way to show that the Teichmüller metric on Teich(T 2) is equiv-
alent to the hyperbolic metric on H2 of curvature −4 is to use the Poincaré
disk model. We already explained in Section 11.1 that the complex dilata-
tion µ of an orientation-preserving linear map f is a point of the open unit
disk. Further, in the metric ρ of curvature −4 on the unit disk, the dilatation
Kf of f satisfies

dρ(0, µ) =
1

2
log(Kf ).

From this fact one can deduce Theorem 11.20.



Chapter Twelve

Moduli Space

The moduli space of Riemann surfaces is one of the fundamental objects of
mathematics. It is ubiquitous, appearing as a basic object in fields from low-
dimensional topology to algebraic geometry to mathematical physics. The
moduli space M(S) parameterizes, among other things: isometry classes
of hyperbolic structures on S, conformal classes of Riemannian metrics on
S, biholomorphism classes of complex structures on S, and isomorphism
classes of smooth algebraic curves homeomorphic to S.

We will access M(S) as the quotient of Teich(S) by an action of
Mod(S). A key result of this chapter is the theorem (due to Fricke) that
Mod(S) acts properly discontinuously on Teich(S), with a finite-index sub-
group of Mod(S) acting freely. As such, M(S) is finitely covered by a
smooth aspherical manifold.

In this chapter we will also prove some of the basic topological properties
of moduli space. While moduli space is not compact, Mumford’s compact-
ness criterion describes precisely what it means to go to infinity in M(S).
We will also see that moduli space has only one end, that is, it is connected at
infinity. Fricke’s theorem and Mumford’s compactness criterion are crucial
ingredients in our proof of the Nielsen–Thurston classification of elements
of Mod(S) (see Chapter 13 ).

One reason for the importance of moduli space is that it plays a funda-
mental role in the classification of surface bundles. In this chapter we will
also explain the connection between the cohomology of moduli space and
characteristic classes of surface bundles.

12.1 MODULI SPACE AS THE QUOTIENT OF TEICHMÜLLER SPACE

Recall that a point X ∈ Teich(S) is the equivalence class of a pair (X,φ)
where X is a hyperbolic surface and φ : S → X is a diffeomorphism. An
element f ∈ Mod(S) acts on Teich(S) as follows: choose a representative
ψ ∈ Diff+(S) of f and set

f · X = [(X,φ ◦ ψ−1)].

This formula is encoded in the following diagram:
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X

ψ � S

φ

φ◦ψ−1

X

Note that the element [(X,ψ ◦ φ−1)] is well defined since homotopic
markings determine equivalent points of Teich(S). Also, we use ψ−1 in-
stead of ψ so that we have a well-defined group action.

It follows easily from the definition of the Teichmüller metric that the
action of Mod±(S) on Teich(S) is an isometric action. In particular, the
action is by diffeomorphisms.

We see from the definition of the Mod(S) action on Teich(S) that the
orbit of a point X = [(X,φ)] is the set of points [(X,ψ)] where the marking
ψ ranges over all homotopy classes of diffeomorphisms S → X.

Another way to see the action of Mod(S) on Teich(S) is by recalling
that Teich(S) can also be thought of as the quotient HypMet(S)/Diff0(S).
Now Diff+(S) acts on HypMet(S) by pullback. The action of Diff+(S) on
HypMet(S) induces an action of Diff+(S) on Teich(S). This action factors
through an action of Mod(S) = Diff+(S)/Diff0(S) on Teich(S). A quick
trace through the definitions gives that this action agrees with the definition
in terms of markings given above.

The moduli space of hyperbolic surfaces homeomorphic to S is defined
to be the quotient space

M(S) = Teich(S)/Mod(S).

Thinking of Teich(S) as the space of marked hyperbolic surfaces home-
omorphic to S, the group Mod(S) acts on Teich(S) simply by changing
the markings. In this way we can think of M(S) as the space of (un-
marked) hyperbolic surfaces up to oriented isometry. Thinking of Teich(S)
as Teich(S) = HypMet(S)/Diff0(S), we see that

M(S) = HypMet(S)/Diff+(S).

The extended action. The action of Mod(S) on Teich(S) extends to an
action of Mod±(S) on Teich(S). We emphasize, though, that M(S) is the
quotient of Teich(S) by the (unextended) mapping class group, so M(S)
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is a twofold orbifold cover of Teich(S)/Mod±(S). The latter quotient can
be identified with the space of isometry classes of hyperbolic metrics on S,
where isometries are not required to be orientation-preserving.

The kernel of the action. Let S be a surface with χ(S) < 0. We claim
that the kernel of the Mod±(S) action on Teich(S) is precisely the sub-
group of Mod±(S) consisting of elements that fix the isotopy class of each
essential simple closed curve in S. So, when S = Sg,n, the kernel of the
action is the cyclic group of order 2 generated by a hyperelliptic involution
if S ∈ {S1,1, S1,2, S2,0}, it is the Klein four group generated by hyperel-
liptic involutions if S = S0,4, and it is trivial otherwise (cf. the discussion
after Theorem 3.10). Thus, in all cases other than S = S0,4, the kernel of
the Mod±(S) action on Teich(S) is Z(Mod(S)).

Suppose h ∈ Mod±(S) acts as the identity on Teich(S). If ψ ∈ Diff(S)
is a representative of h, then ψ is isotopic to an isometry of S with respect
to every hyperbolic metric on S. It follows that h fixes the length of every
isotopy class of simple closed curves in S. Since for any pair of distinct
isotopy classes of essential simple closed curves in S one can find a metric
on S where the lengths of the corresponding geodesics are not equal to each
other, it follows that h in fact fixes the isotopy class of each simple closed
curve in S. Conversely, it follows from Theorem 10.7 that if h ∈ Mod±(S)
fixes the isotopy class of every simple closed curve in S, then h acts trivially
on Teich(S).

The geometric point of view. As mentioned above, the action of Mod±(S)
on Teich(S) is an isometric action. That is, we have a map

Υ : Mod±(S)→ Isom(Teich(S)).

It is a theorem of Royden that, except in the cases S = S1,1 and S = S0,4,
the map Υ is actually surjective [186]. We described above the kernel of Υ.
Since Υ is injective when S has genus at least 3, it follows that

Mod±(Sg) ≈ Isom(Teich(Sg)) for g ≥ 3.

For g = 2, we have

Mod±(S2)/Z(Mod(S2)) ≈ Isom(Teich(S2)).

Finally, since Teich(T 2) is isometric to H2 (up to scale), it follows that
Mod±(T 2)/ ker Υ ≈ PGL(2,Z) has infinite index in Isom(Teich(T 2)) ≈
PGL(2,R).
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Stabilizers of points. Assume χ(S) < 0. Let X ∈ Teich(S) and say that X

is represented by the marked surface (X,φ). We would like to determine the
stabilizer in Mod(S) of X. Let h ∈ Mod(S) and say that h is represented by
a diffeomorphism ψ. We have h · X = X if and only if the marked surfaces
(X,φ) and (X,φ ◦ ψ−1) are equivalent, which is the case if and only if
φ◦ψ ◦φ−1 : X → X is freely isotopic to an isometry τh of X. Note that τh
is well defined since no two distinct isometries of a hyperbolic surface are
isotopic. Also, τh is orientation-preserving since ψ is. The correspondence
h ↔ τh is an isomorphism between the stabilizer of X in Mod(S) and
Isom+(X). In particular, by Proposition 7.7, the stabilizer of X in Mod(S)
is finite.

For g ∈ {1, 2}, the hyperelliptic involution fixes the isotopy class of every
simple closed curve in Sg. Thus, as above, the hyperelliptic involution sta-
bilizes every point of Teich(Sg). For g ≥ 3, one can show that the stabilizer
of a generic point of Teich(Sg) is trivial.

The algebraic point of view. Recall that the Dehn–Nielsen–Baer theorem
states that the natural map σ : Mod±(Sg) → Out(π1(Sg)) given by the
(outer) action of Mod±(Sg) on π1(Sg) is an isomorphism. There is a natural
action

Out(π1(Sg)) � DF(π1(Sg),PSL(2,R))/PGL(2,R)

defined in the following way. Given any Φ ∈ Aut(π1(Sg)) and any ρ ∈
DF(π1(Sg),PSL(2,R)), we define

[Φ] · [ρ] = [ρ ◦Φ−1].

It is also easy to check that this action corresponds to the action of
Mod±(Sg) on Teich(Sg) defined above. To be more precise, let η :
Teich(Sg) → DF(π1(Sg),PSL(2,R))/PGL(2,R) be the homeomor-
phism defined in Proposition 10.2. Then for each f ∈ Mod±(Sg) and each
X ∈ Teich(Sg), we have

η(f · X) = σ(f) · η(X).

12.2 MODULI SPACE OF THE TORUS

The moduli space M(T 2) of flat, unit-area metrics on the torus T 2 is a par-
ticularly important example of a moduli space. It is known as the modular
surface. It is an object of central importance in mathematics, one reason be-
ing that it is the moduli space of elliptic curves. For us, it is useful as an



346 CHAPTER 12

explicitly computable example of a moduli space.
We saw in Section 10.1 that Teich(T 2) can be identified with the hyper-

bolic plane H2. We will now see that the action of Mod(T 2) ≈ SL(2,Z)
on Teich(T 2) ≈ H2 is simply the following action of SL(2,Z) on H2 by
Möbius transformations:(

a b
c d

)

→ f(z) =

az − b
−cz + d

.

A straightforward calculation shows that this indeed defines a group action.

Proposition 12.1 Let σ : Mod(T 2) → SL(2,Z) be the isomorphism of
Theorem 2.5 and let η : Teich(T 2) → H2 be the identification from Propo-
sition 10.1. For any X ∈ Teich(T 2) and any f ∈ Mod(T 2), we have

η(f · X) = σ(f) · η(X).

In other words, Proposition 12.1 states that η semiconjugates the action
of f ∈ Mod(T 2) on Teich(T 2) to the action of σ(f) ∈ SL(2,Z) on H2.

Proof. It is enough to check the statement of the proposition on a set of
generators of Mod(T 2), say

M =

(
1 1
0 1

)
and N =

(
0 −1
1 0

)
.

Let α and β be based loops in T 2 representing generators for π1(T
2) with

î(α, β) = 1 (this makes sense if we identify α and β with their images in
H1(T

2; Z)). The isomorphism of Theorem 2.5 identifies M with the map-
ping class T−1

α , thinking of α as an unoriented simple closed curve; it also
identifies N with the order 4 mapping class (TαTβTα)−1, which can be
described by cutting T 2 along α and β, rotating the square by π/2, and
regluing.

Given a point [(X,φ)] ∈ Teich(T 2), we can represent it, as in Proposi-
tion 10.1, by a unique marked lattice in C ≈ R2 with basis vector 1 cor-
responding to the oriented curve α and basis vector τ ∈ C in the upper
half-plane corresponding to β. We know that

T−1
α · [(X,φ)] = [(X,φ ◦ Tα)],

where we appropriately regard Tα as either a mapping class or a homeomor-
phism. The formula Tφ(α) = φ ◦ Tα ◦ φ−1 (Fact 3.7) gives that

(φ ◦ Tα)(β)∼Tφ(α)(φ(β)),

(φ ◦ Tα)(α)∼φ(α),
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where ∼ denotes the isotopy relation. In other words, the effect of T−1
α on

the marked lattice is to keep 1 fixed and to send τ to τ − 1. But this means
that T−1

α acts on H2 by the Möbius transformation z 
→ z−1, which is what
we wanted to show.

By similar reasoning, the mapping class associated to N acts on the
marked lattice (1, τ) by sending it to the marked lattice (−τ, 1). To get the
induced action on H2 we need to put the latter into standard form (rotate/flip
so the first complex number is 1). If we write τ = reiθ, then the resulting
lattice corresponds to

1

r
ei(π−θ) = −1

r
e−iθ.

But this is nothing other than − 1
τ , which is what we needed to show. �

We thus have

M(T 2) = Teich(T 2)/Mod(T 2) ≈ H2/SL(2,Z),

where the action is given by Proposition 12.1. The kernel of the SL(2,Z)
action on H2 is {±I} = Z(SL(2,Z)), and soM(T 2) can also be written as
H2/PSL(2,Z).

A fundamental domain. A well-known fundamental domain for the
SL(2,Z) action on H2 is shown in Figure 12.1. One way to see this is as
follows. The action of SL(2,Z) on H2 is cellular with respect to the ideal
triangulation of H2 with vertices at Q ∪ {∞} (cf. Figure 4.3). Further, this
action is transitive on triangles, and the stabilizer of each triangle is the full
group of rotations. Thus a fundamental domain is given by one third of one
triangle, or, what is shown in Figure 12.1, one sixth of one triangle plus one
sixth of an adjacent triangle.

Stabilizers. As in the higher-genus case, the stabilizer in Mod(T 2) of a
point [(X,φ)] ∈ Teich(T 2) corresponds precisely to the set of isotopy
classes of isometries of X. This in turn can be identified with a finite sub-
group of SL(2,Z). Recall from Section 7.1.1 that, up to powers, there are
only two conjugacy classes of finite-order elements of SL(2,Z). The first is
that of the matrix N , which fixes the point i and rotates by an angle of π,
thus identifying the two halves of the circular boundary of the fundamental
domain. This fixed point corresponds to the isometry of the square torus ob-
tained by rotating the square by an angle π/2. The second conjugacy class
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i eπi/3e2πi/3

Figure 12.1 The fundamental domain for the modular surface.

is that of the matrix (
−1 1
−1 0

)
,

whose class in PSL(2,Z) has order 3 and whose unique fixed point in H2 is
the point eiπ/3. This fixed point corresponds to the order 3 symmetry of the
hexagonal torus (the relationship between the point eiπ/3 and the hexagonal
torus is explained in Figure 12.3).

∞
2

3

Figure 12.2 A schematic of the modular surface with sample points labeled.

The modular curve. We can also see how SL(2,Z) identifies the sides
of its fundamental domain: the left side is identified with the right side by
the translation z 
→ z + 1 corresponding to M , and the two halves of the
bottom side are identified by a rotation of angle π about i, corresponding
to N . Therefore, topologically, M(T 2) is a punctured sphere. Taking into
account the fixed points, we see thatM(T 2) has the structure of an orbifold
with signature (0; 2, 3,∞), where∞ signifies the puncture. That is, we can
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think of M(T 2) as a punctured sphere with cone points of order 2 and 3;
see Figure 12.2.

Figure 12.3 The cut-and-paste operation from a regular hexagon to the parallelogram
spanned by 1 and eiπ/3.

The above discussion in particular gives the important fact that the ac-
tion of Mod(T 2) on Teich(T 2) is properly discontinuous. In particular, the
modular curve is an orbifold. One of the main results in this chapter is the
analogous result for higher-genus surfaces.

By the theory of orbifolds, the orbifold fundamental group πorb1 (M(T 2))
of M(T 2) is isomorphic to the group of covering transformations, namely
PSL(2,Z). By the Van Kampen theorem for orbifolds, πorb1 (M(T 2)) is gen-
erated by two loops, one around each cone point [116, Section 6.1]. Further,
these generators have order 2 and 3, respectively, and there are no other
relations. We have thus recovered the classical isomorphism

PSL(2,Z) ≈ Z/2Z ∗ Z/3Z.

As is true in higher genus, M(T 2) parameterizes oriented isometry classes
of marked tori/lattices. Note that i + ε and i − ε (for ε ∈ R) correspond
to isometric tori that are not oriented-isometric. A fundamental domain for
the quotient of Teich(T 2) by Mod±(T 2) would be, say, the left half of the
fundamental domain for Mod(T 2).

12.3 PROPER DISCONTINUITY

Recall that the action of a group G on a topological space X by homeo-
morphisms is properly discontinuous if, for any compact set B ⊂ X, the
set

{g ∈ G : g · B ∩B �= ∅}

is finite. The main goal of this section is to prove the following.
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THEOREM 12.2 (Fricke) Let g ≥ 1. The action ofMod(Sg) on Teich(Sg)
is properly discontinuous.

Theorem 12.2 (and its proof) extends to case of surfaces Sg,n with
χ(Sg,n) ≤ 0. We comment on the required modifications at the end of the
proof.

Before proving Theorem 12.2 we use it to deduce some basic properties
ofM(S).

First, whenever a group acts by isometries on a metric space, the quotient
has an induced pseudometric. The distance between any two orbits is de-
fined to be the infimum of the distance between any pair of representatives.
When the action is properly discontinuous, one has the additional property
that two orbits have distance 0 if and only if they are equal; in other words,
the induced pseudometric is a metric. We thus have:

For g ≥ 1, the Teichmüller metric on Teich(Sg) induces a met-
ric onM(Sg).

We call this metric the Teichmüller metric onM(Sg).
Second, when a group acts properly discontinuously by homeomorphisms

on a manifold, the quotient is called an orbifold. If the original manifold is
aspherical (i.e., has contractible universal cover), then the orbifold is as-
pherical. If the action is also free, then the quotient is again a manifold.
As we said at the beginning of the chapter, Mod(Sg) has a finite-index
subgroup that acts freely on Teich(Sg). Thus, as another consequence of
Theorem 12.2, we have the following.

THEOREM 12.3 For g ≥ 1, the spaceM(Sg) is an aspherical orbifold and
is finitely covered by an aspherical manifold.

It is in fact known that M(S) is a complex orbifold, finitely covered by
a complex manifold, and that it is in fact a quasiprojective variety, finitely
covered by a smooth variety [52].

12.3.1 THE RAW LENGTH SPECTRUM OF A HYPERBOLIC SURFACE

The proof of Theorem 12.2 relies on a few lemmas regarding the lengths of
curves in a hyperbolic surface. The first lemma we will need concerns the
raw length spectrum of a hyperbolic surface X, which is defined to be the
set of positive real numbers

rls(X) = {�X(c)} ⊂ R+,
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where c ranges over all isotopy classes of essential (or peripheral) simple
closed curves in X. In other words, rls(X) is the set of lengths of simple
closed geodesics in X.

Lemma 12.4 (Discreteness of the length spectrum) Let X be any closed
hyperbolic surface. The set rls(X) is a closed discrete subset of R. Further,
for each L ∈ R, the set

{c : c an isotopy class of simple closed curves inX with �X(c) ≤ L}

is finite.

Proof. The hyperbolic surface X is the quotient of H2 by a free, properly
discontinuous isometric action of π1(X). Let K ⊂ H2 be a fundamental
domain for this action. Since X is closed, K is compact. Since K is a fun-
damental domain, every closed geodesic γ in X has a lift γ̃ that intersects
K. There is then a unique (up to sign) γ0 ∈ π1(X) that acts on γ̃ with
translation length �X(γ). As a closed loop, γ0 is freely homotopic to γ.

Let R > 0 be given. Let γ in X be any closed geodesic of length at most
R. As in the previous paragraph, choose any lift γ̃ that intersects K and let
〈γ0〉 be the corresponding cyclic subgroup of π1(X). Any point p ∈ γ̃ ∩K
is moved by the hyperbolic translation γ0 a distance �X(γ) in H2. Let KR

denote the closed R-neighborhood of the compact set K . Then KR is a
compact subset of H2 with the property that (γ0 · KR) ∩ KR �= ∅. Since
the action of π1(X) on H2 is properly discontinuous, there are only finitely
many such γ0, hence only finitely many such γ. This proves the second
statement. The first statement follows. �

12.3.2 WOLPERT’S LEMMA

The next lemma, due to Wolpert [215], gives the basic fact that any K-
quasiconformal map distorts hyperbolic lengths of closed curves by a factor
of at most K.

Lemma 12.5 (Wolpert’s lemma) Let X1 and X2 be hyperbolic surfaces
and let φ : X1 → X2 be a K-quasiconformal homeomorphism. For any
isotopy class c of simple closed curves in X1, the following inequalities
hold:

�X1
(c)

K
≤ �X2

(φ(c)) ≤ K�X1
(c).

Lemma 12.5 has the following immediate consequence: for any X1,X2 ∈
Teich(S) with dTeich(X1,X2) ≤ log(K)/2, and any isotopy class c of sim-
ple closed curves in S, we have �X1

(c)/K ≤ �X2
(c) ≤ K�X1

(c).
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Proof. Let γ1, γ2 ∈ Isom+(H2) be isometries of X̃1 ≈ X̃2 ≈ H2 corre-
sponding to c and φ(c), respectively. Consider the annuli A1 and A2 ob-
tained by taking the quotient of H2 by 〈γ1〉 ≈ Z and 〈γ2〉 ≈ Z, respectively.
Since the map π1(Xi) → Isom+(H2) is well defined only up to conjugacy
in PGL(2,R), we can take γ1 to be the map z 
→ e�X1

(c)z and γ2 to be
z 
→ e�X2

(φ(c))z, where we think of H2 in the upper-half plane model.
We can put the annuli A1 and A2 in a standard form; that is, for each

i, we can find the unique (open) Euclidean annulus Ami of circumference
1 and height mi so that Ai is conformally equivalent to Ami . We call the
number mi the modulus of the annulus Ai. To find the standard form of
A1, note that we can choose a branch of the natural logarithm that takes the
upper half-plane H2 to the infinite strip of points in C with imaginary part in
(0, π). Under this identification, the group 〈γ1〉 corresponds to the infinite
cyclic group of translations generated by z 
→ z + �X1

(c). Since the natural
logarithm is a conformal map, A1 is conformally equivalent to the annulus
obtained by identifying vertical sides of a rectangle whose width is �X1

(c)
and whose height is π; thus the modulus m1 is equal to π/�X1

(c). Similarly,
m2 = π/�X2

(φ(c)).
The map φ lifts to a K-quasiconformal mapping

φ̃ : A1 → A2.

Note that since 〈γi〉 < π1(Xi), this is formally weaker than saying that φ is a
K-quasiconformal map from X1 = H2/π1(X1) to X2 = H2/π1(X2). The
solution to Grötzsch’s problem can be modified (slightly) to prove that φ̃
changes the modulus by at most a multiplicative factor of K (in the solution
to Grötzsch’s problem, replace the x-direction in the rectangle with the S1-
direction in the annulus). In other words, we have

1

K
m2 ≤ m1 ≤ Km2.

The lemma follows. �

12.3.3 THE PROOF OF PROPER DISCONTINUITY

We are ready to demonstrate the proper discontinuity of the action of
Mod(Sg) on Teich(Sg).

Proof of Theorem 12.2. Let B be a compact set in Teich(Sg). We need to
show that the set of f ∈ Mod(Sg) such that (f ·B)∩B �= ∅ is finite. Let X

be some arbitrary point in B and let D denote the diameter of B.
Let c1 and c2 be isotopy classes of essential simple closed curves in Sg

that fill Sg (Proposition 3.5). Let L = max{�X(c1), �X(c2)}.
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Suppose f ∈ Mod(Sg) satisfies (f · B) ∩ B �= ∅. It follows that
dTeich(X, f ·X) ≤ 2D. By Wolpert’s lemma (Lemma 12.5), �f ·X(ci) ≤ KL
for i = 1, 2, where K = e4D . But since �f ·X(ci) = �X(f−1(ci)), we have
that �X(f−1(ci)) ≤ KL.

By Lemma 12.4, there are finitely many isotopy classes of simple closed
curves b in Sg so that �X(b) ≤ KL. Thus there are only finitely many pos-
sibilities for f−1(c1) and f−1(c2). But by the Alexander method (Proposi-
tion 2.8), there are finitely many choices for f−1 once the isotopy classes
f−1(ci) are determined. Thus there are finitely many possibilities for f that
satisfy (f · B) ∩B �= ∅, and we are done. �

Punctures and boundary components. Theorem 12.2 extends with lit-
tle difficulty to the case of surfaces with punctures and/or boundary.
Lemma 12.4 needs a slight modification in the noncompact case. The key is
that one can choose sufficiently small disjoint open horoball neighborhoods
of the cusps so that every essential geodesic is disjoint from these neighbor-
hoods. Since the complement of these horoball neighborhoods is a compact
surface, the proof then proceeds as in the closed case.

12.4 MUMFORD’S COMPACTNESS CRITERION

We can see from our explicit description of M(T 2) that it is not compact.
For instance, the ray ti ∈ H2 ≈ Teich(T 2), where t ≥ 1, projects to a
ray Xt in M(T 2) that leaves every compact set. Even more, the distance
between X0 and Xt tends to infinity as t tends to infinity, and so M(T 2)
has infinite diameter.

In the above example, we can think of Xt as the set of flat tori obtained
from the square torus by pinching one of the simple closed curves to ever
smaller lengths. We will use a similar idea to show that M(Sg) has infi-
nite diameter with respect to the Teichmüller metric. This in particular will
demonstrate that M(Sg) is not compact.

First we introduce a useful function on M(Sg). For X ∈ M(Sg), the
injectivity radius of X at a point x is the largest r for which the r-ball in X
centered at x is isometrically embedded. Then the injectivity radius of X is
the infimum of these injectivity radii over all points of X.

A related function is �(X), the length of the shortest essential closed
geodesic in X. It is not hard to see that the number �(X) is twice the in-
jectivity radius of X and that any geodesic realizing �(X) is necessarily
simple. It follows from Lemma 12.4 that �(X) is strictly positive.

Fix some X ∈ M(Sg) and let X ∈ Teich(Sg) be some lift. As above,
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�(X) is positive and is realized by a simple closed curve γ in Sg in the sense
that �X(γ) = �(X). We can use γ as part of a coordinate system of curves
for Fenchel–Nielsen coordinates on Teich(Sg). Then, for t ≥ 1, we can
construct Xt ∈ Teich(Sg) with the property that �Xt(γ) = �(X)/t. Let Xt

denote the image of Xt inM(Sg). We have �(Xt) ≤ �(X)/t. It then follows
from Wolpert’s lemma (Lemma 12.5) that the distance between X and Xt

inM(Sg) tends to infinity as t tends to infinity. In particular, we note that

The diameter ofM(Sg) with respect to the Teichmüller metric
is infinite.

We have just shown one way to construct a sequence of points in M(Sg)
leaving every compact set: starting from any given hyperbolic surface,
choose some simple closed curve and pinch it to have smaller and smaller
length. Our goal in this section is to prove Mumford’s compactness crite-
rion, which says that this is essentially the only way a sequence of points in
M(Sg) can leave every compact set.

The ε-thick part ofM(Sg) is the set

Mε(Sg) = {X ∈M(Sg) : �(X) ≥ ε}.

Since the length spectrum of each closed hyperbolic surface is discrete
(Lemma 12.4), it follows that {Mε(Sg) : ε > 0} is an exhaustion of
M(Sg):

M(Sg) =
⋃
ε

Mε(Sg).

The following theorem is due to Mumford; see [166].

THEOREM 12.6 (Mumford’s compactness criterion) Let g ≥ 1. For
each ε > 0, the spaceMε(Sg) is compact.

In other words, Theorem 12.6 states that, in order for a sequence {Xn} ⊂
M(S) to leave every compact set inM(S), the injectivity radii of Xn must
tend to 0 as n→∞.

12.4.1 MAHLER’S COMPACTNESS CRITERION

The case g = 1 for Theorem 12.6 is a special case of a classical theorem of
Mahler about lattices in Rn [139]. A lattice in Rn is the Z-span of a basis
for Rn. We say that a lattice is marked if it comes equipped with a basis (as
a Z-module). Recall that we discussed marked lattices in R2 in Section 10.2.

The injectivity radius of a lattice Λ ⊂ Rn is half the length of the shortest
nonzero vector in Λ. The injectivity radius of Λ can also be viewed as half
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the length of the shortest essential closed curve in the flat n-dimensional
torus Rn/Λ. The volume of Λ is the Riemannian volume of Rn/Λ.

The group SL(n,R) acts transitively on the space of marked unit volume
lattices in Rn. The moduli space of unit volume lattices in Rn is the quotient

Ln = SL(n,R)/SL(n,Z)

endowed with the quotient topology from the Lie group SL(n,R). The mod-
uli space of isometry classes of unit volume, flat, n-dimensional tori can be
identified as the quotient SO(n)\Ln.

As above, we can define Ln(ε) to be the subspace of Ln consisting of
lattices with injectivity radius bounded below by ε.

THEOREM 12.7 (Mahler’s compactness criterion) Let n ≥ 1. For any
ε > 0, the space Ln(ε) is compact.

We now give the proof of Mahler’s compactness criterion for n = 2,
which is exactly Mumford’s compactness criterion for the torus. The proof
contains all the ideas needed for the general case n ≥ 2 but is much simpler
notationally.

Proof. Suppose Λ ≈ Z2 is any lattice in R2 with injectivity radius bounded
below by ε. Let v be the shortest nonzero vector in Λ and letw be the shortest
vector among those with smallest nonzero distance to the (real) subspace
spanned by v. By our choice of v and w, there are no points of Λ in the
interior of the parallelogram spanned by v and w, and so v and w generate
Λ.

We will show that the norms of v and w are bounded above by a function
of ε (independent of Λ) and that w2, the projection of w to v⊥, is bounded
from below by a function of ε. The first property will ensure that any infinite
sequence of lattices has a convergent subsequence, and the second property
will ensure that the limiting lattice is nondegenerate.

Let w1 be the projection of w to the real subspace spanned by v. The
set of vectors in Λ with smallest nonzero distance to the real span of v is
{w + kv : k ∈ Z}, and so |w1| ≤ |v|/2.

We have

|v| ≤ |w| ≤ |w1|+ |w2| ≤
1

2
|v|+ |w2|,

and so |w2| ≥ |v|/2 ≥ ε. Since |v||w2| = 1, we have |v| = 1/|w2| ≤ 1/ε.
Also |w2| = 1/|v| ≤ 1/2ε and |w1| ≤ |v|/2 ≤ 1/2ε. This completes the
proof. �
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12.4.2 BERS’ CONSTANT

In order to prove Mumford’s compactness criterion we will need the follow-
ing theorem of Bers [16].

THEOREM 12.8 (Bers’ constant) Let S be a compact surface with χ(S) <
0. There is a constant L = L(S) such that for any hyperbolic surface X
(with totally geodesic boundary) homeomorphic to S, there is a pants de-
composition {γi} of X with �X(γi) ≤ L for each i.

Bers’ constant is the smallest L that satisfies the conclusion of the theo-
rem. Buser has shown that Bers’ constant is at most 21(g − 1) for a closed
surface of genus g; he suggests that the actual bound should be on the order
of
√
g) [42, Section 5.2.5]. Our proof of Theorem 12.8 gives a bound that

grows faster than exponentially in g, but this suffices for our purposes.

Proof. Suppose that S has genus g and b boundary components. Recall that
a pants decomposition for S has 3g − 3 + b simple closed curves. We will
prove the following statement by induction on k for 0 ≤ k ≤ 3g − 3 + b:
there is a constant Lk = Lk(S) so that for every hyperbolic surface X with
totally geodesic boundary that is homeomorphic to S, there is a set of k
distinct, disjoint, essential closed geodesics each of length at most Lk. This
inductive statement is true for k = 0 since we may take Lk = 0.

Now assume the inductive hypothesis for some fixed k ≥ 0. Let X be
a hyperbolic surface with totally geodesic boundary that is homeomorphic
to S. Choose a collection of k closed geodesics in X as in the inductive
hypothesis and cut X along these curves. Let Y be any component of the
cut surface that is not homeomorphic to a pair of pants and let y be a point
on Y that is furthest from ∂Y . We must find an essential closed geodesic in
Y whose length is bounded above by a function of S.

Let D(y, ρ) be the disk of radius ρ in Y centered at y. More precisely,
D(y, ρ) is the image under the exponential map of the ball of radius ρ in the
tangent space Ty(Y ). For small ρ, this is an embedded disk isometric to a
disk of radius ρ in H2. Therefore, its area is given by the formula∫ 2π

0

∫ ρ

0
sinh(r) dr dθ = 2π(cosh(ρ)− 1).

The key point for us is that the area of D(y, ρ) is a proper function of ρ.
Let ρy denote the supremum over ρ so that D(y, ρ) is an embedded disk

in Y disjoint from ∂Y . Since the area of Y is less than or equal to the area
of X (which is−2πχ(S)), we have that ρy is finite and is bounded above by
a function of S. The disk D(y, ρy) either is not embedded in Y or intersects
∂Y .
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In the first case, there are two radii of ∂D(y, ρy) that meet at both end-
points. The union of these two arcs is a closed geodesic of length 2ρy , which,
as discussed, is bounded above by a function of S. The geodesic is neces-
sarily essential by the uniqueness of geodesics in a hyperbolic surface.

In the second case, we note that D(y, ρy) must intersect ∂Y in at least
two points, for otherwise, we could find a point in Y that is further from
∂Y . Thus we have two arcs from y to ∂Y , which we think of as an arc γ
between components δ1 and δ2 of ∂Y (possibly δ1 = δ2). LetN be a regular
metric neighborhood of γ∪δ1∪δ2. By makingN arbitrarily small, the length
of the simple closed curve α = ∂N is arbitrarily close to 2�Y (γ)+�Y (δ1)+
�Y (δ2), and so the geodesic in the class of α has length strictly less than this.
Since Y is not a pair of pants (and is not an annulus), α is essential in Y ,
hence in X, and we are done. �

12.4.3 THE PROOF OF MUMFORD’S COMPACTNESS CRITERION

We can now prove Mumford’s compactness criterion, that the ε-thick part
of moduli space is compact.

Proof of Theorem 12.6. As noted above, the case g = 1 is a restatement of
Mahler’s compactness criterion (Theorem 12.7) for n = 2. So we assume
that g ≥ 2.

Since M(Sg) inherits the Teichmüller metric from Teich(Sg), it suffices
to show that the space Mε(Sg) is sequentially compact. Let ε > 0. Let
{Xi} be a sequence in Mε(Sg) and let Xi ∈ Teich(Sg) be a lift of Xi for
each i. To prove that some subsequence of {Xi} converges in Mε(Sg), we
will show that, for a fixed choice of Fenchel–Nielsen coordinates, the Xi
can be chosen to lie in a compact rectangular region of the Euclidean space
R3g−3

+ × R3g−3.
By Theorem 12.8, for each Xi there is a pants decomposition Pi of Sg

with �Xi
(γ) ∈ [ε, L] for each γ ∈ Pi (L is Bers’ constant). Since there are

only finitely many topological types of pants decompositions of Sg, we can
choose a subsequence, also denoted {Xi}, and a sequence fi ∈ Mod(Sg) so
that fi(Pi) = P1.

Now, in Fenchel–Nielsen coordinates adapted to P1 (with arbitrary seams
chosen for twist coordinates), the Yi = fi · Xi have length parameters in
[ε, L].

Since Dehn twists about the curves of P1 change the twist parameters by
2π, there is for each i a product hi of Dehn twists about the curves of P1 so
that the twist parameters of hi ·Yi lie in the interval [0, 2π]. This finishes the
proof. �

The proof of Mumford’s compactness criterion generalizes easily to com-
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pact surfaces with finitely many boundary components and finitely many
points removed.

12.4.4 ISOSPECTRAL SURFACES

Since the marked length spectrum of a hyperbolic surface X determines X
up to isometry (Theorem 10.7), one might wonder if the raw length spectrum
rls(X) also determines X up to isometry. Vignéras proved, however, that
this is not the case: for each g ≥ 2 there exist X �= Y ∈ M(Sg) with
rls(X) = rls(Y ). Such surfaces are said to be isospectral. Sunada later
proved that for g ≥ 3 the set of such X having a distinct isospectral Y is a
positive-dimensional subset ofM(Sg) [201]. We would like to mention the
deep theorem of Huber that two closed hyperbolic surfaces are isospectral
if and only if their Laplacians have the same spectrum [98, 99, 100].

While surfaces isospectral to a given closed hyperbolic surface X can
exist, it is a theorem of McKean [149, 150] that there are only finitely many
such surfaces. The proof we give is due to Wolpert [215].

THEOREM 12.9 Let g ≥ 2. For any X ∈M(Sg), the set

{Y ∈M(Sg) : rls(X) = rls(Y )}

is finite.

Theorem 12.9 is also true for g = 1, but we will not need this fact.

Proof. LetX ∈M(Sg) and let X be a lift ofX to Teich(Sg). We first prove
that, for any compact set B ⊂ Teich(Sg), the set

{Y ∈ B : rls(X) = rls(Y)}

is finite.
Let {γ1, . . . , γ9g−9} be the finite set of simple closed curves in Sg whose

lengths determine any hyperbolic structure on Sg; such a set of curves is
guaranteed by Theorem 10.7. Let L = max{�X(γi)} and let K = e2R,
where B is contained in the ball of radius R around X.

Wolpert’s lemma (Lemma 12.5) gives that for any Y ∈ B the bound
�Y(γi) ≤ KL holds for each i. Now if rls(Y) = rls(X), then �Y(γi) ∈
rls(X). But by discreteness of the raw length spectrum (Lemma 12.4), there
are only finitely many points in rls(X) ∩ (0,KL]. Thus for any Y ∈ B with
rls(Y) = rls(X), there are only finitely many choices for the values �Y(γi),
and hence finitely many such Y, as desired.

By the discreteness of rls(X), we can choose some ε > 0 so that
X ∈ Mε(Sg). Any Y ∈ M(Sg) with rls(Y ) = rls(X) must also lie
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in Mε(S). Now Mε(S) is compact by Mumford’s compactness criterion
(Theorem 12.6), and so there is a compact set B in Teich(Sg) that projects
ontoMε(S). But since there are finitely many Y ∈ B with rls(Y) = rls(X),
there are finitely many Y ∈ Mε(Sg) with rls(Y ) = rls(X), and we are
done. �

We record the following consequence of the proof of Theorem 12.9: for
any X ∈ Teich(S), the set

{Y ∈ Teich(S) : rls(X) = rls(Y)}

is discrete.

12.5 THE TOPOLOGY AT INFINITY OF MODULI SPACE

A basic measure of the noncompactness of a space is its number of ends,
defined below. One can consider this as computing “π0 at infinity.” There is
also a version of “π1 at infinity” of a space. In this section we define and
compute these basic invariants forM(S).

12.5.1 THE MAIN TECHNICAL RESULT

The various connectedness properties for M(S) at infinity will all be de-
duced from the following.

Proposition 12.10 Let g ≥ 2. Let X,Y ∈ Teich(Sg) and suppose that their
images X,Y ∈M(Sg) lie inM(Sg)−Mε(Sg). Then there is a path from
X to Y in Teich(Sg) whose projection toM(Sg) lies inM(Sg)−Mε(Sg).

In other words, Proposition 12.10 tells us that, given any two points in
Teich(Sg) each of which has some short essential closed curve, these points
are connected by a path in Teich(Sg) every point of which has some short
essential closed curve. Of course, the specific closed curve which is short
will change depending on where we are on the connecting path.

Proof. By the assumptions on X and Y, there are nontrivial simple closed
curves α and β in Sg with �X(α) < ε and �Y(β) < ε. By Theorem 4.3, there
is a sequence of essential simple closed curves α = γ1, . . . , γn = β such
that γi ∩ γi+1 = ∅ for all i.

Take γ1 and γ2 to be part of a Fenchel–Nielsen coordinate system of
curves. By decreasing only the length parameter of γ2 in this coordinate sys-
tem, while keeping the other parameters fixed, we obtain a connected path
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in Teich(Sg), starting at X and ending at some point X2 with the property
that �X2

(γ2) < ε and �Z(γ1) < ε for all points Z on the path.
Repeating this procedure from γ2 to γ3, and so on, we obtain a path in

Teich(Sg) from X to some Y′ where each point on the path projects to
M(Sg) −Mε(Sg) and in particular where the length of γn = β in Y′ is
less than ε. We can then vary the last set of Fenchel–Nielsen coordinates to
obtain a path from Y′ to Y where the length of β remains less than ε. The
concatenation of these paths satisfies the conclusion of the proposition. �

12.5.2 THE END OF MODULI SPACE

The theory of ends of spaces is a way to encode the number of “noncompact
directions” of a space. We will need only the notion of one end. A connected,
locally compact topological space X has one end if, for every compact set
B ⊂ X, the space X \ B has only one component whose closure is non-
compact. For example, compact spaces do not have one end; neither does
the real line, as the complement of a closed interval has two unbounded
components.

Suppose that X is a connected, locally compact metric space and that Xi

is an exhaustion of X by compact sets with X \Xi path-connected. Then X
has one end. This holds, for example, for X = Rd with d ≥ 2, where one
can choose Xi to be the ball of radius i about any fixed point.

Proposition 12.10 allows us to deduce the following.

Corollary 12.11 Let g ≥ 1. The moduli spaceM(Sg) has one end.

Proof. In the case g = 1, the fact that moduli space has one end follows
directly from the explicit description ofM(T 2) given in Section 12.2.

Let g ≥ 2. ThenM(Sg)−Mε(Sg) is connected for any ε > 0 by Propo-
sition 12.10. Since theMε(Sg) form an exhaustion ofM(Sg), we conclude
thatM(Sg) has one end. �

The key fact used in the proof of Proposition 12.10 is that the complex of
curves C(Sg) is connected. Proposition 12.10 and Corollary 12.11 both hold
for Sg,n with 3g − 3 + n ≥ 2 since C(Sg,n) is connected in these cases.

12.5.3 LOOPS IN MODULI SPACE

Taking the fundamental group of the topological space underlying M(S)
misses its salient features. Indeed, we have the following fact:

M(Sg) is simply connected for all g ≥ 1.
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For g = 1, this follows from the fact that M(T 2) is the (0; 2, 3,∞) hyper-
bolic orbifold, so that the underlying topological space is a once-punctured
sphere, which is homeomorphic to R2. The fact that M(Sg) is simply con-
nected is due to Maclachlan [135] and follows from the following three
facts:

• Mod(Sg) is generated by finite-order elements (Theorem 7.16).

• The action of each finite-order element on Teich(Sg) has a fixed point
(see Section 12.1).

• The cover Teich(Sg) →M(Sg) enjoys the path-lifting property (the
path-lifting property holds any time we take the quotient of a simply
connected space by a properly discontinuous action [4, 39]).

To get simple connectivity of M(Sg) from these three facts, take any loop
in M(Sg) based at the image inM(Sg) of a fixed point of one of the gen-
erators of Mod(Sg). The lift of this loop is a closed loop in Teich(Sg), and
any null homotopy in Teich(Sg) descends to a null homotopy inM(Sg).

The more useful notion to consider is the orbifold fundamental group of
M(S). The orbifold fundamental group of the quotient X/Γ of a simply
connected space X by a group Γ acting properly discontinuously (but not
necessarily freely) is defined to be

πorb1 (X/Γ) ≈ Γ.

Since M(S) = Teich(S)/Mod(S), the group Mod(S) acts properly dis-
continuously on Teich(S), and Teich(S) is simply connected, we have

πorb1 (M(S)) ≈ Mod(S).

Two loops α, β in X/Γ are homotopic in the orbifold sense if they have
path liftings α̃, β̃ : [0, 1] → X such that α̃(0) = β̃(0) and α̃(1) = β̃(1). For
example, a loop around the cone point of order 2 in M(T 2) is trivial in the
topological category but nontrivial in the orbifold category; it has order 2 in
πorb1 (M(T 2)).

With the above comments in hand, we now consider loops in M(S) in
the orbifold sense. The orbifold M(T 2) has a unique homotopy class of
loops that can be freely homotoped (in the orbifold sense) outside every
compact subset ofM(T 2); namely, the free homotopy class represented by
the conjugacy class of the element ( 1 1

0 1 ) in SL(2,Z) ≈ Mod(T 2). This
contrasts greatly with the behavior ofM(Sg) when g ≥ 2.

Corollary 12.12 Let g ≥ 2. Any loop inM(Sg) can be freely homotoped
(even in the orbifold sense) outside every compact set inM(Sg).
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Proof. It suffices to consider loops that are essential and compact sets that
are of the formMε(Sg). Let any ε > 0 be given. Let α be any essential loop
in M(Sg), and X any point in M(Sg) −Mε(Sg). Since M(Sg) is path-
connected, α can be freely homotoped to a loop β based at X. The loops α
and β are homotopic in the orbifold sense.

As above, β can be lifted to a path β̃ in Teich(Sg). Proposition 12.10 gives
a path γ between the endpoints of β̃ with projection γ inM(Sg)−Mε(Sg).
The loop γ is homotopic to β, hence α, in the orbifold sense. �

Another way to state Corollary 12.12 is that, for g ≥ 2, the (orbifold)
fundamental group ofM(Sg) “relative to infinity” is trivial. More formally,
the inclusion map M(Sg) −Mε(Sg) ↪→ M(Sg) induces an isomorphism
of orbifold fundamental groups.

We also remark that both Corollaries 12.11 and 12.12 are true with
M(Sg) replaced by the manifold Teich(Sg)/Γ, where Γ is a finite-index
torsion-free subgroup of Mod(Sg).

12.6 MODULI SPACE AS A CLASSIFYING SPACE

In this section we explain the close relationship between M(Sg) and the
classifying space of Mod(Sg). This connection relates the cohomology of
these two objects.

Classifying spaces and covers ofM(Sg). In Section 5.6, we proved that
the space BHomeo+(Sg) that classifies Sg-bundles is homotopy-equivalent
to BMod(Sg) for g ≥ 2. In particular, the elements of the cohomology
groups H∗(Mod(Sg); Z) give (integral) characteristic classes for orientable
Sg-bundles. In this section we explain the close relationship of these results
to the topology ofM(Sg).

Mod(Sg) acts properly discontinuously on the contractible space
Teich(Sg), with quotient M(Sg). However, M(Sg) is not a BMod(Sg)-
space. The problem is that the action of Mod(Sg) on Teich(Sg) is not free.
This is unfortunate because we have a decent geometric and topological
picture of M(Sg): it is finitely covered by a (6g − 6)-dimensional mani-
fold, it has the homotopy type of a finite cell complex (see the comment
on page 127), and it occurs naturally elsewhere in mathematics. In contrast,
any BMod(Sg)-space cannot have the homotopy type of a finite cell com-
plex since Mod(Sg) has torsion (combine Proposition VIII.2.2 and Corol-
lary VIII.2.5 in [38]). However, we now use a standard method in topology
to show thatM(Sg) is rationally a classifying space for Mod(Sg).

Let Γ be any finite-index, torsion-free normal subgroup of Mod(Sg). For
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example, in Theorem 6.9 we proved that for any g ≥ 1 and m ≥ 3 the group
Mod(Sg)[m] of elements of Mod(Sg) acting trivially on H1(Sg; Z/mZ) is
such a subgroup. Since the point stabilizers of the action of Mod(Sg) on
Teich(Sg) are finite, it follows that any such Γ acts freely and properly dis-
continuously on Teich(Sg). In particular, Teich(Sg)/Γ is a K(Γ, 1)-space.
It follows from the discussion in Section 5.6 that the characteristic classes
for oriented Sg-bundles with monodromy lying in Γ are precisely the ele-
ments of H∗(Teich(Sg)/Γ; Z).

We now want to convert this back into information about M(Sg). We
use the Borel construction (cf. the proof of Proposition 5.6) as follows.
The diagonal action of the group Mod(Sg) on the contractible space
EMod(Sg)×Teich(Sg) is free and properly discontinuous, and so the quo-
tient space is a K(Mod(Sg), 1)-space; we denote it by BMod(Sg) (even
though BMod(Sg) usually denotes the quotient EMod(Sg)/Mod(Sg)). But
the projection map EMod(Sg) × Teich(Sg) → Teich(Sg) is Mod(Sg)-
equivariant and so induces a continuous map

h : BMod(Sg)→M(Sg).

If X ∈ Teich(Sg) maps to X ∈M(Sg), then h−1(X) is a classifying space
for the stabilizer of X in Mod(Sg).

Using the same construction with Mod(Sg) replaced by the finite-index
subgroup Γ, we obtain a continuous map

h̃ : BΓ→ Teich(Sg)/Γ.

The map h̃ is a homotopy equivalence by Whitehead’s theorem since BΓ and
Teich(Sg)/Γ are classifying spaces and h̃
 : π1(BΓ) → π1(Teich(Sg)/Γ)
is an isomorphism.

Rational cohomology. Let G = Mod(Sg)/Γ. The finite group G acts by
covering space automorphisms on BΓ and on Teich(Sg)/Γ. By construc-
tion, the map h̃ is G-equivariant. We thus have the following commutative
diagram:

BΓ
eh

Teich(Sg)/Γ

BMod(Sg)
h M(Sg)

Since h̃ is a G-equivariant homotopy equivalence, it induces a G-
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equivariant isomorphism

h̃∗ : H∗(Teich(Sg)/Γ; Q) → H∗(BΓ; Q).

For a vector space V equipped with a G-action, denote by V G the G-
invariants of the action, that is,

V G = {v ∈ V : gv = v for all g ∈ G}.

Since h̃∗ is G-equivariant, it restricts to an isomorphism of the correspond-
ing invariants.

Now the covering map BΓ→ BMod(Sg) induces an isomorphism

H∗(BMod(Sg); Q) ≈ H∗(BΓ; Q)G,

and the covering map Teich(Sg)/Γ→M(Sg) induces an isomorphism

H∗(M(Sg); Q) ≈ H∗(Teich(Sg)/Γ; Q)G.

These isomorphisms come from the basic transfer argument in cohomology
[91, Proposition 3G.1]. We have thus proven the following theorem relating
the rational cohomology of BHomeo+(Sg) ! BMod(Sg) to the rational
cohomology ofM(Sg).

THEOREM 12.13 Let g ≥ 2 and let h : BMod(Sg) →M(Sg) be the map
constructed above. Then the induced homomorphism

h∗ : H∗(M(Sg); Q)→ H∗(BMod(Sg); Q)

is an isomorphism.

Thus the rational characteristic classes of surface bundles are precisely
elements of H∗(M(S); Q). We emphasize that rational coefficients are cru-
cial here; they are used in the transfer argument.
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Chapter Thirteen

The Nielsen–Thurston Classification

In this chapter we explain and prove one of the central theorems in the study
of mapping class groups: the Nielsen–Thurston classification of elements of
Mod(S). This theorem is the analogue of the Jordan canonical form for
matrices. It states that every f ∈ Mod(S) is one of three special types:
periodic, reducible, or pseudo-Anosov. The knowledge of individual map-
ping classes is essential to our understanding of the algebraic structure of
Mod(S). As we will soon explain, it is also essential for our understanding
of the geometry and topology of many 3-dimensional manifolds.

We begin this chapter with a classification of elements of Mod(T 2). We
then describe higher-genus analogues for each of the three types of elements
of Mod(T 2), after which we are able to state the Nielsen–Thurston classifi-
cation theorem in various forms, as well as a connection to 3-manifold the-
ory. The rest of the chapter is devoted to Bers’ proof of the Nielsen–Thurston
classification. Bers’ proof is an analogue of the geometric classification of
elements of Isom+(H2) by their translation lengths. Our treatment of the
proof is self-contained and presents a combined application of the material
from Chapters 10–12. The collar lemma is highlighted as a new ingredient,
as it is also a fundamental result in the hyperbolic geometry of surfaces.

13.1 THE CLASSIFICATION FOR THE TORUS

Recall that in Chapter 1 we classified the nontrivial elements of Isom+(H2)
into three types: elliptic, parabolic, and hyperbolic. We also know that
Mod(T 2) ≈ SL(2,Z) (Theorem 2.5) and that PSL(2,R) ≈ Isom+(H2).
We thus obtain a classification of elements of Mod(T 2) by considering the
type of the corresponding element of Isom+(H2).

What we would really like, though, is a classification of elements of
Mod(T 2) that is intrinsic to the torus. As we now show, the three types
of hyperbolic isometries correspond to three qualitatively different types of
homeomorphisms of T 2.

The trichotomy. Let f ∈ Mod(T 2), let A be the corresponding element
of SL(2,Z), and let τ be the corresponding element of Isom+(H2). We
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consider the three cases for τ in turn. Recall that the standard isomorphism
PSL(2,R) → Isom+(H2) sends the equivalence class of the matrix(

a b
c d

)
to the Möbius transformation

z 
→ az + b

cz + d

acting on the upper half-plane.
If τ is elliptic, this means that τ fixes a point of H2 and is thus a rotation.

By the proper discontinuity of the action of SL(2,Z) on H2, we see that τ
must be a finite-order rotation. Thus A, hence f , has finite order. We say
that f is periodic.

If τ is parabolic, then τ fixes a unique point in ∂H2. This is the same as
saying that A has a unique real eigenvector. It follows that A has exactly
one real eigenvalue and that this eigenvalue has multiplicity 2. Since the
product of the eigenvalues of A is equal to the determinant, which is 1, the
eigenvalue for A is ±1. This means that, up to sign, A fixes a vector in R2.
Since A is an integer matrix, it follows that A fixes a rational vector in R2

up to sign. From this it follows that f fixes the corresponding isotopy class
of (unoriented) simple closed curves in T 2. In this case we say that f is
reducible.

If τ is hyperbolic, then τ fixes two points in ∂H2. This is equivalent to the
statement thatA has two linearly independent real eigenvectors or thatA has
two distinct real eigenvalues. Since the determinant of A is 1, it follows that
its two eigenvalues are inverses, say λ and 1/λ, where λ > 1. Therefore,
A has two eigenspaces in R2, one of which is stretched by a factor of λ
and one of which is contracted by a factor of λ. This data gives a bundle
of information about f ∈ Mod(T 2); we call this information an Anosov
package. Specifically, there is on T 2 a pair of foliations Fs and Fu, called
the stable and unstable foliations for f , that satisfy the following properties.

1. Each leaf of Fs and of Fu is the image of an injective map R→ T 2.

2. The foliations Fs and Fu are transverse at all points.

3. There is a natural transverse measure µs (respectively µu) assigning
a measure to each arc transverse to Fs (respectively µu) obtained by
realizing the foliations by straight lines in some flat metric on T 2, and
declaring the measure of a transverse arc to be the total variation in
the direction perpendicular to the foliation.
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4. There is an affine representative φ ∈ Homeo+(T 2) of f with

φ(Fu, µu) = (Fu, λµu) and φ(Fs, µs) = (Fs, λ−1µs),

where λ > 1 is the leading eigenvalue of A.

In this case we say that f is Anosov. The discussion so far can be summa-
rized by the following.

THEOREM 13.1 Each nontrivial element f ∈ Mod(T 2) is of exactly one
of the following types: periodic, reducible, Anosov.

We can be even more specific in the first two cases. A nontrivial finite-
order element of Mod(T 2) has order 2, 3, 4, or 6. Also, a nontrivial re-
ducible element of Mod(T 2) is either a power of a Dehn twist or the product
of a power of a Dehn twist with the hyperelliptic involution.

The linear algebra approach. Using just the isomorphism Mod(T 2) ≈
SL(2,Z), and without appealing to hyperbolic geometry, we can give a more
algebraic approach to the classification for Mod(T 2). LetA ∈ SL(2,Z) and
let f ∈ Mod(T 2) denote the corresponding mapping class. The characteris-
tic polynomial for A is x2 − trace(A)x + 1. It follows that the eigenvalues
of A are inverses of each other—call them λ and λ−1. There are then three
cases to consider:

1. |trace(A)| ∈ {0, 1}
2. |trace(A)| = 2

3. |trace(A)| > 2.

The three cases are equivalent to the cases: λ and λ−1 are complex, λ =
λ−1 = ±1, and λ and λ−1 are distinct reals. In the first case it follows
from the Cayley–Hamilton theorem that A, hence f , has finite order. In the
second case A has a rational eigenvector, and from this it follows that f is
reducible. In the third case we see that A has two real eigenvalues, and so f
is Anosov.

We summarize the results of this section in the following table.

Mapping class H2 isometry |Trace| Sample matrix

Periodic Elliptic 0, 1
(

0 1
−1 1

)
Reducible Parabolic 2 ( 1 n

0 1 )

Anosov Hyperbolic 3, 4, . . . ( 2 1
1 1 )
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13.2 THE THREE TYPES OF MAPPING CLASSES

We now describe three kinds of elements of the mapping class group of
a surface. Each is an analogue of one of the three types of elements of
Mod(T 2) in the statement of Theorem 13.1. The Nielsen–Thurston clas-
sification theorem (Section 13.3) states that every mapping class falls into
(at least) one of these three categories.

13.2.1 PERIODIC MAPPING CLASSES

We have already studied periodic, or finite-order, elements of the mapping
class group. A basic example is shown in Figure 13.1; see also Figures 2.1–
2.3. See Chapter 7 for a general discussion of finite-order mapping classes.

Figure 13.1 A periodic element of the mapping class group.

Theorem 7.1 states that every periodic mapping class has a representa-
tive diffeomorphism that has finite order. Note that a priori we know only
that there is a representative with a power isotopic to the identity. We are
now prepared to give a proof of this theorem. Indeed, we will show that
each periodic element of Mod(S) can be realized as an isometry of S with
respect to some hyperbolic metric. The idea is to show that a periodic ele-
ment of Mod(S), thought of as an isometry of Teich(S), has a fixed point
in Teich(S). Nielsen gave a direct proof of Theorem 7.1 in 1942 [171]. The
proof we present here was first suggested by Fenchel [62, 63] and Macbeath
[134].

The following proof is one case where the language of markings muddles
the argument. Thus we will regard points X,Y ∈ Teich(S) as complex struc-
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turesX and Y on S and Teichmüller mapsX → Y as dilatation-minimizing
maps in the homotopy class of the identity map S → S.

Proof of Theorem 7.1. Recall from Section 12.1 that an element f ∈
Mod(S) fixes a point of Teich(S) if and only if it has a representative
φ ∈ Homeo+(S) that is an isometry of S with respect to some hyperbolic
metric; equivalently, f has a representative that is conformal with respect
to some complex structure. So to prove the theorem it suffices to show that
each periodic element f ∈ Mod(S) fixes some point of Teich(S).

Let n ∈ N denote the order of f ∈ Mod(S). Since Teich(S) is
contractible (Theorem 10.6), the finite cyclic group 〈f〉 cannot act freely
on Teich(S), for otherwise the quotient would be a finite-dimensional
K(Z/nZ, 1). Thus fk·X = X for some 1 ≤ k < n and some X ∈ Teich(S).

In the case that n is prime (or even if gcd(n, k) = 1), we have that f is a
power of fk. Thus f fixes X ∈ Teich(S), and we are done.

Now assume that n = p1p2 · · · ps, where each pi is prime and the pi’s
are not necessarily distinct. We induct on the number of (not necessar-
ily distinct) prime factors of n. The mapping class f ′ = fps has order
p1p2 · · · ps−1. By induction, f ′ fixes a point of Teich(S) and hence is real-
ized by a conformal automorphism φ of a complex structure X on S. Since
φ acts on S by conformal automorphisms, the quotient X/〈φ〉 is a Riemann
surface with distinguished points, namely, the images of the fixed points
of φ. Let X ′ denote the Riemann surface which is the complement of the
distinguished points and let S′ denote the underlying topological surface.
Denote the fixed set of f ′ in Teich(S) by Fix(f ′).

Claim: There is a well-defined map θ : Fix(f ′)→ Teich(S′).

Proof of claim: Let Y ∈ Fix(f ′). Represent Y by a complex structure Y
on S and let h : X → Y be the Teichmüller map in the homotopy class of
the identity map S → S. Denote its dilatation by Kh. Since φ is conformal,
the dilatation of φ ◦ h ◦ φ−1 is equal to Kh. Also, since h is homotopic
to the identity, φ ◦ h ◦ φ−1 is homotopic to the identity. It then follows
from Teichmüller’s uniqueness theorem that h and φ ◦ h ◦ φ−1 are equal as
elements of Homeo+(S), which is to say that φ commutes with h. It follows
that h descends to a Teichmüller map from the complex structure X ′ on S′

to a unique complex structure Y ′ on S′. We define θ(Y) to be Y′ = [Y ′].

Given the claim, it is not hard to see that θ is in fact a homeomorphism.
As Teich(S′) is contractible, it follows that Fix(f ′) is contractible. Since f
commutes with f ′, it follows that 〈f〉 acts on Fix(f ′). As 〈f ′〉 is contained
in the kernel of this action, the action of 〈f〉 factors through an action of
〈f〉/〈f ′〉 ≈ Z/psZ on Fix(f ′). As above, the latter action must have a fixed
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point, and so since ps is prime, we are again able to deduce that f has a fixed
point in Fix(f ′) ⊆ Teich(S). �

Our argument for Theorem 7.1 can be easily adapted to prove an even
stronger result: every finite solvable subgroup of Mod(S) is realized as a
subgroup of the isometry group of S for some hyperbolic metric on S. Of
course, as we noted in Theorem 7.2, it is now known (and much harder to
prove) that any finite subgroup of Mod(S) can be realized as a group of
conformal automorphisms of some conformal structure on S.

13.2.2 REDUCIBLE MAPPING CLASSES

We say that an element f of Mod(S) is reducible if there is a nonempty set
{c1, . . . , cn} of isotopy classes of essential simple closed curves in S so that
i(ci, cj) = 0 for all i and j and so that {f(ci)} = {ci}. The collection is
called a reduction system for f . In this case, we can further understand f via
the following procedure:

1. Choose representatives {γi} of the {ci} with γi ∩ γj = ∅ for i �= j.

2. Choose a representative φ of f with {φ(γi)} = {γi}.

3. Consider the homeomorphism of the noncompact, possibly discon-
nected surface S − ∪γi induced by φ.

Note that the second step is an application of the Alexander method plus
Proposition 1.11. As each connected component of S −∪γi is simpler than
S itself, as measured for example by Euler characteristic, we can hope to
understand f by induction on the complexity of S. In particular, we can
decompose f into irreducible pieces (cf. Corollary 13.3 below). Of course,
in order to do this, even when S is closed, one must extend the theory to
nonclosed S.

Examples. A typical reducible mapping class is obtained as follows. Sup-
pose S is a closed genus 2 surface. Let γ be a separating simple closed curve
in S and let S′ and S′′ be the two embedded subsurfaces of S bounded by γ.
Choose φ′ and φ′′ to be homeomorphisms of S′ and S′′ that fix γ pointwise.
Even better, choose φ′ and φ′′ so that neither fixes the isotopy class of any
essential simple closed curve in S′ or S′′, respectively; since S′ and S′′ are
tori, it suffices to choose φ′ and φ′′ so that the induced actions on H1(S

′; Z)
and H1(S

′′; Z) are without fixed vectors. Let σ be a homeomorphism of S
that switches the two sides of γ. The homeomorphism

σ ◦ Tγ ◦ φ′ ◦ φ′′



THE NIELSEN–THURSTON CLASSIFICATION 373

represents a reducible element of Mod(S). The isotopy class of γ is the
unique reduction system in this case.

A simple example of a reducible mapping class is a Dehn twist Ta: any
collection of distinct isotopy class of curves {ci} satisfying i(ci, cj) =
i(ci, a) = 0 is a reduction system.

Another example is the mapping class given in Figure 13.1 (which curves,
or collections of curves, are fixed?). Thus we see that there is an overlap
between the set of periodic and reducible elements of Mod(S).

Canonical reduction systems. In each of the last two examples, there are
many choices for the reduction system, as there are many collections of
curves fixed by either mapping class. A reduction system for f ∈ Mod(S)
is called maximal if it is maximal with respect to inclusion of reduction sys-
tems for f . We can then consider the intersection of all maximal reduction
systems for f . This intersection is clearly canonical, in that no choices are
involved in its construction. We call it the canonical reduction system for f .

As a first example, we show that the canonical reduction system for a
periodic f ∈ Mod(S) is empty. For simplicity, assume χ(S) < 0. By Theo-
rem 7.1, f is represented by a finite-order homeomorphism φ. Let X denote
the quotient orbifold S/〈φ〉. Suppose that c is an isotopy class of simple
closed curves in S that is part of some reduction system for f . Then c has
a representative γ that descends to an essential simple closed curve γ in X.
But by the classification of surfaces, once X has one essential simple closed
curve γ, it has another one δ with i(γ, δ) > 0. The isotopy class of the
preimage δ of δ is a reduction system for f , and i(δ, γ) > 0. It follows that
γ and δ do not belong to a common maximal reduction system. In partic-
ular, c is not an element of the canonical reduction system for f . Thus the
canonical reduction system for f is empty.

We can also show that the canonical reduction system for Ta is a. It fol-
lows immediately from Proposition 3.2 that, for any isotopy class of simple
closed curves b with i(a, b) > 0, we have T ka (b) �= b. It follows that b
cannot belong to a reduction system for a. In other words, any reduction
system for a consists of isotopy classes of curves that are disjoint from a.
As Ta(a) = a, it follows that any maximal reduction system for Ta contains
a, and so a is in the canonical reduction system. Now, let b be any other
element of some reduction system. As above, we have i(a, b) = 0. But we
can find another isotopy class c such that i(c, a) = 0 and i(b, c) > 0. Since
i(a, c) = 0, it follows that Ta(c) = c, and so c is part of some reduction
system for Ta. On the other hand, since i(b, c) > 0, the isotopy classes b
and c cannot belong to the same reduction system. Therefore, any maximal
reduction system for Ta that contains c does not contain b, and so b is not an
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element of the canonical reduction system.
Canonical reduction systems were introduced by Birman, Lubotzky, and

McCarthy [28] and by Handel and Thurston [81]. In the language of
Birman–Lubotzky–McCarthy, the isotopy class c of an essential simple
closed curve in S is in the canonical reduction system for f exactly when it
satisfies the following two criteria: (i) c is part of some reduction system for
f , and (ii) fk(b) �= bwhenever i(b, c) �= 0 and k �= 0. The advantage of their
definition is that it gives qualitative information about the isotopy classes in
an essential reduction system. It is possible to show that their definition is
equivalent to ours.

Periodic versus reducible. Dehn twists are examples of mapping classes
that are reducible but not periodic. The example in Figure 13.1 is reducible
and periodic. One element of Mod(Sg) that is periodic but not reducible is
the example that realizes the upper bound of Theorem 7.5, that is, the peri-
odic element of maximal order in Mod(Sg). Recall that this mapping class
is realized by representing Sg as a (4g + 2)-gon and rotating the polygon
by one click, that is, by 2π/(4g + 2). The quotient surface is a sphere with
three cone points: one corresponding to the center of the polygon, one cor-
responding to the vertices of the polygon (all of which are identified in the
quotient), and one of which corresponds to the midpoints of the edges of
the polygon (again, all of these are identified in the quotient). In the com-
plement of the cone points, there are no essential curves on the sphere. It
follows that the mapping class is not reducible.

The question remains: what can we say about mapping classes that are
neither periodic nor reducible?

13.2.3 PSEUDO-ANOSOV MAPPING CLASSES

An element f ∈ Mod(S) is called pseudo-Anosov if there is a pair of trans-
verse measured foliations (Fu, µu) and (Fs, µs) on S, a number λ > 1, and
a representative homeomorphism φ so that

φ · (Fu, µu) = (Fu, λµu) and φ · (Fs, µs) = (Fs, λ−1µs).

The measured foliations (Fu, µu) and (Fs, µs) are called the unstable fo-
liation and the stable foliation, respectively, and the number λ is called the
stretch factor1 of φ (or of f ). The map φ is a pseudo-Anosov homeomor-

1In the literature the number λ is often called the dilatation of the mapping class f . How-
ever, this terminology is not consistent with our usage of the word “dilatation.” As we shall
see, pseudo-Anosov homeomorphisms with stretch factor λ correspond to Teichmüller maps
with dilatation λ2.
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phism.
Of course, the representative φ of f is not unique; we can change the

stable and unstable foliations by an isotopy and then conjugate φ by the
homeomorphism at the end of the isotopy. It is a theorem, however, that this
is the only nonuniqueness: any two homotopic pseudo-Anosov homeomor-
phisms are conjugate by a homeomorphism that is isotopic to the identity
[61, Exposé 12, Theorem III].

The map φ is a diffeomorphism away from the singularities of the stable
and unstable foliations. Since both the stable and unstable foliations span
the tangent space at the singularities, φ is not smooth at the singularities.
One should compare the definition of a pseudo-Anosov homeomorphism
with the definition of a Teichmüller map.

Are the leaves of the stable foliation stretched by φ or are they shrunk
by φ? To check, let α be an arc of the stable foliation. We want to compare
µu(φ(α)) with µu(α). By definition of the action of Homeo+(S) on the
set of measured foliations on S (see Section 11.2), the former is equal to
φ−1 · µu(α) = λ−1µu(α), where λ > 1. Thus the correct statement is that
φ shrinks the leaves of the stable foliation and stretches the leaves of the
unstable foliation. One way to remember this is that, if we take a point p on
a stable leaf that emanates from a singularity x ofFs, then φn(p) approaches
x as n goes to infinity; we think of this as a stability condition.

It turns out that the above structure has strong implications for the dy-
namical, topological, and geometric structure of pseudo-Anosov homeo-
morphisms. Indeed, the study of pseudo-Anosov homeomorphisms admits
a rich theory, some of which we present in Chapter 14.

Punctures and boundary. The definition of a pseudo-Anosov homeomor-
phism carries over for surfaces with punctures and/or boundary. For surfaces
with boundary, however, we must restrict to the class of measured foliations
described at the end of Section 11.4. As with Teichmüller maps, the def-
inition of a pseudo-Anosov homeomorphism is not so natural for surfaces
with boundary, and so if we prefer, we can define a pseudo-Anosov home-
omorphism for a surface with boundary as a homeomorphism that restricts
to a pseudo-Anosov homeomorphism on the punctured surface obtained by
removing the boundary. Note, for example, that, given any pseudo-Anosov
homeomorphism on any surface, we can remove any finite orbit to obtain a
pseudo-Anosov homeomorphism on a punctured surface.
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13.3 STATEMENT OF THE NIELSEN–THURSTON CLASSIFICATION

As discussed above, the following theorem is one of the central results in
the study of mapping class groups. The theorem is due to Thurston, but
it has a somewhat involved history, which we discuss below. The theorem
gives a classification of elements of Mod(S), where by classification we
mean that each element of f ∈ Mod(S) is shown to have a representative
in Homeo+(S) that is one of three very specific forms from which one can
read off a great deal of information.

Theorem 13.2 (Nielsen–Thurston classification) Let g, n ≥ 0. Each
mapping class f ∈ Mod(Sg,n) is periodic, reducible, or pseudo-Anosov.
Further, pseudo-Anosov mapping classes are neither periodic nor reducible.

The main content of Theorem 13.2 is that every irreducible, infinite-order
mapping class has a representative that is pseudo-Anosov and so automati-
cally has a great deal of structure. We will further explore this structure and
many of its implications in Chapter 14.

A canonical form. One of the useful aspects of Theorem 13.2 comes from
the fact that when f is reducible, one can cut along a reduction system of
simple closed curves to obtain a homeomorphism of a (possible discon-
nected, possibly with boundary) surface, and one can again apply Theo-
rem 13.2 to each of these components. Repeating this process, one finally
obtains that any f ∈ Mod(S) has a representative that breaks up into finite-
order pieces and pseudo-Anosov pieces. In fact, it is possible to do this in
such a way that the only curves we cut along are the curves of the canonical
reduction system for f [28].

Corollary 13.3 (Canonical form for a mapping class) Let g, n ≥ 0 and
let S = Sg,n. Let f ∈ Mod(S) and let {c1, . . . , cm} be its canonical reduc-
tion system. Choose representatives of the ci with pairwise disjoint closed
neighborhoods R1, . . . , Rm. Let Rm+1, . . . , Rm+p denote the closures of
the connected components of S − ∪mi=1Ri. Let ηi : Mod(Ri) → Mod(S)
denote the homomorphism induced by the inclusion Ri → S (see Theo-
rem 3.18). Then there is a representative φ of f that permutes the Ri, so
that some power of φ leaves each Ri invariant. What is more, there exists a
k ≥ 0 so that φk(Ri) = Ri for all i and

fk =

m+p∏
i=1

ηi(fi),
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where fi ∈ Mod(Ri) is a power of a Dehn twist for 1 ≤ i ≤ m and fi ∈
Mod(Ri) is either pseudo-Anosov or the identity form+ 1 ≤ i ≤ m+ p.

The decomposition of f given in Corollary 13.3 is analogous to the Jordan
canonical form of a matrix. The φk|Ri are the analogues of Jordan blocks.
A example schematic of the normal form is shown in Figure 13.2.

Figure 13.2 A schematic of the normal form of fk in Corollary 13.3. Each subsurface is
fixed. A shaded region indicates a pseudo-Anosov component or a Dehn twist
component. An unshaded region indicates an identity component.

Ivanov showed that if f lies in the finite-index subgroup Mod(Sg)[m]
with m ≥ 3, then the integer k in Corollary 13.3 can always be taken to be
1 [106, Corollary 1.8].

We can sharpen Corollary 13.3 to say that an arbitrary element of Mod(S)
has a normal form without having to take powers. The cost is that we need
to deal with the mapping class group of a disconnected surface. Let φk|Ri
be a “Jordan block” for f ∈ Mod(S) as in Corollary 13.3 and say that
φk|Ri is pseudo-Anosov with stretch factor λ and stable foliation (F , µ).
Say that k0 ≤ k is the smallest positive integer so that φk0 preserves Ri.
The 〈φ〉-orbit of Ri is Ri, φ(Ri), . . . , φ

k0−1(Ri). We can push forward the
foliation F to each φj(Ri) in order to obtain a foliation on the disconnected
subsurface Ri∪φ(Ri)∪· · ·∪φk0−1(Ri). Then, for 0 ≤ j < k0, we can define
the measure on φj
(F) to be the pushforward of µ multiplied by λj/k0 . We
can then regard φ as a pseudo-Anosov homeomorphism of the disconnected
surface Ri ∪ φ(Ri) ∪ · · · ∪ φk0−1(Ri).

We can now deduce the sharp normal form for mapping classes. The start-
ing point is the statement of Corollary 13.3 as given. Instead of raising f to
the power k, though, we analyze f itself. The mapping class f acts on the
set {R1, . . . , Rm+p}. We consider each orbit as a single surface which is in
general disconnected. Denote these surfaces byR′1, . . . , R

′
q . By the previous

paragraph, f acts as either a periodic or a pseudo-Anosov mapping class on
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each R′i that is not a disjoint union of annuli. In other words, we have

f =

q∏
i=1

ηi(f
′
i),

where each f ′i ∈ Mod(R′i) is either periodic, pseudo-Anosov, or (in the case
that R′i is a disjoint union of annuli) a root of a multitwist.

Let S′ denote the surface obtained from S by deleting a representative of
the canonical reduction system for f . If we instead consider the induced ac-
tion of f on S′, then we lose the information of f1, . . . fm (Proposition 3.19).
So f induces an element of Mod(S′) with only pseudo-Anosov and periodic
blocks.

Historical remarks. Nielsen wrote a series of papers on the classifica-
tion of surface homeomorphisms in the 1920s–1940s [168, 169, 170, 172].
His approach to classifying elements of Mod(S) was to consider their in-
duced action on ∂H2. Because Nielsen’s work is lengthy (spanning over 400
pages) and lacks sufficient organizing perspective, this work was largely ig-
nored by topologists for many years.

In 1974 Thurston developed the theory of measured foliations on surfaces
and used this to prove Theorem 13.2 as stated above. A posteriori, it became
clear that all of the required tools for the classification had already been
discovered by Nielsen. A paper by Miller explains how to understand the
pseudo-Anosov case (the most important case) of the classification from the
Nielsen point of view [157].

Thurston did not publish the details of his proof of Theorem 13.2, al-
though he did distribute an announcement of his results, which appeared
years later in print [207]. This announcement is remarkable for both its
brevity and its richness. The first complete published proof of the classifica-
tion is due to Bers in 1978 [15], who proved the theorem from the point of
view of Teichmüller theory; see Section 13.6 below. Around the same time,
the Séminaire sur les difféomorphismes des surfaces d’après Thurston, held
at L’Université de Paris-sud à Orsay and led by Albert Fathi, François Lau-
denbach, and Valentin Poénaru, worked out the full details of Thurston’s
proof. The result is a 284-page monograph known as FLP [61]. The rela-
tionship between the works of Thurston, Bers, and Nielsen is explained in a
paper by Gilman [72]. Other points of view on Nielsen–Thurston theory are
contained in the writings of Handel and Thurston [81], Casson and Bleiler
[44], and Bonahon [31]. The key objects in these works are geodesic lami-
nations, which are implicit in Nielsen’s work.
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13.4 THURSTON’S GEOMETRIC CLASSIFICATION OF MAPPING

TORI

One of Thurston’s original motivations for studying homeomorphisms of
surfaces was to understand the possible geometric structures on surface bun-
dles over the circle. Recall that an Sg-bundle over S1 is a fiber bundle with
fiber Sg and base S1. Such spaces provide a rich collection of closed 3-
dimensional manifolds.

Since S1 minus one point is contractible, any bundle over S1−{point} is
trivial. It follows that every Sg-bundle over S1 is homeomorphic (even iso-
morphic as an Sg-bundle) to some mapping torus of some φ ∈ Homeo(Sg).

The mapping torus for f ∈ Mod(Sg) is defined as

Mf =
Sg × [0, 1]

(x, 0) ∼ (φ(x), 1)
,

where φ ∈ Homeo+(Sg) is a representative for f . The obvious projection
Mf → S1 with fiber Sg gives Mf the structure of an Sg-bundle over S1.
The element f ∈ Mod(Sg) is called the monodromy of this bundle. Note
that we have restricted to the case of orientation-preserving φ, so that Mf is
a closed, orientable 3-manifold.

It is not difficult to prove that the homeomorphism type of Mf does not
depend on the choice of representative for f ; one can use an isotopy be-
tween elements of Homeo+(Sg) to construct the desired homeomorphism.
Similarly, if f and h are conjugate in Mod(Sg), then Mf is homeomor-
phic to Mh. However, the converse is not true: there exist many examples of
nonconjugate elements f, h ∈ Mod(Sg) for which Mf is homeomorphic to
Mh. In fact, there are examples of mapping tori Mf where the set of genera
of the fibers in different fiberings over S1 is unbounded. The following the-
orem of Thurston says that the Nielsen–Thurston type of the monodromy
f ∈ Mod(Sg) alone determines the geometry that the manifold Mf admits.

Theorem 13.4 Let g ≥ 2, let f ∈ Mod(Sg), and let Mf denote the map-
ping torus for f .

1. f is periodic⇐⇒Mf admits a metric locally isometric to H2 × R.

2. f is reducible⇐⇒Mf contains an incompressible (i.e., π1-injective)
torus.

3. f is pseudo-Anosov⇐⇒Mf admits a hyperbolic metric.

The forward implications of statements 1 and 2 are easy. Indeed, if f is
periodic, then Mf is finitely covered by Sg × S1, which has universal cover
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H2 × R. If f is reducible, say (for simplicity) the representative φ fixes a
curve α, then Mf contains an incompressible torus, namely, α× S1. These
facts, together with the Nielsen–Thurston classification (Theorem 13.2), im-
ply the reverse implication of statement 3, since no hyperbolic manifold has
a finite cover locally isometric to H2 × R and no hyperbolic manifold con-
tains an incompressible torus.

The reverse implications in statements 1 and 2 are not difficult to prove.
The forward implication in statement 3 is a deep theorem of Thurston; see
[173, 205].

The torus case. Every orientable torus bundle over S1 is homeomorphic to
a mapping torus Mf for some f ∈ Mod(T 2). In this case, the classification
of geometric structures on mapping tori is as follows (for descriptions of Nil
and Sol geometries, see [208]).

Theorem 13.5 LetMf denote the mapping torus for f ∈ Mod(T 2).

1. φ is periodic⇐⇒Mf is locally isometric to Euclidean 3-space.

2. φ is reducible⇐⇒Mf is locally isometric to Nil geometry.

3. φ is Anosov⇐⇒Mf is locally isometric to Sol geometry.

For a further discussion of these topics, we refer the reader to the paper
by Scott [190].

13.5 THE COLLAR LEMMA

The following useful lemma in hyperbolic geometry implies that if a closed
geodesic α in a hyperbolic surface is very short, then every closed geodesic
β with i(α, β) > 0 must be long. This lemma will be an essential ingredient
in our proof of the Nielsen–Thurston classification.

Lemma 13.6 (Collar lemma) Let γ be a simple closed geodesic on a hy-
perbolic surface X. Then Nγ = {x ∈ X : d(x, γ) ≤ w} is an embedded
annulus, where w is given by

w = sinh−1

(
1

sinh(1
2�(γ))

)
.

Proof. We assume that X is compact; the general case is similar. Choose a
pants decomposition forX where each of the curves in the decomposition is
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a geodesic and where γ is one of the curves. Let P be a pair of pants that has
γ as one of its boundary components. As in Proposition 10.5, we cut P into
two isometric right-angled hexagons H and H ′. Label the alternating sides
of H that correspond to the boundary curves of P by c1, c2, and c3. For each
i, let Ni be the metric neighborhood of ci of width sinh−1(1/ sinh(�(ci)))
in H . If we show that the Ni are disjoint, then there cannot possibly be any
identifications for the Ni in P (or in X). We therefore obtain the desired
annulus by considering the above for pants on each side of γ and taking two
metric neighborhoods in each of these pants, one for each hexagon.

For the following argument, refer to Figure 13.3. Let α be the shortest
geodesic from c3 to the opposite side of H . The arc α cuts H into two right-
angled pentagons. Let P1 be the pentagon that contains c1. The right-angled
pentagon formula says that if a and b are adjacent sides of a right-angled
hyperbolic pentagon and c is the side opposite their common vertex, then

sinh(a) sinh(b) = cosh(c)

(see equation (V.1) in [64, Section 8.1]). Applied to P1, the right-angled
pentagon formula gives

sinh(d) sinh(�(c1)) = cosh(c),

where d is the distance between c1 and α and c is the length of the intersec-
tion of c3 with P1. Since cosh(c) > 1, we have that

d > sinh−1

(
1

sinh(�(c1))

)
.

Thus N1 is strictly contained in P1. Similarly, N2 is also disjoint from a,
and so N1 ∩ N2 = ∅. By symmetry, N1 and N2 are both disjoint from N3

and the lemma follows. �

Note that our proof of the collar lemma really shows something stronger
than the statement of the lemma: we found annuli of the given size that are
not only embedded but are also disjoint from each other.

The collar construction for Riemann surfaces first appears in the work of
Linda Keen [120]. The sharp version given in Lemma 13.6 is due to Matelski
[142].

For our proof of the Nielsen–Thurston classification, we will not need the
precise statement of Lemma 13.6. Rather, we will need only the following
much weaker statement sometimes attributed to Margulis.

Corollary 13.7 Let S be a surface with χ(S) < 0. There is a constant
δ = δ(S) such that if X is any (complete, finite-area) hyperbolic surface
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Figure 13.3 The collar lemma.

homeomorphic to S, then any two distinct closed geodesics of length less
than δ are disjoint.

13.6 PROOF OF THE CLASSIFICATION THEOREM

In order to prove the Nielsen–Thurston classification theorem (Theo-
rem 13.2), it makes sense to try to mimic the proof we gave for the torus
case (Theorem 13.1). Since Mod(S) can be identified with a subgroup of
Isom+(Teich(S)), we can hope to classify elements of Mod(S) by using
the geometry of Teich(S) to classify elements of Isom+(Teich(S)).

In Chapter 1 we classified elements of Isom+(Teich(T 2)) ≈ Isom+(H2)
as follows. We used the fact that any isometry φ ∈ Isom+(H2) induces a
homeomorphism φ of the closed disk H2∪∂H2. We then applied Brouwer’s
fixed point theorem to φ to obtain a fixed point in H2 ∪ ∂H2. Analyzing the
number and location of the fixed points of φ gave the desired trichotomy. In
order to pursue this idea for higher-genus S, we would need a compactifica-
tion of Teich(S) that is homeomorphic to a closed ball. Thurston’s original
proof of the Nielsen–Thurston classification theorem was in fact to con-
struct such a compactification. The points of his compactification (besides
the points of Teich(S)) are projective classes of measured foliations on S;
see [61] for full details and Chapter 15 of this book for a brief discussion.
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Translation length. There is a different way of classifying elements of
Isom(H2). For any metric space X and any φ ∈ Isom(X), we define the
translation length τ(φ) by

τ(φ) = inf
x∈X
{d(x, φ(x))}.

The isometry φ then falls into exactly one of the following three categories:

1. Elliptic: τ(φ) = 0 and is realized.

2. Parabolic: τ(φ) is not realized.

3. Hyperbolic: τ(φ) > 0 and is realized.

When X = H2, this classification is compatible with the classification
via the number of fixed points in H2 ∪ ∂H2 discussed above.

The Bers proof of the Nielsen–Thurston classification theorem proceeds
by analyzing elements f ∈ Mod(S) via their isometric action on Teich(S).

13.6.1 SETUP

Let S = Sg,n and let f ∈ Mod(S). We recall that f acts on Teich(S) as
an isometry of the Teichmüller metric. We will derive the Nielsen–Thurston
classification via the trichotomy of isometries of the metric space Teich(S).
Specifically, we will show:

1. f is elliptic in Isom(Teich(S)) =⇒ f is periodic in Mod(S).

2. f is parabolic in Isom(Teich(S)) =⇒ f is reducible in Mod(S).

3. f is hyperbolic in Isom(Teich(S)) =⇒ f is pseudo-Anosov in
Mod(S).

At the end, we will show that pseudo-Anosov mapping classes can be nei-
ther periodic nor reducible.

We remark that, in contrast to the case of parabolic isometries of H2, there
exist reducible mapping classes f ∈ Mod(S) for which τ(f) is positive and
not realized. See the notes at the end of the proof for a discussion of this
case.

13.6.2 THE ELLIPTIC CASE

If f is an elliptic element of Isom(Teich(S)), then by definition f fixes a
point of Teich(S). We have already observed at the start of Chapter 12 that
if f fixes a point of Teich(S), then f is periodic.
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13.6.3 THE PARABOLIC CASE

Assume that f is parabolic as an element of Isom(Teich(S)). We need to
find an f -invariant collection of isotopy classes of pairwise disjoint simple
closed curves in S. Let (Xi) be a sequence in Teich(S) with the property
that d(Xi, f ·Xi)→ τ(f). We will produce the required reducing system as
a set of short simple closed curves on Xi for i large.

Step 1. The projection of (Xi) to M(S) leaves every compact set in
M(S).

Suppose to the contrary that these projections lie in a fixed compact set in
M(S). Then for some choice of hi ∈ Mod(S), the sequence (hi ·Xi) stays
in a fixed compact region of Teich(S). Denote hi·Xi by Yi. By compactness,
there is a subsequence of (Yi) that converges to a point Y ∈ Teich(S). Since
Mod(S) acts on Teich(S) by isometries, we have

d(Yi, hifh
−1
i · Yi) = d(h−1

i · Yi, f · (h−1
i · Yi)) = d(Xi, f · Xi),

and so

lim
i→∞

d(Yi, hifh
−1
i · Yi) = lim

i→∞
d(Xi, f · Xi) = τ(f).

We claim that

d(Y, hkfh
−1
k · Y) = τ(f)

for some k.
Let i be fixed. Applying the triangle inequality to the four points Y, Yi,

hifh
−1
i · Yi, and hifh

−1
i · Y we obtain

d(Y, hifh
−1
i · Y)≤ d(Y,Yi) + d(Yi, hifh

−1
i · Yi)

+d(hifh
−1
i · Yi, hifh−1

i · Y).

Now let i → ∞. Since Yi → Y, the first and last terms on the right-hand
side tend to zero, and the middle term tends to τ(f). Therefore,

lim
i→∞

d(Y, hifh
−1
i · Y) = τ(f).

By proper discontinuity of the Mod(S) action on Teich(S) (Theorem 12.2),
we have that the sequence hifh

−1
i is eventually constant; that is, there is

some N so that hifh
−1
i = hNfh

−1
N when i ≥ N . Thus

d(Y, hNfh
−1
N · Y) = τ(f),

which proves the claim.
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It follows that

d(h−1
N · Y, f · (h−1

N · Y)) = τ(f),

which contradicts the assumption that τ(f) is not realized. Thus it must be
the case that (Xi) leaves every compact set ofM(S).

Step 2. Finding a reduction system for f .

For X ∈ Teich(S), let �(X) denote the length of the shortest essential sim-
ple closed curve in X. By Mumford’s compactness criterion (Theorem 12.6),

lim
i→∞

�(Xi) = 0.

By Wolpert’s lemma (Lemma 12.5), there exists K > 1, depending only on
τ(f), such that for any X,Y ∈ Teich(S), if d(X,Y) ≤ τ(f) + 1, then
�X(c) ≤ K�Y(c) for any isotopy class of simple closed curves c in S.
Choose M large enough so that

• d(XM , f · XM ) < τ(f) + 1, and

• �(XM ) < (1/K)3g−3+nδ,

where δ is the constant from the corollary of the collar lemma (Corol-
lary 13.7).

Let c0 be an isotopy class of simple closed curves in S with �XM
(c0) =

�(XM ). For each 1 ≤ i ≤ 3g − 3 + n, let

ci = f−1ci−1 = f−ic0.

Then

�XM
(f−ic0) = �f iXM

(c0) ≤ Ki�XM
(c0) < δ.

By the definition of the constant δ from Corollary 13.7, the simple closed
curves {c0, . . . , c3g−3+n} must be mutually disjoint. But there are at most
3g−3+n isotopy classes of pairwise disjoint essential simple closed curves
in S (cf. Section 8.3). Thus it must be that two of the ci are in the same ho-
motopy class. It follows that fk(c0) = c0 for some k > 0, so that f permutes
the collection of isotopy classes {c0, c1, . . . ck−1}. Thus f is reducible.

13.6.4 THE HYPERBOLIC CASE

Assume that f is hyperbolic as an element of Isom(Teich(S)). Let X be a
point of Teich(S) that satisfies d(X, f ·X) = τ(f) > 0. By Theorem 11.19
there is a unique bi-infinite geodesic γ passing through X and f · X, and
moreover γ is a Teichmüller line.
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Our goal is to show that f is pseudo-Anosov. We will do this by first prov-
ing that f leaves γ invariant and acts on it by translation by τ(f). Intuitively,
this means that f should have a representative that is a Teichmüller map and
hence “looks like” a pseudo-Anosov homeomorphism. We now make this
precise.

Step 1. f leaves γ invariant.

Let Y ∈ γ be any point in the interior of the geodesic segment from X

to f · X. By the triangle inequality and the fact that f acts by isometries on
Teich(S), we have

d(Y, f · Y)≤ d(Y, f · X) + d(f · X, f · Y)

= d(Y, f · X) + d(X,Y)

= d(X, f · X)

= τ(f).

Refer to Figure 13.4.
The minimality of τ(f) implies that d(Y, f ·Y) = τ(f). In particular, this

means that the first inequality above is an equality; that is,

d(Y, f · Y) = d(Y, f · X) + d(f · X, f · Y).

Thus f ·X must lie on the unique Teichmüller line γ′ passing through Y and
f · Y. As γ and γ′ agree on the nontrivial geodesic segment from Y to f ·X,
and since all geodesics in Teich(S) are Teichmüller lines (Theorem 11.19),
it follows that γ′ and γ are the same Teichmüller line, and in particular f ·Y
lies on γ. Since we have shown that Y realizes τ(f), we can apply the same
argument to the geodesic segment from Y to f · Y. Thus the image of this
segment is contained in γ, and in particular f2 · X lies on γ. Repeating the
argument inductively, we see that f · γ = γ and in particular that f i · X lies
on γ for all i ∈ Z.

Fix a marked Riemann surface (X,ψ) representing X and let φ : X → X
be the Teichmüller mapping in the homotopy class ψ ◦ f ◦ ψ−1 (this is the
map whose dilatation determines dTeich(X, f · X)). Say that the horizontal
stretch factor of φ is equal to the dilatation Kφ (as opposed to 1/Kφ).

Step 2. The map φ2 : X → X is a Teichmüller mapping with horizontal
stretch factor K2

φ.

The quasiconformal homeomorphism φ2 lies in the homotopy class
ψ ◦ f2 ◦ ψ−1. Since Kφ1◦φ2

≤ Kφ1
Kφ2

for any two quasiconformal home-
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Figure 13.4 When f is hyperbolic and τ (f) is realized at X, then X, f · X, and f2 · X must
be colinear.

omorphisms φ1 and φ2 (Proposition 11.3), we have Kφ2 ≤ K2
φ. Therefore,

dTeich(X, f2 · X)≤ 1

2
logKφ2

≤ 1

2
logK2

φ

= 2

(
1

2
logKφ

)
= 2 dTeich(X, f · X).

It follows from step 1 that dTeich(X, f2 · X) = 2 dTeich(X, f · X). Thus the
first inequality above is an equality. By Teichmüller’s uniqueness theorem
(Theorem 11.9), the map φ2 is the unique Teichmüller map in the homotopy
class of ψ ◦ f2 ◦ ψ−1.

Step 3. The initial and terminal quadratic differentials for φ on X are
equal.

Let q, q′ ∈ QD(X) denote the initial and terminal quadratic differentials
for φ. For p ∈ X such that q(p) �= 0, the image under φ of the unit circle
in Tp(X) is an ellipse E in Tφ(p)(X). The direction in Tp(X) of maximal
stretch for dφ is the direction of the horizontal foliation for φ. The major axis
of E has length

√
Kφ and lies in the direction of the horizontal foliation for

q′.
Since φ2 is a Teichmüller mapping with horizontal stretch factor K2

φ, it
follows that the direction in Tφ(p) of maximal stretch for φ at φ(p) must be
the direction of the major axis for E (Lemma 11.2), that is, the direction
of the horizontal foliation for q′. But again the direction of maximal stretch
for φ at any point of X is the direction of the horizontal foliation for q. We
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have thus shown that the horizontal foliations for q and q′ coincide at every
point p ∈ X for which q(p) �= 0. Thus the horizontal foliations for q and q′

coincide on all of X.
Away from the zeros of q there are natural coordinates for q where q is

given by dz2. In these coordinates the horizontal foliation for q is repre-
sented by horizontal lines. In these same coordinates, the horizontal folia-
tion for q′ must then also be given by horizontal lines, and so it must be
that q′ is given by C dz2 for some C . It follows that the continuous function
q′/q : X → C is equal to the constant function C . Since the initial and
terminal quadratic differentials for a Teichmüller mapping have the same
Euclidean area, it must be that C = 1. Thus q = q′.

Let (F , µ) be the transverse measured foliation on X given by the hori-
zontal foliation for q. In natural coordinates around a nonsingular point, the
foliation F is the horizontal foliation and the measure µ is |dy|.
Step 4. We have φ · (F , µ) = (F ,

√
Kφ µ).

Any Teichmüller mapping takes the horizontal foliation for its initial dif-
ferential to the horizontal foliation for its terminal differential. We showed
that these differentials, hence the associated horizontal foliations, are equal.
Thus φ(F) = F . It remains to show that if α is an arc in X transverse to F ,
then µ(φ−1(α)) =

√
Kφ µ(α). But this immediately follows from the fact

that φ is a Teichmüller mapping with horizontal measured foliation (F , µ)
and horizontal stretch factor Kφ.

Step 5. The mapping class f is pseudo-Anosov with stretch factor
√
Kφ.

We have shown in step 4 that φ · (F , µ) = (F ,
√
Kφ µ), where (F , µ)

is the measured foliation on X coming from the horizontal foliation for q.
However, there is a symmetry between the horizontal and vertical foliations
for q: we can also describe the Teichmüller map φ as having initial differ-
ential −q and horizontal stretch factor 1/Kφ. Thus, by symmetry, φ fixes
the horizontal foliation F ′ for−q, which is the same as the vertical foliation
for q, and multiplies the measure µ′ by 1/

√
Kφ. The measured foliations

(F , µ) and (F ′, µ′) are unstable and stable foliations for φ. Thus φ is a
pseudo-Anosov homeomorphism of X, and ψ−1 ◦φ◦ψ is a pseudo-Anosov
homeomorphism of S, with stable and unstable foliations (ψ−1(F), ψ
(µ))
and (ψ−1(F ′), ψ
(µ′)) and with stretch factor λ =

√
Kφ.

13.6.5 EXCLUSIVITY

The only thing left to prove is the exclusivity statement of the theorem,
namely, that pseudo-Anosov mapping classes are neither periodic nor re-
ducible. As part of Theorem 14.23 below, we will prove that, if f ∈Mod(S)
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is pseudo-Anosov, and α is a simple closed curve in S, and we endow S with
the singular Euclidean metric induced by the stable and unstable foliations,
then the length of the geodesic isotopic to fn(α) tends to infinity as n tends
to infinity. On the other hand, this is false for periodic and reducible map-
ping classes because, in either case, there is at least one isotopy class of
simple closed curves that is fixed by a power of f . We emphasize that the
proof of Theorem 14.23 relies only on the definition of a pseudo-Anosov
mapping class. This completes the proof of Theorem 13.2.

13.6.6 NOTES ON THE PROOF OF THEOREM 13.2

We can distinguish among the parabolic isometries of Teich(S) those with
τ = 0 and those with τ > 0. The latter correspond to mapping classes that
have a pseudo-Anosov component in the sense of Corollary 13.3.

A geodesic in Teichmüller space fixed by a pseudo-Anosov mapping class
is called an axis for that mapping class. It turns out that the axis for a pseudo-
Anosov mapping class is unique, but this does not follow from our proof of
Theorem 13.2. For a proof see [140, Theorem 9.2].

Bers’ approach to proving the exclusivity statement of Theorem 13.2
is to show that a reducible mapping class gives a parabolic isometry of
Teich(S)—this is the converse of the parabolic case of the proof. The idea is
that continually shrinking the reducing curves continually reduces the cor-
responding stretch factors.



Chapter Fourteen

Pseudo-Anosov Theory

The power of the Nielsen–Thurston classification is that it gives a simple cri-
terion for an element f ∈ Mod(S) to be pseudo-Anosov: f is neither finite-
order nor reducible. This fact, however, is only as useful as the depth of our
knowledge of pseudo-Anosov homeomorphisms. The purpose of this chap-
ter is to study pseudo-Anosov homeomorphisms: their construction, their
algebraic properties, and their dynamical properties.

Anosov maps of the torus. An Anosov homeomorphism of the torus T 2

is a linear representative of an Anosov mapping class. As discussed in Sec-
tion 13.1, an Anosov homeomorphism φ : T 2 → T 2 has an associated
Anosov package. The geometric picture of the action of φ on T 2 is quite
explicit.

The map φ, considered as an element of SL(2,Z), has two distinct real
eigenvalues λ > 1 and λ−1. These eigenvalues are quadratic integers; that
is, they are roots of degree 2 integer polynomials. The diffeomorphism φ
preserves two foliations Fu and Fs on T 2; these are the projections to T 2

of the foliations of R2 by lines parallel to the λ and λ−1 eigenspaces of the
matrix φ. The map φ stretches each leaf of Fu by a factor of λ and contracts
each leaf of Fs by a factor of λ. The eigenspaces are lines with irrational
slope, from which it follows that each leaf of Fu and of Fs is dense in T 2.

It is an easy exercise to check that φ-periodic points are dense. From
basic linear algebra one can see that, for a generic vector v ∈ R2, the vector
φn(v) converges to a vector λnvu, where vu is a unit vector pointing in the
direction of Fu. More precisely, the directions converge:

φn(v)

|φn(v)| → ±vu,

and the magnitudes converge:

n
√
|φn(v)| → λ.

One main goal of this chapter is to describe a pseudo-Anosov package,
which extends the above picture of Anosov homeomorphisms on T 2 to
pseudo-Anosov homeomorphisms on Sg, where g ≥ 2.
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14.1 FIVE CONSTRUCTIONS

The first basic question to address is: do pseudo-Anosov mapping classes
actually exist? The answer is of course yes, although it is a nontrivial matter
to give explicit examples. In this section we explain five different construc-
tions of pseudo-Anosov mapping classes.

14.1.1 BRANCHED COVERS

One way to construct a pseudo-Anosov homeomorphism is to lift an Anosov
homeomorphism of the torus via a branched covering map. Recall from
Chapter 7 that an orbifold cover p : S → S′ is a map obtained by a fi-
nite group action on S. As in Section 11.2, we also call such a cover a
branched cover. A branched cover p : S → S′ is a true covering map over
the complement of some finite collection of points B in S′. Elements of B
are called branch points. Around each point of p−1(B) the map p is given
in local coordinates by the map z 
→ zk, with k ∈ {2, 3, . . . }. Recall from
Section 11.2 that, for g ≥ 2, there is a twofold branched cover Sg → T 2

with 2g − 2 branch points.
Fix a branched covering map p : S → T 2. Let φ be an Anosov homeo-

morphism of the torus, for example, the linear map of T 2 associated to any
A ∈ SL(2,Z) with | tr(A)| > 2. Since each rational point of T 2 is a peri-
odic point of φ, we can change φ by isotopy and pass to a power of φ so that
φ fixes pointwise the set B of branch points of p. Passing to a further power
of φ if necessary, we can assume that φ lifts to a homeomorphism ψ of S
(to see this, consider the action of φ on the finite set of index 2 subgroups of
π1(T

2 −B)).
As ψ has the same local properties as φ, we see that ψ is a pseudo-Anosov

homeomorphism of S; indeed, the stable and unstable foliations for ψ are
the preimages under p of those for φ. Above each branch point in T 2, the
foliations for ψ each have a singularity with an even number of prongs.

By considering branched (or unbranched) coverings over higher-genus
surfaces, this construction can be used to convert pseudo-Anosov mapping
classes on any surface to pseudo-Anosov mapping classes on higher-genus
surfaces.

14.1.2 DEHN TWIST CONSTRUCTIONS

We now present an elementary construction of pseudo-Anosov mapping
classes due to Thurston [207], and a related one due to Penner. Let S = Sg,n.
We say that a collection of isotopy classes of simple closed curves in S fills
S if any simple closed curve in S has positive geometric intersection with
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some isotopy class in the collection (see, e.g., Figure 1.7).
If A = {α1, . . . , αn} is a multicurve in a surface S (that is, a set of

pairwise disjoint simple closed curves), we denote the product
∏n
i=1 Tαi by

TA. Such a mapping class is often called a multitwist.

Theorem 14.1 (Thurston’s construction) Suppose A and B are multi-
curves in S so that A ∪ B fills S. There is a real number µ = µ(A,B)
and a representation ρ : 〈TA, TB〉 → PSL(2,R) given by

TA 
→

⎛⎜⎝ 1 −µ1/2

0 1

⎞⎟⎠ TB 
→

⎛⎜⎝ 1 0

µ1/2 1

⎞⎟⎠ .

The representation ρ has the following properties:

1. An element f ∈ 〈TA, TB〉 is periodic, reducible, or pseudo-Anosov
according to whether ρ(f) is elliptic, parabolic, or hyperbolic.

2. When ρ(f) is parabolic, f is a multitwist.

3. When ρ(f) is hyperbolic, the stretch factor of the pseudo-Anosov
mapping class f is equal to the larger of the two eigenvalues of ρ(f).

In the special case where A and B are single curves, say A = {α} and
B = {β}, the real number µ in Theorem 14.1 is equal to i(α, β)2, and so
the representation ρ becomes

Tα 
→

⎛⎜⎝ 1 −i(a, b)

0 1

⎞⎟⎠ Tβ 
→

⎛⎜⎝ 1 0

i(a, b) 1

⎞⎟⎠ .

It is nontrivial to construct a pair of filling curves for any given surface; see
Proposition 3.5 for such a construction. On the other hand, it is quite easy
to find a pair of multicurves that fill a given surface.

Recall from Section 3.5 that, for n ≥ 2, the matrices ( 1 n
0 1 ) and ( 1 0

n 1 )
generate a free group of rank 2 inside SL(2,Z). From this, Theorem 14.1,
and the Hopfian property for free groups [138, Theorem 2.13], it follows
that, when µ ≥ 4, the group 〈TA, TB〉 is isomorphic to a free group of rank
2 and that ρ is injective. Also, one can deduce that 〈TA, TB〉 contains no
periodic elements, and any reducible element it contains is conjugate to a
power of TA, TB or (when µ = 4) to TATB . Finally, one can show that the
image of ρ is a discrete subgroup of PSL(2,R).
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Perron–Frobenius matrices. The proof of Theorem 14.1 relies on the ba-
sic theory of Perron–Frobenius matrices, which we now explain.

We say that a matrix is positive (respectively nonnegative) if each of its
entries is positive (respectively nonnegative). A nonnegative matrix is prim-
itive if it has a power that is a positive matrix.

The following is a fundamental theorem in the study of primitive integer
matrices. See, e.g., [69, Section XIII.2].

THEOREM 14.2 (Perron–Frobenius theorem) Let A be an n × n matrix
with integer entries. If A is primitive, then A has a unique nonnegative unit
eigenvector v. The vector v is positive and has a positive eigenvalue that is
larger in absolute value than all other eigenvalues.

The eigenvector of A in the statement of Theorem 14.2 is called the
Perron–Frobenius eigenvector of A. The eigenvalue in the theorem is called
the Perron–Frobenius eigenvalue for A.

We will now prove Theorem 14.1 as an application of Theorem 14.2.

Proof of Theorem 14.1. The idea for proving the theorem is to find a sin-
gular Euclidean structure (cf. Sections 11.2 and 11.3) on S with respect to
which 〈TA, TB〉 acts by affine transformations. Here an affine map is one
that, in local charts away from the singularities, is of the form Mx + b,
where M is a linear map and b is a vector.

The singular Euclidean structure we construct will have the added feature
that it comes equipped with an orthonormal frame field well defined up to
sign. Thus, given any affine map on S, its derivative can be described by a
2×2 matrix well defined up to sign. The representation ρwill assign to each
affine map in 〈TA, TB〉 its differential: ρ(h) = Dh.

Assume that the components of A and B are in minimal position. Since
A and B fill S, each complementary component of A ∪ B is a disk, each
with at most one marked point. As in Section 11.2, the union A ∪ B gives
a cell decomposition of S, and the dual cell complex C is another cell de-
composition of S (if a 2-cell of the first cell decomposition has a marked
point in its interior, then that marked point is taken to be a vertex of the dual
decomposition C). Each 2-cell of C is a square, corresponding to a point of
intersection of an element of A with an element of B.

In order to go from the cell decomposition C of S to a singular Euclidean
structure on S, we simply need to assign a length to each 1-cell of C . We
can do this by assigning a “width” to each curve of A and to each curve of
B. Then the length of a 1-cell of C is declared to be the width of the unique
curve of A ∪B that intersects it.

Consider the case where A and B are single curves. If we take the length
and width of each square of C to be 1, then TA and TB act affinely on the
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resulting Euclidean structure. In the general case it is a more delicate matter
to find a singular Euclidean structure on which TA and TB act affinely. We
now explain how to do this.

Say that A = {α1, . . . , αm} and B = {β1, . . . , βn}. Let N be the matrix
with (j, k) entry

Nj,k = i(αj , βk).

GivenN , letG be the abstract bipartite graph withm red vertices and n blue
vertices, and Nj,k edges between the jth red vertex and the kth blue vertex.
Then the (j, k) entry of the dth power (NN t)d is equal to the number of
paths in G of length 2d between the jth and kth red vertices in G.

We claim thatNN t is primitive. Indeed, this is equivalent to the statement
that the graphG is connected. IfGwere not connected, that would mean that
A ∪B is not connected, and so the pair {A,B} does not fill S.

We can thus apply the Perron–Frobenius theorem (Theorem 14.2). De-
note the Perron–Frobenius eigenvalue and eigenvector for NN t by µ and
V , respectively. So

NN tV = µV.

Interchanging the roles of A and B, the Perron–Frobenius eigenvalue for
N tN is still µ:

N tNV ′ = µV ′.

Here V ′ is chosen to be µ−1/2N tV . In this case we have the formula V =
µ−1/2NV ′.

The singular Euclidean structure on which TA and TB act affinely can
now be given: assign a width of Vi to αi and a width of V ′j to βj . The union of
rectangles of C intersecting αi is an annulus of width Vi and circumference
µ1/2Vi. Similarly, the annulus along βj has width V ′j and circumference

µ1/2V ′j .
After orienting A and B, the singular Euclidean structure has an obvious

choice of orthogonal frame field well defined up to multiplication by ±1.
Specifically, we choose a positively oriented basis so that the first vector is
parallel toA and the second vector is parallel toB. To see that the ambiguity
of ±1 is really an issue, consider a situation where two curves of A and
B intersect twice with opposite sign and follow the frame field along the
corresponding loop.

In this singular Euclidean structure, the multitwists TA and TB can be
chosen to be affine. These affine maps fix the 1-cells of C parallel to A
and B, respectively. The actions of TA and TB on equivalence classes of
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frame fields are then given exactly by the classes of the matrices given in
the statement of Theorem 14.1. This action can be verified by checking on
the generators.

What we have just described is indeed a well-defined map from 〈TA, TB〉
to the group of affine automorphisms of S. The reason for this is that if an
affine map of S is isotopic to the identity, then it is the identity.

We now finish the proof of the theorem. Let f ∈ 〈TA, TB〉. The classifi-
cation of elements of SL(2,R) induces a classification for SL(2,R), and so
ρ(f) is elliptic, parabolic, or hyperbolic.

If ρ(f) is elliptic, then f has a power that fixes the orthonormal frame
field of S (up to sign) at every point. Also, by construction, f fixes each
singular point of the metric. Thus f has a power that acts as the identity in
the neighborhood of some singular point. Since f is affine, it follows that f
is periodic.

If ρ(f) is parabolic, then it has a 1-dimensional eigenspace, and the eigen-
value for this eigenspace must be 1 (in PSL(2,R), eigenvalues are well de-
fined only up to sign). The eigenspace induces a singular foliation on S. Up
to replacing f with a power, we may assume that (the affine representative
of) f fixes each singularity of the foliation and preserves each leaf emanat-
ing from each singularity. Let L be one such leaf. Since the eigenvalue is 1,
it follows that f fixes L pointwise. If the leaf L had an accumulation point,
then it would follow that f fixes a neighborhood of this accumulation point,
and so (a power of) f would be the identity. Thus we may assume that the
collection of all leaves starting from singular points is a collection of closed
curves in S. As these closed curves are geodesics in the singular Euclidean
metric, they are all simple and homotopically nontrivial. Since f fixes this
collection, it follows that f is reducible. What is more, if we cut S along
the reducing curves, we obtain a foliation that does not have any singulari-
ties. By the Euler–Poincaré formula (Proposition 11.4), the cut surface must
be a collection of annuli. In particular, f is a multitwist about the reducing
curves.

Finally, if ρ(f) is hyperbolic, then the eigenspaces of ρ(f) define two
transverse measured foliations, f multiplies the measure of one foliation
by the larger eigenvalue of ρ(f), and f multiplies the measure of the other
foliation by the smaller eigenvalue of ρ(f) (the foliations have singularities
at the singular points of the Euclidean structure). Thus f is pseudo-Anosov,
and its stretch factor is given by the larger eigenvalue of ρ(f). �

Pseudo-Anosov mapping classes in the Torelli group.Nielsen conjectured
that there are no pseudo-Anosov elements of the Torelli group I(Sg) [168].
That is, he conjectured there are no homeomorphisms φ of a surface S with
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the property that for every simple closed curve α and every n �= 0, the
curves φn(α) and α are homologous but not homotopic.

One application of Thurston’s construction (Theorem 14.1), which ac-
companied the announcement of his proof of the classification [207], is that
the construction makes it easy to see that Nielsen’s conjecture is false: one
just takes each curve in the construction to be separating.

Corollary 14.3 Let g ≥ 2. The Torelli subgroup of Mod(Sg) contains
pseudo-Anosov elements.

The example of a product of twists of separating curves actually lies in
the infinite-index subgroup K(Sg) of I(Sg) (recall from Section 6.5 that
K(Sg) is defined to be the subgroup of Mod(Sg) generated by twists about
separating curves). It is also possible to use the Thurston construction to
find a pseudo-Anosov element of I(Sg)−K(Sg). This is tricky because, in
order to use a bounding pair map, the two curves of the bounding pair must
belong to different multicurves of the construction.

Consider the mapping class T−1
a2 T

−1
a1 Tb2Tb1 , where the curves are as

shown in Figure 14.1. This mapping class is pseudo-Anosov by Theo-
rem 14.1, it is in I(Sg) since it is the product of a bounding pair map with
a pair of Dehn twists about separating curves, and it is not in K(Sg) since it
is not in the kernel of the Johnson homomorphism (see Section 6.5).

a1

a2b1

b2

Figure 14.1 A multicurve that yields a pseudo-Anosov element of I(S3) − K(S3) via the
Thurston construction.

Penner’s construction. Penner gives the following very general construc-
tion of pseudo-Anosov mapping classes.

Theorem 14.4 (Penner’s construction) Let A = {α1, . . . , αn} and B =
{β1, . . . , βm} be multicurves in a surface S that together fill S. Any product
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of positive powers of the Tαi and negative powers of the Tβi
, where each αi

and each βi appear at least once, is pseudo-Anosov.

In the statement of Theorem 14.4, the twists can appear in any order, for
example, Tα1

T−3
β1
T 2
α2

.
Penner has conjectured that every pseudo-Anosov element of the map-

ping class group has a power that is given by this construction [177, p.
195]. This is a difficult conjecture to disprove. For instance, one can use
the Thurston construction to find pseudo-Anosov mapping classes that are
not a priori given by Theorem 14.4. However, how can one tell if there is or
is not another way to write the same element as a product of Dehn twists so
that, in that form, it is given by the Penner construction?

The idea of Penner’s proof of Theorem 14.4 is that one can explicitly find
the train track (see Chapter 15) associated to the square of any such element.
The train track is obtained by “smoothing out” the subset A ∪ B of S; see
[177].

14.1.3 HOMOLOGICAL CRITERION

Let S = Sg or S = Sg,1, with g ≥ 2. We now explain how to detect pseudo-
Anosov mapping classes via the symplectic representation of Mod(S) given
in Section 6.5. The original version of this criterion is due to Casson–Bleiler
[44].

We say that a polynomial is symplectically irreducible over Z if it cannot
be written as a product of two polynomials, each of which is the character-
istic polynomial of a matrix in Sp(2g,Z). In particular, irreducible polyno-
mials are symplectically irreducible.

As noted in Section 6.1, the roots of the characteristic polynomial of a
symplectic matrix come in pairs λ, λ−1. Since the coefficients of a poly-
nomial are symmetric functions of its roots and since the roots are paired,
an easy argument gives that the characteristic polynomial f(x) = xn +
an−1x

n−1 + · · · + a1x + 1 of any integral symplectic matrix is monic and
palindromic, which means that ak = an−k for each k. Thus it is much easier
to be symplectically irreducible than to be irreducible.

Theorem 14.5 Let f ∈ Mod(S) and let Ψ(f) be its image in Sp(2g,Z)
under the standard symplectic representation. Let Pf (x) denote the charac-
teristic polynomial of the matrix Ψ(f). Suppose that each of the following
conditions holds:

1. Pf (x) is symplectically irreducible over Z.

2. Pf (x) is not a cyclotomic polynomial.
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3. Pf (x) is not a polynomial in xk for any k > 1.

Then f ∈ Mod(S) is pseudo-Anosov.

Note that if f satisfies the criteria of Theorem 14.5, then every element of
the coset fI(S) satisfies the criteria, hence is pseudo-Anosov. Of course, in
consideration of Corollary 14.3, there is no hope for any kind of converse to
Theorem 14.5.

Proof. We show that if f is not pseudo-Anosov, then Pf (x) fails to satisfy
one of the given conditions. By the Nielsen–Thurston classification (The-
orem 13.2), if f is not pseudo-Anosov, then either f is periodic or f is
reducible (or both). We deal with each in turn.

If f is periodic of order n, then Ψ(f)n is the identity matrix, and so each
root of Pf (x) is an nth root of unity. Let ζ be one such root. The cyclotomic
polynomial associated to ζ divides Pf (x). Since cyclotomic polynomials
are monic, palindromic, and of even degree, they are characteristic polyno-
mials of symplectic matrices. It follows that Pf (x) is either symplectically
reducible over Z or is a cyclotomic polynomial, and so we are done in this
case.

If f is reducible, then we have two (again, overlapping) subcases: either
some power of f fixes the isotopy class of a nonseparating reducing curve
in S, or f permutes a collection of nontrivial isotopy classes of disjoint
separating curves.

For the first subcase, say fn(c) = c for some isotopy class c of (oriented)
nonseparating simple closed curves in S. Since c represents a nontrivial
element of H1(S; Z), it follows that Ψ(f)n has an eigenvalue of 1, and so
Ψ(f) has an eigenvalue that is an nth root of unity. As in the periodic case,
this implies that Pf (x) is either symplectically reducible or cyclotomic, and
this completes the proof in this subcase.

For the second subcase, suppose that f permutes the isotopy classes of
some collection of disjoint, essential, separating simple closed curves. Let γ
be a simple closed curve in this collection and assume that the other curves
in this collection all lie on one side of γ, that is, γ is an innermost curve in
the collection. Let R be a closed subsurface of S that has γ as its boundary
and that does not contain any other curves in the collection. It follows that
the subsurfaces {f i(R)} are mutually disjoint (there may be only one of
them); see Figure 14.2. Suppose that fn is the smallest positive power of f
that fixes the isotopy class of γ and let T be the complement of the ∪f i(R).
By the Mayer–Vietoris sequence for homology, we have

H1(S; Z) = V0 ⊕ · · · ⊕ Vn−1 ⊕ Vn,
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c = f4(c)

R = f4(R)

f(c)

f(R)

f2(c)

f2(R)

f3(c)

f3(R)

T

Figure 14.2 A mapping class f that fixes a union of disjoint separating curves.

where Vi is the image of H1(f
i(R); Z) in H1(S; Z) under the map induced

by inclusion f i(R)→ S for 0 ≤ i ≤ n−1, and Vn is similarly the image of
H1(T ; Z). This decomposition gives rise to a choice of basis for H1(S; Z);
namely, the first set of basis elements is an arbitrary basis for V0, the next
set of basis elements is the image of the first basis under f∗, and so on for
the first n− 1 factors. Finally, we add an arbitrary basis for Vn. Under such
a basis, Ψ(f) is of the form⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 B 0

I 0 0 0 0

0 I 0 0 0

0 0 I 0 0

0 0 0 0 C

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where C is the induced action of f on H1(T ; Z). In this case

Pf (x) = det(Ψ(f)− xI) = det(B − xnI) det(C − xI).
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If T has genus 0, then C is a 0 × 0 matrix (meaning it is not really there),
and Pf (x) is a polynomial in xn with n > 1. If T has positive genus, then C
is an m×m matrix with m ≥ 1, and so Pf (x) is symplectically reducible
over Z. This completes the proof. �

Explicit examples satisfying the homological criterion. It is not always
easy to tell when a specific product of Dehn twists is pseudo-Anosov. The
homological criterion of Theorem 14.5 can sometimes be useful for doing
this. For example, we now give an infinite list of products of Dehn twists,
and we use Theorem 14.5 to verify that each element in the list is pseudo-
Anosov.

Let ([a1], [b1], [a2], [b2]) be the usual homology basis for S2 (cf. Fig-
ure 6.1). We consider the product

fk = Ta1Tb1Ta1+a2Tb2T
1−k
a2 ,

where, for example, Ta1+a2 denotes the Dehn twist about any simple closed
curve in the homology class [a1] + [a2]. Note that fk does not fall under
either Thurston’s construction or Penner’s construction of pseudo-Anosov
mapping classes.

We compute that Ψ(fk) is equal to(
1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)(
1 0 0 0
−1 1 0 0

0 0 1 0
0 0 0 1

)(
1 1 0 1
0 1 0 0
0 1 1 1
0 0 0 1

)(
1 0 0 0
0 1 0 0
0 0 1 0
0 0 −1 1

)(
1 0 0 0
0 1 0 0
0 0 1 1−k
0 0 0 1

)
=

( 0 1 0 0
−1 0 1 −k

0 1 0 1
0 0 −1 k

)
.

Thus the characteristic polynomial for Ψ(fk) is

Pk(t) = t4 − kt3 + t2 − kt+ 1.

We now check that Pk(t) satisfies the hypotheses of Theorem 14.5 for |k| >
1. First of all, it is obvious that Pk(t) is not a polynomial in tm for any
m > 1. If Pk(t) is a nontrivial product of characteristic polynomials of
symplectic matrices, then it factors into two integral quadratic polynomials,
each of the form

Pk,i(t) = t2 − (λi + λ−1
i )t+ 1 = (t− λi)(t− λ−1

i ),

where λi + λ−1
i is an integer. To check that this is not the case, we consider

the polynomial Qk(x) obtained from Pk(t) by dividing by t2 and substitut-
ing x+ x−1 for t:

Qk(x) = x2 − kx− 1.

The polynomials Pk,i(t) have integral coefficients if and only if the roots
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of Qk(x) are integers. It is easy to check that this is not the case when
k �= 0. It remains to check that Pk(t) is not a cyclotomic polynomial. Since
the degree of the nth cyclotomic polynomial is Euler’s totient φ(n) and
since φ(mn) = φ(m)φ(n) gcd(m,n)/φ(gcd(m,n)), we see that the only
degree 4 cyclotomic polynomials are the fifth, eighth, tenth, and twelfth:
t4 + t3 + t2 + t+ 1, t4 + 1, t4 − t3 + t2 − t+ 1, and t4 − t2 + 1. Thus, if
|k| �= 1, then Pk(t) is not cyclotomic.

14.1.4 KRA’S CONSTRUCTION

Let S be a compact surface of negative Euler characteristic, perhaps with
finitely many punctures. Let Mod(S, p) denote the mapping class group of S
with one marked point p. Recall from Section 4.2 the Birman exact sequence

1→π1(S, p)
Push→ Mod(S, p)→ Mod(S)→ 1.

We say that an element γ of π1(S, p) fills S if every closed curve in S that
represents γ intersects every essential simple closed curve in S.

Theorem 14.6 (Kra’s construction) Let S = Sg,n and assume that
χ(S) < 0. Let γ ∈ π1(S, p). The mapping class Push(γ) ∈ Mod(S, p)
is pseudo-Anosov if and only if γ fills S.

Since each Push(γ) ∈ Mod(S, p) acts trivially on H1(S; Z) when S =
Sg, Theorem 14.6 gives examples of pseudo-Anosov elements of the Torelli
group I(S, p) and hence also provides counterexamples to the conjecture of
Nielsen mentioned earlier in this section.

Kra’s original proof is Teichmüller-theoretic: he shows directly that if γ
fills, then the translation distance of the action of Push(γ) on Teichmüller
space is realized [127]. We now give an elementary proof of Theorem 14.6.
This proof is apparently new, but it was inspired by an algebraic proof due
to Kent–Leininger–Schleimer [121].

Proof. One direction of the theorem is obvious: if γ does not fill, then we
can find an isotopy class of simple closed curves that is fixed by Push(γ).

Now assume that γ fills S. We will show that Push(γ) is not reducible.
Note that whenever γ fills S, then γn fills S for every n �= 0. It then follows
by the same argument that Push(γ)n = Push(γn) is not reducible for any
n �= 0. By the Nielsen–Thurston classification, if an element of Mod(S, p)
has no nontrivial power that is reducible, then it is pseudo-Anosov. We will
thus be able to conclude that Push(γ) is pseudo-Anosov.

Now let δ be any simple closed curve in S − p and let δ̃ denote the full

preimage of δ in the universal cover (̃S, p), by which we mean H2 with an
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infinite collection of marked points (the lifts of p). Any representative of

the mapping class Push(γ) can be lifted to (̃S, p). It is possible to choose
the representative homeomorphism so that its lift to H2 pushes each of the
marked points in H2 along a path lifting of γ. We denote the resulting rela-

tive homeomorphism of (̃S, p) by P̃ush(γ).
Since γ intersects δ essentially, it follows that for any component δ̃i of

δ̃ there is a path lifting of γ that connects marked points on different sides

of δ̃i. Therefore, there are marked points in (̃S, p) that lie between δ̃i and

P̃ush(γ)(δ̃i).
Any isotopy between Push(γ)(δ) and δ relative to p would lift to an

equivariant relative isotopy of P̃ush(γ)(δ̃i) to δ̃i since P̃ush(γ)(δ̃i) is the
only lift of Push(γ)(δ) with the same endpoints at infinity as δ̃i. However,

because there are marked points between δ̃i and P̃ush(γ)(δ̃i), no such iso-
topy exists. This proves the theorem. �

14.1.5 A CONSTRUCTION FOR BRAID GROUPS

The following gives a construction of pseudo-Anosov homeomorphisms for
Mod(S0,n), where S0,n denotes the sphere with n punctures.

Theorem 14.7 Let n be a prime number. If f is an infinite-order element of
Mod(S0,n) that permutes the punctures cyclically, then f is pseudo-Anosov.

Proof. Suppose that f is reducible. Since n is prime, the partition of the
punctures induced by the reducing curves must have sets of different size.
Note that f does not preserve this partition because it may permute the re-
ducing curves. However, there is another nontrivial partition of the punc-
tures where we group together punctures that lie in subsets of the same size
in the first partition. The mapping class f preserves this partition and hence
does not permute the punctures cyclically, contradicting the assumption.
Since f ∈ Mod(S0,n) is also assumed to have infinite order, the Nielsen–
Thurston classification implies that f is pseudo-Anosov. �

In Section 7.1.1, we completely classified the finite-order elements of
Mod(S0,n). Since such elements are easy to avoid, it is not hard to write
down explicit elements of Mod(S0,n) that satisfy the criteria of Theo-
rem 14.7. The construction in the theorem can be easily modified to work
for braid groups: for n prime, if an element of Bn ≈ Mod(Dn) permutes
the n marked points of Dn cyclically and is not a root of a central element,
then it is pseudo-Anosov.
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14.2 PSEUDO-ANOSOV STRETCH FACTORS

To each pseudo-Anosov f ∈ Mod(Sg) we have attached a real number
λ > 1, namely, the stretch factor of f . The set of real numbers that occur
as the stretch factor of some pseudo-Anosov is quite restricted. It is still
not known precisely which λ can occur; indeed, this and related problems
are currently an active area of research. The purpose of this section is to
prove a few fundamental facts concerning stretch factors of pseudo-Anosov
homeomorphisms.

14.2.1 PSEUDO-ANOSOV STRETCH FACTORS ARE ALGEBRAIC INTEGERS

The following theorem appears in Thurston’s announcement of his proof of
the Nielsen–Thurston classification [207].

Theorem 14.8 Let g ≥ 2. If λ is the stretch factor of a pseudo-Anosov
f ∈ Mod(Sg), then λ is an algebraic integer whose degree is bounded
above by 6g − 6.

In his paper Thurston states that the examples of Theorem 14.1 show that
the bound of Theorem 14.8 is sharp [207]. Franks and Rykken showed that
the stretch factor of a pseudo-Anosov mapping class is a quadratic integer
if and only if it is obtained by lifting through an n-fold branched cover over
T 2, as explained in Section 14.1.1 [66].

Theorem 14.8 can be generalized to punctured surfaces Sg,n. We leave
the computation of the maximal degree in this case as an exercise.

In order to prove Theorem 14.8 we will need the definition of the orien-
tation cover for a foliation.

Orientation covers for foliations. Let (F , µ) be a measured foliation of
a surface S and let P be the set of singularities of F . Pick a basepoint
z ∈ S − P . We can use F to define a homomorphism

τ : π1(S − P, z)→ Z/2Z

as follows. Pick one of the two unit vectors vz ∈ TSz that is tangent to
the leaf of F containing z. Given [γ] ∈ π1(S − P, z), pick a representative
loop γ : [0, 1] → S − P with γ(0) = γ(1) = z. Since F is defined
via local charts, it makes sense to continue choosing unit vectors vγ(t) to
obtain a continuous vector field along γ, with each vγ(t) being tangent to
the leaf of F through γ(t). Now vγ(1) is tangent to the leaf of F through z,
so it is equal to either vz or −vz . In the first case define τ([γ]) = 0; in the
latter case define τ([γ]) = 1. The map τ is a well-defined homomorphism
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because any homotopy of loops in S−P gives a continuous deformation of
the corresponding vector fields vγ(t).

The homomorphism τ is called the orientation homomorphism associated
to F . This terminology comes from the fact that τ is precisely the obstruc-
tion to orienting the leaves of F in a consistent way. A measured foliation
is orientable in the sense of Section 11.2 if and only if its orientation homo-
morphism is trivial.

Recall that a measured foliation is locally orientable if and only if each
singularity has an even number of prongs. In agreement with this, if γ
bounds a disk in S containing one singularity, then τ([γ]) = 0 if and only if
that singularity has an even number of prongs.

If F is not orientable, then by extending over the singularities, the orien-
tation homomorphism gives rise to a connected twofold branched cover

p : S̃ → S

called the orientation cover of S for F . What is more, there is an induced
measured foliation (F̃ , µ̃) on S̃ that is orientable, and so that p maps leaves
of F̃ to leaves of F and p∗µ̃ = µ. The branch points of the cover are ex-
actly the preimages under p of the singularities of F with an odd number of
prongs.

An alternate construction. It is possible to construct the orientation cover
S̃ for a foliation F in a way that is similar to the standard construction of
the orientation double cover of a nonorientable manifold. Thus one lets S̃
be the set of pairs (z, v) where z ∈ S − P and v is tangent to the leaf of F
through z. Then one must also define the cover over P .

We will now use orientation covers to prove that stretch factors are alge-
braic integers.

Proof of Theorem 14.8. Let φ be a pseudo-Anosov representative of f and
let (Fu, µ) be its unstable foliation. We first prove the theorem in the special
case that Fu is an orientable foliation. As explained in Section 11.2, this
means that there is a closed 1-form ω on Sg so that

φ∗ω = λω,

where φ∗ denotes the pullback of a differential form.
We claim that the cohomology class [ω] ∈ H1(Sg; R) is nonzero. Indeed,

suppose that ω = dF , where F : Sg → R is a smooth nonzero function.
The formula φ∗ω = λω implies that φ∗F = λF +C , where C is a constant.
However, since Sg is compact, this is impossible (for instance, the differ-
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ence between the maximum and minimum values of F is invariant under
pullback). The claim is thus proven.

Since φ∗ω = λω, we in particular have

φ∗([ω]) = λ[ω],

where φ∗ : H1(Sg; R) → H1(Sg; R) now denotes the induced action of φ
on cohomology. That is, λ is a nontrivial eigenvalue for φ∗. But φ∗ preserves
the integer lattice H1(Sg; Z), so the matrix for φ∗ in the standard basis has
integer entries. The characteristic polynomial for this matrix is thus a 2g ×
2g matrix with integer entries, and it has λ as an eigenvalue. Thus λ is an
algebraic integer of degree at most 2g. Note that the assumption g ≥ 2
implies that 2g < 6g − 6.

We now prove the theorem in the case where Fu is nonorientable. The
idea is to pass to the orientation double cover of Fu and then to quote the
argument above.

Let S̃ be the orientation cover for the unstable foliation Fu for φ. The
induced foliation on S̃ is orientable, and so it is given by a 1-form ω, which
represents a nontrivial element of H1(S̃; R). Since φ preserves Fu, it fol-
lows that φ lifts to a map φ̃ of S̃. Since φ̃∗ω = ±λω, it follows that ±λ is
an eigenvalue of the map induced by φ̃ on H1(S̃; R). Thus λ is an algebraic
integer. We now prove the claimed bound on the degree of this algebraic
integer.

Say the singularities ofFu are s1, · · · , sk. By the Euler–Poincaré formula
(Section 11.2) each singularity contributes at least −1/2 to χ(S), so that
k ≤ −2χ(S). By the Riemann–Hurwitz formula (Section 7.2), we have

χ(S̃) ≥ 2χ(S)− k ≥ 8− 8g.

and so the dimension of H1(S̃; R) is at most 8g − 6. Let τ be the deck
transformation for S̃ over S. Since τ has order 2, its action onH1(S̃; R) has
eigenvalues of 1 and −1, with eigenspaces V+ and V−, respectively.

Now V+ is isomorphic to H1(S; R) ≈ R2g, the isomorphism being given
by τ . Thus the dimension of V− is at most 6g − 6. As Fu is not orientable,
the 1-form ω does not descend to S, and so it is an element of V−. Since φ̃
commutes with τ , we have that V− is an integral subspace invariant under
φ̃∗. Since λ is a root of the characteristic polynomial for the action of φ̃∗ on
V−, the theorem follows. �

Perron numbers. Theorem 14.8 can be strengthened further: each pseudo-
Anosov stretch factor is a special kind of algebraic integer called a Perron
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number. A Perron number is an algebraic integer that is real, that is greater
than 1, and that is larger than the absolute value of each of its Galois con-
jugates. The reason this is true is that every pseudo-Anosov stretch factor is
the Perron–Frobenius eigenvalue of a Perron–Frobenius matrix (the matrix
is the transition matrix for a Markov partition; see below), and all Perron–
Frobenius eigenvalues are Perron numbers.

It has been conjectured that a real number λ > 1 is a pseudo-Anosov
stretch factor if and only if λ is an algebraic unit and all conjugates of λ
except 1/λ have absolute value lying in (1/λ, λ) [152].

A consequence of the fact that every pseudo-Anosov stretch factor is a
Perron number is that pseudo-Anosov stretch factors are completely deter-
mined by their minimal polynomials. This was pointed out to us by Joan
Birman.

14.2.2 THE SPECTRUM OF PSEUDO-ANOSOV STRETCH FACTORS

If a pseudo-Anosov f ∈ Mod(Sg) has stretch factor λ, then any h ∈
Mod(S) conjugate to f is pseudo-Anosov with stretch factor λ. Thus we
can associate to any conjugacy class of pseudo-Anosov mapping classes in
Mod(S) a stretch factor λ.

A conjugacy class in Mod(S) corresponds to a free homotopy class of
loops in moduli space M(S). Here we should recall that we need to con-
sider homotopies in the orbifold sense or to lift to a finite manifold cover of
M(S).

Any pseudo-Anosov f ∈ Mod(S) acts on Teich(S) by translating along
an axis by a Teichmüller distance of 1

2 log(λ2) = log(λ). Since the axis for
f is a Teichmüller line, the free homotopy class in M(S) corresponding to
the conjugacy class of f in Mod(S) contains a closed geodesic. It turns out
that the axis for f is unique, so that this closed geodesic is unique.

Conversely, considering the isometry types (elliptic, parabolic, hyper-
bolic) as in the proof of the Nielsen–Thurston classification, we see that the
only homotopy classes of loops in M(S) that contain a geodesic are those
corresponding to conjugacy classes of pseudo-Anosov mapping classes.

Thus the set

Spec(M(S)) = {log(λ) :λ is the stretch factor of some

pseudo-Anosov f ∈ Mod(S)}

can be thought of as the Teichmüller length spectrum of moduli space
M(S). Of course, knowing Spec(M(S)) is equivalent to knowing the set of
possible stretch factors λ themselves. In analogy with the case of hyperbolic
surfaces, we have the following theorem of Arnoux–Yoccoz [5] and Ivanov
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[104].

THEOREM 14.9 Let g, n ≥ 0. For any D ≥ 1, there exists only finitely
many conjugacy classes of pseudo-Anosov elements of Mod(Sg,n) with
stretch factor at most D. In particular, Spec(M(Sg,n)) is a closed, discrete
subset of R.

Proof. Let S = Sg,n. Let D ≥ 1 be given. Choose ε < δ/D3g−3+n, where
δ has the property that any two distinct geodesics of length less than δ in
any hyperbolic surface homeomorphic to S are disjoint; such a δ exists by
Corollary 13.7.

We claim that if a pseudo-Anosov f ∈ Mod(S) has stretch factor at most
D, then f has an axis in Teich(S) whose projection to M(S) lies entirely
in the ε–thick part Mε(S) (cf. Section 12.4). If this were not true, then
the projection of an axis A(f) for f has some point X lying in M(S) −
Mε(S). In other words, there is a marked hyperbolic surface X ∈ A(f)
whose shortest simple closed curve α has length �X(α) < ε. Consider the
simple closed curves α, f(α), f2(α), . . . , f3g−3+n(α). By Wolpert’s lemma
(Lemma 12.5), each of these curves has length at most

�X(f i(α)) ≤ D3g−3+n · �X(α) < δ for i = 1, . . . , 3g − 3 + n.

Since there are at most 3g− 3+n distinct disjoint isotopy classes of simple
closed curves on S, it must be that two of the curves on the list are isotopic,
which implies that f j(α) is isotopic to α for some j > 0, contradicting the
fact that f is pseudo-Anosov. This proves the claim.

Let K be a compact subset of Teich(S) with the property that K surjects
onto Mε(S). By the previous paragraph, each conjugacy class in Mod(S)
with pseudo-Anosov stretch factor less than or equal to D has a representa-
tive with an axis that intersectsK. Denote this list of representatives by {fi}.
LetK ′ be the set of points in Teich(S) with distance at most log(D)/2 from
K. Since the Teichmüller metric is proper, K ′ is again compact. Each fi
clearly satisfies (fi ·K ′)∩K ′ �= ∅. Since the Mod(S) action on Teich(S) is
properly discontinuous (Theorem 12.2), it follows that {fi} is finite, which
is what we wanted to show. �

It follows from Theorem 14.9 that if we fix g, there is a smallest num-
ber λg that appears as the stretch factor of any pseudo-Anosov element of
Mod(Sg). Penner proved the following beautiful theorem about λg [175]
(see also [151]). In the statement, we write f(x) " g(x) for real-valued
functions f and g with f(x)/g(x) ∈ [1/C,C] for some C > 1.
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THEOREM 14.10 The function λg : N→ R satisfies

log λg " 1/g.

It follows from Theorem 14.10 that
⋃∞
g=1 Spec(M(Sg)) has elements

arbitrarily close to 0. Further, since a multiple of a loop inM(Sg) is another
loop inM(Sg), we see that ∪Spec(M(Sg)) is dense in (0,∞).

14.3 PROPERTIES OF THE STABLE AND UNSTABLE FOLIATIONS

In this section we will explore special properties of those measured foli-
ations that are the stable (or unstable) foliations of some pseudo-Anosov
homeomorphism. Much of our treatment follows that of FLP [61].

The statements in this section are given for compact surfaces. Recall,
though, that a pseudo-Anosov homeomorphism of a surface with boundary
gives a pseudo-Anosov homeomorphism of the surface obtained by collaps-
ing each boundary component to a marked point. Thus all of the results in
this section hold for marked surfaces Sg,n as well.

14.3.1 FIRST PROPERTIES

Since a pseudo-Anosov mapping class contracts the leaves of its stable foli-
ation (with respect to the measure of the unstable foliation), we immediately
obtain the following. In the statement, a peripheral leaf of a foliation is one
contained in the boundary of the surface.

Lemma 14.11 Let F be the stable or unstable foliation of a pseudo-Anosov
homeomorphism of a compact surface S. Let L be any leaf of F that is not
peripheral. Then L is not closed. Also, L does not connect two singularities
of F , two boundary components of S, or a singularity of F to a boundary
component of S.

Let (F , µ) be a measured foliation on a surface S. Any simple closed
curve in S that is not completely contained in a finite union of leaves of F
must have nonzero µ-measure. Lemma 14.11 therefore implies the follow-
ing.

Corollary 14.12 Let (F , µ) be the stable or unstable measured foliation of
a pseudo-Anosov homeomorphism of a compact surface S. Then µ(α) > 0
for every essential simple closed curve α in S.

In Section 11.2, we explained that any foliation that has a singularity with
an odd number of prongs is not orientable. This leaves open the question of
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whether the stable foliation for a pseudo-Anosov homeomorphism can fail
to be orientable. In the proof of Theorem 14.8 we saw that if a pseudo-
Anosov f ∈ Mod(Sg) has an orientable stable foliation, then its action on
H1(Sg; R) has an eigenvalue λ > 1. We thus have the following fact.

Corollary 14.13 The stable and unstable foliations for any pseudo-Anosov
element of the Torelli group I(Sg) are not orientable.

Combined with Corollary 14.3, Corollary 14.13 in particular shows that
there do exist pseudo-Anosov mapping classes with nonorientable stable
foliations. The converse to Corollary 14.13 is not true: one can use the
Thurston construction to find counterexamples.

14.3.2 POINCARÉ RECURRENCE FOR FOLIATIONS

A measured foliation F on a surface S can be viewed as a dynamical sys-
tem. Fix a point p ∈ S and follow the leaf L of F passing through p in one
direction. What does the resulting path look like? Does it always return to
points near p? What does the distribution of return times look like? If F is
the stable foliation of a pseudo-Anosov homeomorphism f , how do these
answers relate to dynamical properties of f? One can phrase these and more
subtle questions in the language of dynamical systems. In this book we will
concern ourselves with only a few fundamental properties. We begin with a
version of Poincaré recurrence. This gives an answer to the first two ques-
tions above.

Theorem 14.14 (Poincaré recurrence for foliations) Let (F , µ) be a
measured foliation on a compact surface S. Let L be an infinite half-leaf.
Then any arc α transverse to F and intersecting L at least once must inter-
sect L infinitely many times.

We emphasize that the measure µ in the hypothesis of Theorem 14.14
is necessary. One can build a (singular) foliation F on S with nonclosed
leaves that can limit to a closed leaf by spiraling about it, in particular, never
returning near their starting points. It is not hard to prove that such spiraling
behavior cannot occur if in addition F is equipped with a transverse measure
µ: one simply uses the spiraling leaves and the isotopy invariance of µ to
build an arc with infinite measure.

We can replace the hypothesis of Theorem 14.14 with the hypothesis that
(F , µ) is the stable (or unstable) foliation for a pseudo-Anosov homeomor-
phism. Indeed, by Lemma 14.11, every nonsingular interior point of such a
foliation is the starting point for an infinite half-leaf.
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Good atlases. Our proof of Theorem 14.14 uses the notion of a good atlas,
which we now define.

We call a subset P ⊂ S a polygon with respect to a foliation F if each of
the following holds:

1. P is a closed, simply connected region in S.

2. P contains at most one singularity of F .

3. ∂P is the union of finitely many arcs that alternate between being
subarcs of leaves F and being arcs transverse to F .

We call the transverse arcs in ∂P the faces of the polygon and call the
other arcs of ∂P the sides. A polygon P is standard if it contains at most
one singularity of F in its interior and if there is one face of P for each
prong of the singularity (two faces total if there are no singularities); see
Figure 14.3.

Figure 14.3 Standard polygons: charts for a good atlas.

Following [61], a good atlas for a foliation F of S consists of two collec-
tions of standard polygons, {Ui} and {Vi}, with the following properties.

1. S is the union of the interiors of the Ui.

2. For each i, the polygon Ui is contained in Vi, and the faces of Ui are
contained in the faces of Vi.

3. For each i, the measure of any transverse arc that connects a side of
Ui to a side of Vi is at least ε0, where ε0 is some fixed number.

4. Each singular point belongs to exactly one Ui.

5. Whenever i �= j, the intersection Ui ∩ Uj is either empty or a rectan-
gle; see Figure 14.4.
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We leave it as an exercise to show that any measured foliation on a compact
surface has a good atlas.

Figure 14.4 The intersections of two charts of a good atlas.

The proof. We now give the proof of Poincaré recurrence for foliations.

Proof of Theorem 14.14. It is enough to show that α ∩ L can never be a
single endpoint of α since we can apply this statement to any subinterval of
α. For the sake of contradiction, assume that α∩L is a single endpoint of α.
Cut S along α. The result is a surface S′ with one new boundary component,
which we call α′. The surface S′ is equipped with an induced measured
foliation that has two singular points on the boundary, corresponding to the
endpoints of the arc α; see Figure 14.5. Note that the boundary component
α′ is transverse to F ′.

cut

Figure 14.5 Cutting along a transverse arc.

Denote by L′ the leaf of F ′ corresponding to L. The leaf L′ starts from
one of these singular points of F ′ on the boundary component α′, say s.
We see that L′ does not return to s, for that would mean that L is closed
and hence not infinite. Our assumptions on L on α ∩ L now translate to the
statement that L′ does not return to ∂S′.

Choose a good atlas forF ′ with constant ε0. Let β be an arc of the bound-
ary component α′ that has s as one of its endpoints and whose µ′-length is
ε < ε0. Further assume that any leaf of F ′ starting from β avoids the singu-
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larities of F ′; this is possible because each leaf starting from a singularity
can hit ∂S′ at most once.

In order to obtain a contradiction, we will prove that we can push β along
the foliation F ′ for infinite time; that is, we can create a strip of (F ′, µ′) of
width ε and of infinite height. To make this formal we define a map

P : β × R≥0 → S′

by the rule that P (x× R≥0) is the entire leaf of F ′ starting from x.
Let Ls be the leaf of F ′ emanating from the singularity s on ∂S′. Given

any particular point ofLs, there is a chart Ui of the good atlas containing that
point. By the properties of a good atlas we obtain an entire strip of width ε in
the interior of the corresponding Vi. It follows that P is an immersion. Since
P never hits a singularity (by the assumption on β) and since P−1(β) =
β × {0}, we see that in fact P is injective.

Since F ′ has no closed leaves and since there are finitely many Vi, the
embedded, infinite strip P (β×R≥0) passes through some Vi infinitely many
times, which is a contradiction. �

Poincaré recurrence shows us that the imposition of a transverse measure
on a foliation greatly constrains what the foliation can look like. It precludes,
for example, the possibility that a leaf spirals toward a singularity or spirals
toward a curve, or that the foliation has a Reeb component (a closed annulus
foliated by its two boundary curves and infinitely many leaves homeomor-
phic to R). The existence of the good atlas is indeed a very strong condition.

14.3.3 EACH LEAF OF THE (UN)STABLE FOLIATION IS DENSE

Our next goal is to prove the basic fact that each nonperipheral leaf of the
(un)stable foliation for a pseudo-Anosov homeomorphism of a surface S is
dense in S. In order to prove this we first give a combinatorial method for
dealing with foliations.

A combinatorial description of the (un)stable foliation. In Chapter 11,
we made the claim that every measured foliation of a surface could be ob-
tained by decomposing the surface into polygons and foliating each polygon
by horizontal lines. We now explain how to do this in the case where F is
the stable or unstable foliation for a pseudo-Anosov homeomorphism. In
this construction all of the polygons will be rectangles.

Let τ be a small arc transverse to F . If τ contains any singularities of F ,
then we assume that it contains exactly one, at an endpoint. Subdivide τ by
placing finitely many extra vertices at the points found by the following two
procedures.
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1. From each endpoint of τ and for each of the two directions along F ,
follow F to the point of first return on τ .

2. From each singularity of F , follow each half-leaf of F to the first
point of intersection with τ .

Denote the closed segments of the resulting subdivision of τ by τi.
By Poincaré recurrence for foliations (Theorem 14.14), any leaf starting

at a point of τ eventually returns to τ . By the assumptions on τ , we can
push each τi along F until it “hits” some τj . The result of this process is
a union of rectangles in S, each foliated horizontally by subarcs of leaves
of F . What is more, the union of these rectangles covers S, for otherwise,
the boundary of the union of rectangles would be a cycle of leaves of F ,
which does not exist by Lemma 14.11. Thus we have obtained the desired
rectangle decomposition.

An example of such a rectangle decomposition on the torus is given on
the left side (and also the right side) of Figure 15.16.

Leaves are dense. The following consequence of Poincaré recurrence for
foliations will be used to show that every pseudo-Anosov homeomorphism
has a dense orbit (Theorem 14.17 below).

Corollary 14.15 Let S be a compact surface and let F be the stable or un-
stable foliation for a pseudo-Anosov homeomorphism of S. Then any non-
peripheral leaf of F is dense in S.

Since the stable and unstable foliations for an Anosov map of T 2 have
irrational slope, Corollary 14.15 is well known in the case of Anosov maps
of the torus.

Proof of Corollary 14.15. Let τ be an arbitrary arc in S that is transverse
to F . It suffices to show that L intersects τ . Using Poincaré recurrence,
we can construct a rectangle decomposition of S from τ as in the previous
subsection. Since L is half-infinite (Lemma 14.11) and since L is contained
in the horizontal foliations of the rectangles, it follows that L must hit one
face of at least one rectangle. But this face is contained in τ by construction,
so we are done. �

The following theorem is much stronger than Corollary 14.15. A mea-
sured foliation is uniquely ergodic if it admits only one transverse measure
up to scale.

Theorem 14.16 Let (Fs, µs) and (Fu, µu) be the stable and unstable foli-
ations for a pseudo-Anosov mapping class on a compact surface. Then Fs
and Fu are uniquely ergodic.
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The proof of Theorem 14.16 relies on the theory of Markov partitions. It
can be found in [61, Exposé 12, Théorème I].

14.4 THE ORBITS OF A PSEUDO-ANOSOV HOMEOMORPHISM

A basic feature of any dynamical system is its set of orbits. For example,
does a transformation have dense orbits? How many periodic points does it
have? Does the system exhibit extremal properties? In this section we give
answers to these questions for pseudo-Anosov homeomorphisms acting on
surfaces.

Existence of a dense orbit. The following theorem can be viewed as a first
indication that f has a kind of mixing behavior.

Theorem 14.17 Let f ∈ Homeo+(S) be a pseudo-Anosov homeomor-
phism of a compact surface S. Then f has a dense orbit in S.

We remind the reader that not every orbit of f is dense; for example,
f fixes the set of singularities of its stable foliation. Indeed, we show in
Theorem 14.19 below that the set of periodic points of f is dense in S. Both
proofs are taken from [61, Exposé 9].

Proof. We first show that if U is a nonempty open set that is invariant under
f , then U is dense in S. By taking a power of f , we may assume without
loss of generality that f fixes the singular points of the stable and unstable
foliations Fs and Fu of f . Let L be a nonperipheral leaf of Fs containing
a singularity s. By Corollary 14.15, L is dense, and so U contains a point x
of L. We may choose a segment J ⊂ U of a leaf of Fu so that x ∈ J . Since
x ∈ L, it follows that

lim
n→∞ f

n(x) = s.

Further, for each n, the segment fn(J) is a subset of a leaf of Fu and is also
contained in U . Since f is stretching along Fu, it follows that, as n → ∞,
the fn(J) approach the union of the singular leaves of Fu bounding the
“sector” containing {fn(x)}. At least one of these singular leaves is nonpe-
ripheral. As each nonperipheral leaf of Fu is dense in S (Corollary 14.15),
it follows that U is dense in S.

Now let {Ui} be a countable basis for S. Each set

Vi =
⋃
n∈Z

fn(Ui)
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is a nonempty open set that is invariant under f and hence is dense in S. By
the Baire category theorem, the set

⋂
i Vi is dense, in particular, nonempty.

Let x be any point in this intersection. Then for each i there is an ni so that
x ∈ fni(Ui) or f−ni(x) ∈ Ui. Since each basis element Ui contains a point
in the orbit of x, it follows that the orbit of x is dense in S. �

Density of periodic points. We will need the following standard tool from
the theory of dynamical systems; see, e.g., [196, p. 7].

Theorem 14.18 (Poincaré recurrence) LetM be a finite measure space
and let T : M → M be measure-preserving. For every A ⊆ M with
positive measure and for almost every x ∈ A, there is an infinite increasing
sequence of integers {ni} so that T ni(x) ∈ A for every i.

Theorem 14.18 is a more general principle than Poincaré recurrence for
foliations (Theorem 14.14), and its proof is much more simple. The two the-
orems are related in that they both address the question: given a dynamical
system, under what conditions can we expect a point to return close to its
starting point?

The following theorem gives another property that pseudo-Anosov home-
omorphisms share with chaotic dynamical systems.

Theorem 14.19 For any pseudo-Anosov homeomorphism φ of a compact
surface S, the periodic points of φ are dense in S.

For a standard linear Anosov homeomorphism M ∈ SL(2,Z) of T 2 =
R2/Z2, the set of periodic points of M is precisely the image of Q2 ⊂ R2

under the projection R2 → T 2; in particular, the set of periodic points of M
is dense in T 2.

Proof. LetFs andFu denote the stable and unstable foliation for φ. Choose
a good atlas with respect to these foliations, as explained on page 410. Let
U be a standard square in the interior of S with respect to the chosen good
atlas. By assumption, U does not contain a singularity of Fu (or, of course,
of Fs). It suffices to show that U contains a periodic point for φ.

Let V be a standard square contained strictly inside U . Consider the area
measure which is locally the product of the transverse measures associated
toFs andFu. As φ leaves this measure invariant, we can apply the principle
of Poincaré recurrence (Theorem 14.18). This gives that for any N there is
an n > N so that φn(V ) ∩ V �= ∅.

Choose a point x1 ∈ V so that φn(x1) ∈ V . Let J be a nontrivial closed
subarc in Fs crossing U at x1. Since φ contracts stable arcs by a fixed
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Figure 14.6 The diagram for the proof of Theorem 14.19.

multiplicative factor, we can (retroactively) choose N large enough so that
φn(J) ⊂ U . Pushing points along the leaves of Fu gives a map from φn(J)
to J . Composing this map with φn gives a map J → J . By the Brouwer
fixed point theorem, this map has a fixed point x2 ∈ J .

Let L be a nontrivial closed subarc of Fu that crosses U through x2. In-
creasing N if necessary (again, retroactively), we can assume that φn(L) ⊃
L. To see that φn has a fixed point in U , it suffices to apply the following
fact to φn.

Let I be an interval of R. If f : I → R is a continuous function
with f(I) ⊇ I , then f has a fixed point.

Thus φ has a periodic point of order n in U . This completes the proof. �

Aminimality property. Nielsen’s original approach to the classification of
surface homeomorphisms involved an extensive analysis of the action of a
homeomorphism on the closed disk H2 ∪ ∂H2. In his announcement [207],
Thurston states that this type of analysis can be used to derive the following
theorem. It states that while the periodic points of a pseudo-Anosov homeo-
morphism φ are prevalent enough to be dense in S, their number is as small
as possible, in the sense stated in the following theorem. Recall that the pe-
riod of a periodic point x for φ ∈ Homeo(S) is the smallest n ≥ 1 for
which φn(x) = x.

Theorem 14.20 Let g ≥ 2 and let φ be a pseudo-Anosov homeomorphism
of S = Sg. For each n > 0, the homeomorphism φ has the minimum number
of periodic points of period n among all homeomorphisms in its homotopy
class.



PSEUDO-ANOSOV THEORY 417

Our proof of Theorem 14.20 follows Handel [80].

Proof. Suppose that ψ ∈ Homeo+(S) is homotopic to φ. Then there is a
canonical bijection

{lifts φ̃ of φ to S̃} ↔ {lifts ψ̃ of ψ to S̃}

where φ̃ is identified with ψ̃ if and only if they induce the same homeomor-
phism of ∂H2. We say that φ̃ and ψ̃ agree on ∂H2.

We first prove that |Fix(φ)| ≤ |Fix(ψ)|. For x ∈ Fix(φ) and y ∈
Fix(ψ), define x to be Nielsen-equivalent to y if there exist lifts φ̃, ψ̃ that
agree on ∂H2 and lifts x̃, ỹ such that x̃ ∈ Fix(φ̃) and ỹ ∈ Fix(ψ̃). We define
Nielsen equivalence between fixed points of φ in a similar way, so that the
Nielsen equivalence classes for φ are precisely the projections to S of sets
of the form Fix(φ̃) for different lifts φ̃ of φ.

We first claim that every fixed point of φ is Nielsen-equivalent to some
fixed point of ψ. To see this, choose a fixed point of φ and let φ̃ be some lift
of φ. Some fixed point of φ̃ projects to the given fixed point of φ. Extend
φ̃ to a homeomorphism of the closed disk H2 ∪ ∂H2 (cf. Theorem 8.7).
Thinking of H2 ∪ ∂H2 as embedded in S2 as a hemisphere, extend φ̃ to
Φ ∈ Homeo+(S2) by reflecting across the equator. Let L(Φ) denote the
Lefschetz number of Φ, that is, the sum of the indices of the fixed points of
Φ. Then (as in Section 6.3)

L(Φ) = 2L(φ̃) + L∞(φ̃),

where L∞(φ̃) is the sum of the indices of the fixed points of φ̃ on the
equator. Let ψ̃ be the unique lift that agrees with with φ̃ on ∂H2 and let
Ψ ∈ Homeo+(S2) be the corresponding doubled homeomorphism as con-
structed above. BothL and L∞ are homotopy-invariants. Further, our choice
of lifts implies that φ̃ and ψ̃ induce the same homeomorphism on ∂H2. Thus

2L(φ̃) + L∞(φ̃) = 2L(ψ̃) + L∞(ψ̃) = 2L(ψ̃) + L∞(φ̃)

(actually, by the formula in Section 6.3, all terms are equal to 2, but we do
not need this). Since φ is pseudo-Anosov, each of its fixed points must have
nonzero index. It follows that L(ψ̃) < 0, and in particular ψ̃ has a fixed
point. This proves the claim.

We now claim that each Nielsen-equivalence class of fixed points for φ
has at most one element. Indeed, if some Nielsen class of fixed points for
φ had at least two elements, we would have some lift φ̃ fixing two points.
But the singular Euclidean metric on S coming from Fs and Fu lifts to a
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singular Euclidean metric on H2. In this metric there is a unique geodesic
between any two points, and φ̃ acts affinely on this metric. Thus if φ̃ fixes
two points, it would have to fix pointwise the unique geodesic between these
two points. This contradicts the fact that φ̃ acts by expansion by λ �= 1,
proving the claim.

Since every fixed point of φ is Nielsen-equivalent to some fixed point of
ψ and since each Nielsen class of fixed points for φ has at most one element,
it follows immediately that |Fix(φ)| ≤ |Fix(ψ)|.

Let k ≥ 1. Since φk and ψk are homotopic and since φk is a pseudo-
Anosov homeomorphism, what we just proved gives that |Fix(φk)| ≤
|Fix(ψk)|. Unfortunately, this does not prove the theorem since some points
of Fix(ψk) might have period strictly less than k.

So suppose that x is a periodic point of φ with period k. We have proved
that ψk has at least one fixed point y that is Nielsen-equivalent to x. We
need to show that y has period k as a periodic point of ψ. So suppose that

ψj(y) = y with j|k. Let φ̃k and ψ̃k be equivariantly homotopic lifts of φk

and ψk fixing lifts x̃ and ỹ of x and y. Such a lift exists since ψ is homotopic

to φ. If ψ̃j is a lift of ψj fixing ỹ, then (ψ̃j)k/j is a lift of ψk fixing ỹ. By the

uniqueness of lifts fixing a given point, it follows that (ψ̃j)k/j = ψ̃k.

Since φ is homotopic to ψ, there is a lift φ̃j of φj that is equivariantly

homotopic to ψ̃j . Taking powers gives that (φ̃j)k/j is equivariantly homo-

topic to (ψ̃j)k/j = ψ̃k. But φ̃k is also equivariantly homotopic to ψ̃k, and

so it must be that (φ̃j)k/j = φ̃k. In particular, φ̃j commutes with φ̃k. It now

follows that φ̃k fixes each point of the φ̃j-orbit of x̃ since

φ̃k
((

φ̃j
)i

(x̃)

)
=

(
φ̃j

)i (
φ̃k(x̃)

)
=

(
φ̃j

)i
(x̃).

As above, a lift of a pseudo-Anosov homeomorphism can fix only one
point of H2. Thus the φ̃j-orbit of x̃ is a single point. Since x has period k, it
must be that j = k. �

Ergodicity. Pseudo-Anosov homeomorphisms satisfy another strong mix-
ing property. Let M be a measure space and T : M → M a measure-
preserving transformation. We say that T is ergodic if the only measurable
sets in M that are invariant under T have either full measure or zero mea-
sure.

A pseudo-Anosov homeomorphism of Sg is itself a measure-preserving
transformation of Sg, as it preserves the area measure induced by its sta-
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ble and unstable foliations. Thus it makes sense to ask if pseudo-Anosov
homeomorphisms are ergodic.

Theorem 14.21 Let g ≥ 2 and let φ : Sg → Sg be a pseudo-Anosov home-
omorphism. Then φ is ergodic with respect to the area measure induced by
its stable and unstable foliations.

Pseudo-Anosov homeomorphisms satisfy an even stronger property than
ergodicity—they are Bernoulli processes. For a proof of this stronger prop-
erty, see FLP [61, Exposé 10, Section VI].

14.5 LENGTHS AND INTERSECTION NUMBERS UNDER ITERATION

Let A ∈ SL(2,Z) have two distinct real eigenvalues λ > 1 and λ−1 and
let v ∈ R2 be any vector that does not lie in the eigenspace for λ−1. As
discussed above, we have

lim
n→∞

n
√
|An(v)| = λ.

We say that |An(v)| “grows like” λn. It follows that the length of any simple
closed curve in T 2 grows like λn under iteration of an Anosov homeomor-
phism. Here we have used the fact that the eigenspaces for a hyperbolic
element of SL(2,Z) have irrational slope, whereas the lines in R2 that are
lifts of simple closed curves in T 2 have rational slope.

We also know that if vu denotes one of the two unit vectors in the
eigenspace for λ, then

lim
n→∞

An(v)

|An(v)| = ±vu.

On the torus, this means that if φ is an Anosov map of T 2 and α is a geodesic
simple closed curve in T 2, then the slopes of the simple closed curves φn(α)
approach the slope of the unstable foliation for φ.

Our goal in this section is to prove that analogous results hold for pseudo-
Anosov homeomorphisms of higher-genus surfaces. In the general case,
eigenvalues will be replaced by stretch factors, and eigendirections by mea-
sured foliations.

For both theorems we need a definition. Let a be an isotopy class of sim-
ple closed curves in S and let (F , µ) be a measured foliation on S. We
define

I((F , µ), a) = inf{µ(α) : α is in the homotopy class a}
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where the closed curves α in the infimum are not assumed to be simple.

LEMMA 14.22 Let φ be a pseudo-Anosov homeomorphism of a compact
surface S. If (F , µ) is the stable foliation for φ and a is any isotopy class of
essential simple closed curves in S, then I((F , µ), a) > 0.

Note that Lemma 14.22 does not follow immediately from Corol-
lary 14.12 since the definition of I((F , µ), a) involves an infimum. How-
ever, Lemma 14.22 can be deduced from part (2) of Proposition II.6 in Ex-
posé 5 of FLP [61].

Lengths under iteration. We are ready to give the first theorem, about
lengths of curves. If ρ is a Riemannian metric on a compact surface S and a
is a homotopy class of simple closed curves in S, then we denote by �ρ(a)
the length of a shortest representative in the homotopy class.

Theorem 14.23 Let g ≥ 2. Suppose that f ∈ Mod(Sg) is pseudo-Anosov
with stretch factor λ. Let ρ be any Riemannian metric on Sg. If a is any
isotopy class of simple closed curves in Sg, then

lim
n→∞

n

√
�ρ(fn(a)) = λ.

Proof. Let µs and µu be the measures associated to the stable and unstable
foliations for f and let

dµ =
√

(dµs)2 + (dµu)2

be the corresponding singular Euclidean metric.
We first prove the analogue of the theorem for the metric µ. Let �µ denote

the length function with respect to µ. For an isotopy class b, the number
�µ(b) is defined in the same way as for a Riemannian metric.

Let α be a representative simple closed curve for the isotopy class a and
let φ be a pseudo-Anosov homeomorphism representing f . From the defini-
tions we have

�µ(f
n(a)) ≤

∫
φn(α)

dµs +

∫
φn(α)

dµu = λn
∫
α
dµs + λ−n

∫
α
dµu

and

�µ(f
n(a)) ≥ I((Fs, µs), φn(a)) = λnI((Fs, µs), a).

Lemma 14.22 gives that I((Fs, µs), a) > 0. We thus have

lim
n→∞

n

√
�µ(φn(α)) = λ.
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To complete the proof of the theorem, we need to relate the metric µ to
the given metric ρ. First, any two norms on a vector space are comparable,
by which we mean there is a constant M so that the length of a vector with
respect to the two different norms differs by a multiplicative factor of at
most M . It follows that if we prove the theorem for any one Riemannian
metric ρ0, then we have proven it for the given Riemannian metric ρ.

Unfortunately, the metric for which we have proven the theorem, namely,
µ, is not Riemannian. However, we would like to apply the same kind of
reasoning to say that ρ is comparable to µ. More precisely, the theorem will
follow once we prove that there exist constants m and M so that

m ≤ �ρ(c)

�µ(c)
≤M

for every isotopy class of simple closed curves c in Sg.
Let {si} be the set of singularities of the foliation Fs. Choose a radius

r small enough so that the closed balls B(si, r) are embedded, pairwise
disjoint, and small enough so that the geodesic (in either the ρ- or the µ-
metric) between two points on ∂B(si, r) lies entirely in B(si, r).

Since norms on a vector space are comparable in the above sense, there
are constants m′ and M ′ so that if β is any rectifiable curve, then in the
complement C of the union of the B(si, r/2), we have

m′ ≤ �ρ(β ∩C)

�µ(β ∩ C)
≤M ′. (14.1)

Note that in (14.1) we are using �ρ and �µ to denote the length of actual
paths, as opposed to infima.

Now we must estimate lengths of paths lying near the singularities. We
claim that there exist constants m′′ andM ′′ so that if x and y are any distinct
points in the same ∂B(si, r), then

m′′ ≤ dρ(x, y)

dµ(x, y)
≤M ′′. (14.2)

If x and y are sufficiently close, then the inequalities (14.1) apply.
For (x, y) outside an open neighborhood of the diagonal of ∂B(si, r) ×
∂B(si, r), the fraction in the middle of (14.2) is a well-defined, continuous,
positive function on a compact set. The claim follows.

Set m = min{m′,m′′} and M = max{M ′,M ′′}.
Let γ be a ρ-geodesic representative for c and let γ′ be the curve obtained

from γ by replacing each segment of the intersection ∪B(si, r)∩ γ with the
corresponding µ-geodesic segment. Combining the two inequalities (14.1)
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and (14.2) gives

�ρ(γ)

�µ(γ′)
≥ m.

Thus

�ρ(c) = �ρ(γ) ≥ m�µ(γ
′) ≥ m�µ(c).

For the other direction, choose γ to be a µ-geodesic for c and let γ′ be the
curve obtained by substituting ρ-geodesics inside theB(si, r). We then have

�ρ(c) ≤ �ρ(γ
′) ≤M�µ(γ) = M�µ(c).

This completes the proof of the theorem. �

Intersection numbers under iteration. We now explain what it means
for a pseudo-Anosov homeomorphism to pull a simple closed curve in the
direction of its unstable foliation. We will come back to this idea in Sec-
tion 15.1.

Theorem 14.24 Let g ≥ 2. Let f ∈ Mod(Sg) be a pseudo-Anosov map-
ping class. Denote the stable and unstable foliations of f by (Fs, µs) and
(Fu, µu). Normalize so that the area of Sg with respect to the area form
induced by µu and µs is equal to 1. Then, for any two isotopy classes of
curves a and b in Sg, we have

lim
n→∞

i(fn(a), b)

λn
= I((Fs, µs), a) I((Fu, µu), b).

In particular,

lim
n→∞

n
√
i(fn(a), b) = λ.

For a proof of Theorem 14.24, see [61, Exposé 12, Section IV].
Let MF denote the set of equivalence classes of measured foliations on

a surface S where the equivalence relation is generated isotopy and White-
head moves (see Figure 15.11).

Let S denote the set of isotopy classes of simple closed curves in the
surface S. Since Whitehead moves and isotopy do not affect the function I ,
we can think of I as giving a map

I :MF → RS .
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The geometric intersection number i also gives a map

S → RS ,

where a maps to i(a, ·).
With this setup, the notion of convergence to a measured foliation hinted

at above can be formalized to give the following immediate corollary of
Theorem 14.24. In the statement, P (RS) is the space of projective classes
in RS , where two functions S → R are defined to be projectively equivalent
if they differ by a constant multiple. We use brackets to denote the projective
class of an element of RS .

Corollary 14.25 Let g ≥ 2. Let f ∈ Mod(Sg) be a pseudo-Anosov map-
ping class. Denote the unstable foliation for f by (Fu, µu). Then for any
isotopy class a of simple closed curves in Sg, we have

lim
n→∞[fn(a)] = [(Fu, µu)]

in P (RS).



Chapter Fifteen

Thurston’s Proof

In this chapter we give some indication of how Thurston originally discov-
ered the Nielsen–Thurston classification theorem. We begin with a concrete,
accessible example that illustrates much of the general theory. We then pro-
vide a sketch of how that general theory works. Our goal is not to give a
formal treatment as per the rest of the text. Rather, we hope to convey to the
reader part of the beautiful circle of ideas surrounding the Nielsen–Thurston
classification, including Teichmüller’s theorems, Markov partitions, train
tracks, foliations, laminations, and more.

15.1 A FUNDAMENTAL EXAMPLE

σ2σ−1
1

Figure 15.1 The mapping class f is σ−1

1 σ2.

We start by giving an in-depth analysis of a fundamental and beautiful
example that has gained a certain amount of fame in the world of low-
dimensional topology and dynamical systems.

Let S0,4 denote the sphere with four punctures. Taking one of the punc-
tures to lie at infinity, we can regard S0,4 as the thrice-punctured plane.
The surface S0,4 is the simplest surface that admits a pseudo-Anosov home-
omorphism. There is a particularly simple pseudo-Anosov mapping class
f ∈ Mod(S0,4) given by

f = σ−1
1 σ2,
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where σ2 and σ−1
1 are the half-twists indicated in Figure 15.1. One sense in

which f is simple is that its conjugacy class uniquely realizes the smallest
stretch factor of any pseudo-Anosov mapping class in Mod(S0,4).

15.1.1 ITERATION, SIMPLE CLOSED CURVES, AND TRAIN TRACKS

Thurston’s first main idea is to understand homeomorphisms by iterating
them on simple closed curves. We now do this for f , keeping track of what
happens to a chosen isotopy class c of simple closed curves in S0,4 as f
is iterated. Such an isotopy class c is shown in Figure 15.2 along with its
images f(c) and f2(c).

σ2

σ2 σ−1
1

σ−1
1f(c)

c

f2(c)

Figure 15.2 The first two iterates of c under f .

At this point the figures become harder to draw, as the number of strands
is increasing quite rapidly as we iterate f . The number of horizontal strands
in the figure for f2(c) is 10 (count them!). The number of horizontal strands
for f5(c) is 188, for f10(c) is 21,892, and for f100(c) is

907947388330615906394593939394821238467652.

One concrete way to measure the complexity of the curves fn(c) is to draw
horizontal rays from the left- and right-hand punctures that travel outward,
and to count the number of times these rays intersect fn(c). When we do
this, we see that fn(c) intersects the left- and right-hand rays F2n+1 and
F2n times, respectively, where F0 = 0, F1 = 1, and Fi = Fi−1 + Fi−2 is
the ith Fibonacci number. In particular, the number of strands in a picture
of fn(c) grows exponentially. What is worse, this is just one isotopy class,
but we would like to understand how f acts on all isotopy classes of simple
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closed curves in S0,4.
Thurston discovered a simple but powerful combinatorial device that

completely solves the problem. The first observation is that the isotopy class
f2(c), as shown in Figure 15.2, can be represented by the data in Figure 15.3
as follows. Replace n parallel strands of f2(c) by a single strand labeled
n; we can think of this as pinching down (or homotoping) parallel strands
into one strand and labeling this strand with an integer that records how
many strands are pinched together. Sometimes this process is called zip-
ping strands together. If this is to be done in a continuous manner so as
not to cross the punctures, then at four points it will be necessary for the
pinched-together strands to split into two strands, as shown in Figure 15.3.
We emphasize that this process is not canonical; for instance, by drawing
the figure differently, different parts of the curve might look parallel.

After performing this process of homotoping together parallel strands, we
obtain a finite graph τ embedded in S0,4 with the following properties:

1. Each edge of τ is the smooth image of an interval.

2. At each vertex of τ there is a well-defined tangent line; the data of a
vertex with its tangent line is called a switch. The (half-)edges meeting
each switch are divided into two sets, one on each side of the switch.

3. Each edge of τ is labeled with a nonnegative integer called a weight.
We denote the set of weights by ν, and we sometimes refer to ν as a
measure.

4. The weights satisfy the switch condition at each switch: the sums of
the weights on each side of the switch are equal to each other.

The pair (τ, ν) is called a measured train track for f2(c). The graph τ itself
is called simply a train track. We also say that τ carries the isotopy class
f2(c). In general, we say that a multicurve b is carried by the train track τ if
τ can be obtained by performing the above zipping procedure on b.

If a measured train track τ carries an isotopy class of a multicurve b with
weights ν, then we can reconstruct b from the pair (τ, ν) as follows. Replace
each edge of τ of weight n with n parallel line segments. After doing this
we see that the switch condition ensures that there is a well-defined way
to glue the endpoints of all segments coming from the edges incident to
that particular switch. The result is a finite union of disjoint simple closed
curves, which one can check lies in the isotopy class b. We encourage the
reader to perform this process for the curve f2(c) carried by the train track
(τ, ν) given in Figure 15.3.

We also note that four of the weights on the edges of the measured train
track (τ, ν) for f2(c) are redundant. Indeed, given the edges with weights 6
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2 3

4

5

610

Figure 15.3 Converting f2(c) into a train track.

and 4, the weights of all the other edges are completely determined by the
switch conditions.

15.1.2 THE LINEAR ALGEBRA OF TRAIN TRACKS

The power of the above setup is that it is easy to keep track of the isotopy
class of any simple closed curve carried by τ under any number of iterations
of f . To see how to do this, consider the train track τ endowed with an
arbitrary measure ν. Such a measure is given by two weights x and y, as
shown in Figure 15.4. In these (x, y)-coordinates the curves c, f(c), and
f2(c) are given by (0, 2), (2, 2), and (6, 4), respectively.

x

x

x

x y

y

y

2x+ y

x+ y

x+ y

σ−1
1σ2

Figure 15.4 Applying the map f directly to the train track.

We now apply f to the measured train track (τ, ν) directly. On the im-
age f(τ, ν), we then perform the pinching (or zipping) process as described
above: homotope parallel edges of f(τ, ν) together, keeping track of the
sum of the weights of the edges that are homotoped to each single edge.
This process is illustrated in Figure 15.4. The result will clearly be another
train track. In this case something very special happens: the resulting mea-
sured train track has the same underlying train track τ but with different
weights! See Figure 15.4.
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We describe this situation by saying that f(τ, ν) is carried by τ . The
weights transform as follows: the edge of (τ, ν) with weight x has weight
2x+ y in f(τ, ν), while the edge with weight y has weight x+ y in f(τ, ν).
As noted above, the weights on all other edges are determined by the weights
on these two edges. Thus the homeomorphism f acts on the original mea-
sured train track (τ, ν) by changing the edge weights in a linear way. This
action can therefore be completely described by the train track matrix for f :

M =

⎛⎜⎝ 2 1

1 1

⎞⎟⎠ .

This gives us a quick and simple way to encode the action of iterates of
f not only on c but also on any isotopy class of simple closed curves that is
carried by τ , as follows. If b is an isotopy class that corresponds to the train
track τ with weights (x, y) = (x0, y0), then fn(b) is the isotopy class of
simple closed curves corresponding to τ with weights (xn, yn) given by⎛⎜⎝ xn

yn

⎞⎟⎠ =

⎛⎜⎝ 2 1

1 1

⎞⎟⎠
n⎛⎜⎝ x0

y0

⎞⎟⎠ .

The weights (xn, yn) then determine a measured train track (τ, νn) via the
switch conditions on τ . From (τ, νn) we can directly build the simple closed
curve fn(b), as above. The image fn(c) is the special case obtained by
plugging in (x0, y0) = (0, 2).

The train track matrix M has eigenvalues

λ =
3 +

√
5

2
and λ−1 =

3−
√

5

2

with eigenvectors

vλ =

⎛⎜⎝ 1+
√

5
2

1

⎞⎟⎠ and vλ−1 =

⎛⎜⎝ 1−√5
2

1

⎞⎟⎠ .

Since 1−√5
2 is negative, the eigenvector vλ−1 does not correspond to a mea-

sured train track. The eigenvalue λ > 1 with its eigenvector vλ is the ge-
ometrically meaningful eigenvector for us. It tells us, for example, that the
norm of the vector (xn, yn) grows like λn as n tends to infinity.

Since any essential simple closed curve in S0,4 intersects τ , we can see,
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for example, that the geometric intersection number of any isotopy class of
simple closed curves b with fn(c) grows like λni(b, c), as promised by The-
orem 14.24. Indeed, our discussion here suggests a proof of that theorem.
Note that it is the case that the eigenvalue λ = 3+

√
5

2 is the stretch factor
of f ; in fact, f is the image of the ( 2 1

1 1 ) map of T 2 under the hyperelliptic
involution, as in Section 9.4.

15.1.3 FOUR TRAIN TRACKS SUFFICE

We now have a detailed picture of how f acts on every isotopy class of sim-
ple closed curves carried by τ . However, not every isotopy class of simple
closed curves in S0,4 is carried by τ , even varying (x, y) arbitrarily. Con-
sider, for example, the isotopy class of a convex simple closed curve sur-
rounding the second and third punctures in the plane. How can we analyze
the action of f on such curves?

The answer is simple: every simple closed curve in S0,4 is clearly carried
by some train track. What is more, we claim that there exist four train tracks
τ1, τ2, τ3, τ4 in S0,4 with the property that every simple closed curve in S0,4

is carried by one of the τi. We now prove this claim.

Figure 15.5 Any simple closed curve in S0,4 can be broken up into canonical pieces.

Up to isotopy, any simple closed curve γ in S0,4 can be drawn inside the
union of the three squares shown at the top of Figure 15.5. Up to further
isotopy, we can assume that γ does not form any bigons with the vertical
edges of the three squares. At this point, a connected component of the in-
tersection of γ with one of the squares is one of the six types of arcs shown
at the bottom of Figure 15.5. Since γ is essential, it cannot use both types
of dashed arcs, for otherwise γ would be isotopic to the nonessential curve
that surrounds all three punctures. Since the other two types of arcs in the
middle square intersect, γ can use at most one of those.
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We therefore see that there are four types of simple closed curves in S0,4,
depending on which of each of the two pairs of arcs they use in the middle
square. This information is exactly the same as saying that any simple closed
curve in S0,4 is carried by one of the train tracks shown in Figure 15.6.

a = (0, 2)

b = (2, 0)

c = (0, 2)

d = (2, 0)

Figure 15.6 PMF for S0,4.

The four train tracks τ1, τ2, τ3, τ4 in Figure 15.6 give four coordinate
charts on the set of isotopy classes of simple closed curves in S0,4. Each
coordinate patch corresponding to a train track τi is given by the weights
(x, y) of two chosen edges of τi. If we allow the coordinates x and y to
be arbitrary nonnegative real numbers, then we obtain for each τi a closed
quadrant in R2. Arbitrary points in this quadrant are measured train tracks.
Notice that in some cases we can put weights on two different train tracks
and (after deleting train track edges with weight zero) obtain equivalent
measured train tracks. By identifying these measured train tracks, we ob-
tain an identification of the four quadrants along their edges. The resulting
space is homeomorphic to R2; see Figure 15.6. The integral points in this
R2 correspond to isotopy classes of multicurves in S0,4.

15.1.4 THE ACTION ON PMF

The action of f on the isotopy classes of simple closed curves in S0,4 in-
duces an action on the integer points of R2. This action extends to a home-
omorphism of R2; indeed, just as every simple closed curve in S0,4 is car-
ried by one of the τi, every measured train track is equivalent to another
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measured train track that is carried by one of the τi (see below). Since this
homeomorphism commutes with the multiplicative action of R+ on R2, it
induces a homeomorphism of the space of rays in R2, endowed with the
appropriate topology. This space of rays is homeomorphic to a circle, which
we denote by PMF (the notation will be explained in the next section); see
Figure 15.6. Note that the rational points of PMF represented by pairs of
integers (p, q) correspond to isotopy classes of multicurves in S0,4.
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a

b

c

d

u = ( 1

2
, 1

2
)

v = ( 3

4
, 1

4
)

f(a)

f(b)

f(u)

f(v)

f(c) = ( 1

2
, 1

2
)

f(d) = ( 2

3
, 1

3
)

Figure 15.7 The action of f on PMF for S0,4.

Figure 15.7 gives a partial depiction of the action of f on PMF using
the coordinates and notation established in Figure 15.6. It turns out that f
acts on PMF with source-sink dynamics, with the two fixed points of f in
PMF corresponding to the stable and unstable foliations for the pseudo-
Anosov f on S0,4. Let us explain how this works for the fixed point that is a
sink, corresponding to the unstable foliation Fu for f .

We saw in the last section that f fixes the train track τ corresponding to
the upper-right quadrant of PMF . We also saw that f acts on the weights
of τ by the matrix M and that the unique (up to scale) positive eigenvector

for this action is
(

1+
√

5
2 , 1

)
, with eigenvalue 3+

√
5

2 . What this means for

the action of f on PMF is that f leaves the upper-right quadrant of R2

invariant and acts on it via M . The eigenvector
(

1+
√

5
2 , 1

)
gives a fixed

point for the action of f on PMF . The fixed point is represented by the
measured train track (τ, νu) with measure νu given by the weights (x, y) =(

1+
√

5
2 , 1

)
and

f(τ, νu) = (τ, λνu).
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What is more, the fixed point represented by (τ, νu) corresponds to a pro-
jective class of measured foliations on S0,4, invariant under the action of
the pseudo-Anosov homeomorphism in the homotopy class of f . To con-

struct the foliation, one first uses the weights (x, y) =
(

1+
√

5
2 , 1

)
to find

the weights on all other branches of τ . For each edge of weight r > 0,
build a rectangle of width 1 and height r with measured foliations given
by the 1-forms dx and dy. The switch conditions imply that these rectan-
gles can be glued together in a consistent way to give a foliation of S0,4

minus four once-marked disks; see Figure 15.8. Collapsing each disk to its
marked point gives a measured foliation on S0,4. Since f(τ, νu) = (τ, λνu),
this measured foliation is indeed the unstable foliation Fu for the pseudo-
Anosov homeomorphism representing f .

Figure 15.8 The first step in converting a train track into a foliation.

The fixed point of f in PMF corresponding to the source can be de-

scribed in a similar way. It is the projective train track given by
(

1+
√

5
2 , 1

)
in the coordinates of the bottom-left quadrant in Figure 15.6. If we allow the
(x, y)-coordinates in this quadrant to vary in such a way that 1 < x/y < 2,
then we obtain an open interval that is sent by f into the bottom-left quad-
rant. On this coordinate patch one can check that f acts by the transition
matrix ⎛⎜⎝ 1 −1

−1 2

⎞⎟⎠ .

One of the two eigenvectors for this matrix is positive; its corresponding
eigenvalue is λ−1 = 3−√5

2 . The (x, y)-coordinates of this positive eigen-
vector determine a measured train track invariant by f . This in turn deter-
mines a measured foliation whose measure is multiplied by λ−1 under f .
This foliation is nothing but the stable foliation Fs for f .

The reason we call the fixed point Fu ∈ PMF a source for f and
Fs ∈ PMF a sink for f is that, for any point z ∈ PMF − Fs and
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any neighborhood U of Fu, we have that fn(z) ∈ U for large enough n.
As a result, every point of PMF −Fs is repelled from the source Fs. We
remark that, while a sink is considered to be a stable point in a dynamical
system, the reason that the sink is the unstable foliation is due to the nature
of the action of f on the surface; see Section 13.2.

While PMF has a seemingly natural structure as a simplicial complex
with four edges, f does not act simplicially on PMF . Indeed, the source-
sink dynamics of f on PMF precludes this. Consider, for example, the
action of f on the edge in PMF corresponding to the lower-left quadrant
in R2. In the notation of Figure 15.7, we have that f(u) = a and that f fixes
the source point Fs. Thus, using the projective coordinates of this quadrant,
the point f(1, 1 + ε) for ε small enough lies in the upper-left quadrant and
f(1 + ε, 1) remains in the lower-left quadrant.

It may seem counterintuitive that different weights on the same train track
can lead to combinatorially different tracks after applying f , but the se-
quences of pictures in Figures 15.9 and 15.10 explain this phenomenon.

ε

unzip

f

1 + ε

1 + ε

2 + ε

1

1

1

Figure 15.9 Finding the image of the point (1, 1 + ε) from the bottom-left quadrant.

In the calculations of f(1, 1 + ε) and f(1 + ε, 1), we are forced to use an
“unzipping” procedure. If we read the arrows backward we see that this is
just the opposite of the zipping procedure used earlier. The key point as to
why we get different combinatorial train tracks in Figures 15.9 and 15.10 is
that, when we unzip, we are forced to “peel off” the track of smaller weight.
There is not enough track to peel off the one of larger weight, and so we
get different unzipping sequences and hence different combinatorial types
of tracks at the end.

The above description gives us a fairly thorough understanding of f and
its action on all isotopy classes of simple closed curves in S0,4, as well as
on all measured foliations on S0,4. Continuing this line of reasoning, one
can prove that the source-sink dynamics do actually hold. In particular, one
can check that for any isotopy class c of simple closed curves, the curves
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ε

ε

unzip

unzip

f

1 + ε

1 + ε 1 + ε

1− ε

2 + ε

1

1

1

Figure 15.10 Finding the image of the point (1 + ε, 1) from the bottom-left quadrant. We
warn the reader that it requires a clever isotopy to realize the second arrow.

fn(c) converge projectively to the projective class of the unstable measured
foliation Fu.

15.2 A SKETCH OF THE GENERAL THEORY

There are several big ideas to take away from the example in Section 15.1.
The first idea is that one can understand what a homeomorphism “does” to a
surface by looking at what it does to a single simple closed curve under iter-
ation. This is analogous to the fact that one can approximate the eigenvector
for a Perron–Frobenius matrix M by iterating M on almost any vector v;
indeed, Mn(v) converges exponentially quickly to the Perron–Frobenius
eigenspace of M .

Thurston’s remarkable discovery is that this analogy can be made into a
reality. For any pseudo-Anosov f ∈ Mod(S), one can find an invariant train
track τ for f . One can then compute the associated train track matrixM . The
matrix M is Perron–Frobenius and so has a unique largest eigenvalue λ > 1
with positive eigenvector v. The eigenvalue λ is precisely the stretch factor
of f . The eigenvector v specifies a measure on τ from which the unstable
foliation for f can be built directly, just as is explained in Section 15.1.
The invariant train track τ for f is thus a combinatorial tool that converts
an a priori nonlinear problem where, for example, iteration is difficult to
understand, into a linear problem about which we have essentially complete
knowledge.

What is more, the analysis carried out in Section 15.1 can be used to give
a proof of the Nielsen–Thurston classification. Thurston’s original proof of
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the Nielsen–Thurston classification was actually phrased in terms of mea-
sured foliations, not train tracks. Train tracks are a technological innovation
of Thurston’s that appeared after his original proof. Since train tracks are
combinatorial objects, they are easier to work with in practice than the more
abstract measured foliations. On the other hand, some aspects of the general
theory are more easily dealt with in the context of measured foliations. As
such, we will present Thurston’s original approach, which uses measured
foliations.

We already explained how to convert a measured train track into a mea-
sured foliation, and it is not too hard to see that any measured foliation can
be pinched down to a measured train track. Thus in some sense the two the-
ories are equivalent. Indeed, it is possible to present the entire proof of the
Nielsen–Thurston classification in the language of measured train tracks;
see the book by Penner and Harer for the details [176].

15.2.1 THURSTON’S ORIGINAL PROOF

In this subsection we present an outline of Thurston’s original proof of
the Nielsen–Thurston classification (Theorem 13.2). We start with a broad
overview and then proceed to explain more of the details. The full details of
this approach are given in the book FLP [61].

Figure 15.11 A Whitehead move.

Let g ≥ 2 and let S = Sg. One space associated to the surface S is the
Teichmüller space Teich(S). Another important space associated to S is the
measured foliation spaceMF(S), which is the space of equivalence classes
of measured foliations, where the equivalence is generated by isotopy and
by Whitehead moves; see Figure 15.11.

Let S denote the set of isotopy classes of essential simple closed curves
in S. One key idea in the approach we are describing is that by taking
lengths/measures of curves, both Teich(S) andMF(S) map disjointly and



436 CHAPTER 15

injectively into RS≥0 − 0, the space of nonzero functions S → R≥0.
There is a natural action of R+ on RS≥0−0. Taking the quotient of RS≥0−0

by this action gives a projective space P (RS). The image of MF(S) in
P (RS) is denoted by PMF(S). It is homeomorphic to a sphere of di-
mension 6g − 7. We will also see that the projectivization map restricted
to Teich(S) is a homeomorphism onto its image; we will also denote this
image in P (RS) by Teich(S).

What is more, the subspaces Teich(S) and PMF(S) of P (RS) are dis-
joint, and their union Teich(S) ∪ PMF(S) has the topology of a closed
ball of dimension 6g − 6. Each element of Mod(S) acts continuously on
this ball, and so the Brouwer fixed point theorem implies the existence of a
fixed point. The Nielsen–Thurston classification is then obtained by analyz-
ing the various possibilities for this fixed point.

We now explain more of the details of this idea. As much as possible, we
give references to the appropriate points in FLP.

Figure 15.12 Two types of good measured foliations on a pair of pants. On the left-hand side
the measures of the three boundary components satisfy the triangle inequality.
On the right-hand side the measure of the outer curve is greater than the sum
of the other two measures.

Step 1 (Measured foliations on a pair of pants). Just as we showed
Teich(P ) ≈ R3, we now explain that there is a certain subset of MF(P )
that is homeomorphic to R3

≥0 − 0. Let MF0(P ) denote the subset of
MF(P ) represented by foliations F where no boundary component of P
is a nonsingular leaf. We claim that

MF0(P ) ≈ R3
≥0 − 0

(see [61, Exposé 6, Théorème II.4]). Indeed, given any nonzero (s, t, u) ∈
R3
≥0, we can find a unique element ofMF0(P ) where the measures of the

three boundary components of P are s, t, and u. Up to Whitehead equiva-
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lence and isotopy, there are two different pictures, corresponding to whether
or not the triple (s, t, u) satisfies the triangle inequality. See Figure 15.12.
In both pictures we see that the foliation is obtained by gluing together
three horizontally foliated rectangles. To obtain pictures of all elements of
MF0(P ) from these two, one must allow for permutations of the boundary
components of P and also allow the transverse measures of one or more
rectangles to degenerate to zero.

Figure 15.13 Two measured foliations on a pair of pants. The foliation on the left-hand side
is obtained from the foliation on the left-hand side of Figure 15.12 by allow-
ing two of the rectangles there to degenerate, and then adjoining a smoothly
foliated annulus to one of the boundary components of P . The foliation on the
right-hand side is obtained by enlarging two boundary components of P .

In order to describe all ofMF(P ), we need to consider foliations where
one or more boundary components of P are nonsingular leaves. One way to
obtain such a foliation is to start with a foliation inMF0(P ) and adjoin an
annulus foliated by parallel circles to any of the boundary components of P
that are closed singular leaves (left-hand side of Figure 15.13). Or we can
start with the empty foliation of P and then enlarge one or more boundary
components in the sense of Section 11.2 (right-hand side of Figure 15.13).
It turns out that these two constructions account for all of MF(P ) [61,
Exposé 6, Proposition II.5].

Step 2 (Global coordinates forMF(S)). The Fenchel–Nielsen coordi-
nates on Teich(S) involve two sets of parameters: the length parameters
determine the isometry type of each pair of pants; the twist parameters de-
termine how the pants are glued together. We employ an analogous approach
here. In step 1 we described parameters for MF(P ), and so now we need
to give twist parameters to encode how foliated pairs of pants can be glued
together.

Fix a pants decomposition {γi} of S. For each γi, choose an annulus Ai
in S with γi as one of its boundary components. Cut each annulus Ai into
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two triangles using arcs δi and εi; see Figure 15.14. Each triangle is bounded
by γi, δi, and εi.

γi

δi εi

Figure 15.14 The arcs γi, δi, and εi used to define coordinates on MF(S).

Let [(F , µ)] ∈MF(S). We can put (F , µ) into normal form with respect
to the γi, δi, and εi [61, Exposé 6, Section IV]. The idea of a normal form
is that on each pair of pants the normal form should restrict to one of the
elements ofMF(P ) that we already understand.

Once we have the normal form, we can define a map

Θ :MF(S)→ R9g−9
≥0 − 0

that records the measures (�i, θi, θ
′
i) of each γi, δi, and εi with respect to

the normal form of any given [(F , µ)] ∈ MF(S). The �i are thought of
as length parameters and the θi and θ′i as twist parameters. The map Θ is a
homeomorphism onto its image. We describe the image of Θ in step 3.

One subtlety is that, in order to obtain the normal form of a foliation, we
may have to modify (unglue) our foliation so that it does not cover the whole
surface anymore. As a simple example, if (F , µ) is a measured foliation
obtained by enlarging one of the γi, then the normal form of (F , µ) will be
supported on an annular neighborhood of γi and will consist of nonsingular
leaves parallel to γi. As such, all of the length parameters of this (F , µ) are
zero, and all of the twist parameters except the ith are zero.

Step 3 (PMF(S) is a sphere). We have just parameterizedMF(S) with
9g − 9 numbers. So how do we end up with PMF(S) ≈ S6g−7? Well,
since, for each i, the arcs γi, δi, and εi bound a (null homotopic) triangle Ti
in S, the parameters (�i, θi, θ

′
i) satisfy a degenerate triangle inequality. That

is, one of the three numbers is the sum of the other two. This is because any
leaf of a foliation entering Ti along one edge must exit Ti along some other
edge.

The points (s1, t1, u1, . . . , s3g−3, t3g−3, u3g−3) in R9g−9
≥0 where each
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triple (si, ti, ui) satisfies a degenerate triangle inequality form a cone B that
is homeomorphic to R6g−6. Note, for instance, that the set of points in R3

≥0

that satisfy a degenerate triangle inequality is a cone homeomorphic to R2.
We claim that the image of Θ is the entire punctured cone B− 0. Indeed,

given a point of B − 0 we can directly construct a measured foliation with
the specified length and twist parameters uniquely up to equivalence. For
example, suppose we are given a point of B − 0 where each of the length
coordinates is nonzero. In this case we can foliate each pair of pants with
the corresponding element of MF0(S). The twist parameters then tell us
how to glue the foliations along the curves of the pants decomposition. For
details, see [61, Exposé 6, Section V].

We thus haveMF(S) ≈ B − 0, and so PMF(S) ≈ S6g−7.

Step 4 (Teich(S) ∪ PMF(S) is a closed ball). We now explain how
both Teich(S) and PMF(S) naturally embed in P (RS). Define a map

� : Teich(S)→ P (RS)

as the composition of the map Teich(S) → (RS − 0) given by X 
→ �X(·)
with the projectivization map. The 9g − 9 theorem (Theorem 10.7) implies
that the map X 
→ �X(·) is injective. No two points in Teich(S) can have
length functions that differ by a multiplicative factor [61, Exposé 7, Propo-
sition 6]. Thus the image of Teich(S) in RS − 0 intersects each R+-orbit in
a single point. This proves that � is injective.

Recall the notion of the geometric intersection number I((F , µ), c) of a
measured foliation with an isotopy class of simple closed curves (see Sec-
tion 14.5). This gives a well-defined map MF(S) → RS via [(F , µ)] 
→
I((F , µ), ·). This map is injective by the above description of MF(S) as
the punctured cone B − 0, so that the induced map

I : PMF(S)→ P (RS)

is injective.
By tracing through the definitions one can check that the injective maps

� and I are in fact continuous and are homeomorphisms onto their images.
We will henceforth identify Teich(S) and PMF(S) with their images in
P (RS).

We claim that Teich(S) and PMF(S) are disjoint in P (RS). By dis-
creteness of the raw length spectrum of a hyperbolic surface (Lemma 12.4),
every point in Teich(S) has a shortest simple closed curve. On the other
hand, given any measured foliation on S, one can use Poincaré recurrence
for foliations (Theorem 14.14) to construct simple closed curves that have
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arbitrarily small measure with respect to that foliation [61, Exposé 8, Propo-
sition I.1]. In other words, the length spectrum for a measured foliation,
is not bounded away from zero. This is enough to distinguish points of
Teich(S) from points of PMF(S) in P (RS).

We now claim that the union Teich(S)∪PMF(S) in P (RS) can be nat-
urally topologized so that it is homeomorphic to a closed ball of dimension
6g − 6. Let π : RS≥0 → P (RS≥0) denote the projectivization map. The open
sets of the union Teich(S)∪PMF(S) as a subspace of P (RS) are the open
sets of Teich(S) together with sets of the form

(Teich(S) ∩ π−1(U)) ∪ (PMF(S) ∩ U),

where U is an open set of P (RS≥0); see [61, Exposé 8, Théorème III.3]. The
key to showing that Teich(S) ∪ PMF(S) is a closed ball is to show that
it is a manifold with boundary and then to apply the generalized Schönflies
theorem. The closed ball Teich(S)∪PMF(S) is called the Thurston com-
pactification of Teich(S).

As a demonstration of the topology on the Thurston compactification of
Teich(S), consider a sequence of points Xn in Teich(S) where �Xn(α)→ 0
for some simple closed curve α in S. Then Xn limits to a point of PMF(S)
corresponding to a (projective class of) measured foliation of S containing
α as a closed leaf.

Step 5 (Applying Brouwer). In Section 12.1, we explained the properly
discontinuous action of Mod(S) on Teich(S). The group Mod(S) also acts
by homeomorphisms on MF(S): the action of Homeo+(S) on MF(S)
given by

φ · [(F , µ)] = [(φ(F), φ∗(µ))]

factors through an action of Mod(S). In contrast to its action on Teich(S),
the action of Mod(S) onMF(S) is not properly discontinuous. This action
does commute with the action of R+ onMF(S) by scaling measures, and
so it induces an action of Mod(S) on PMF(S) by homeomorphisms. This
action is also far from properly discontinuous; indeed, it has dense orbits.

One can check that for each f ∈ Mod(S) the homeomorphisms just
discussed are compatible in the sense that the map of the closed ball
Teich(S)∪PMF(S) to itself induced by f is a homeomorphism, giving us
an action of Mod(S) on Teich(S) ∪ PMF(S) by homeomorphisms. One
should think of this action in analogy with a discrete group of isometries
acting by homeomorphisms on the visual compactification of n-dimensional
hyperbolic space: the action on the interior is properly discontinuous, while
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the action on the boundary has dense orbits.
We now have that any f ∈ Mod(S) induces a self-homeomorphism

(which we also call f ) of the closed ball Teich(S) ∪ PMF(S) of di-
mension 6g − 6. We can thus apply the Brouwer fixed point theorem to
conclude that f has a fixed point in Teich(S) ∪ PMF(S). This means ei-
ther that f fixes a point of Teich(S) or there exists [(F , µ)] ∈ MF(S) so
that f · [(F , µ)] = [(F , λµ)] for some λ ∈ R+ (here brackets denote the
equivalence generated by isotopy and by Whitehead moves, but not by the
R+-action).

Step 6 (Analyzing the fixed point). We call a measured foliation arational
if it does not contain any closed leaves. We have the following cases for the
fixed point of f :

1. f · X = X, where X ∈ Teich(S)

2. f · [(F , µ)] = [(F , λµ)], where (F , µ) is not arational

3. f · [(F , µ)] = [(F , λµ)], where (F , µ) is arational and λ = 1

4. f · [(F , µ)] = [(F , λµ)], where (F , µ) is arational and λ > 1.

We have already seen in Chapter 13 that in case 1 the mapping class f
is periodic. In case 3 we deduce that f permutes the finite collection of
rectangles in some rectangle decomposition of S induced by F , and so f
must again be periodic. In case 2 the finite number of homotopy classes
of closed leaves of F must be permuted by f , and so f is reducible. In
case 4 one can build a Markov partition (see below) for f and use it to find a
unique measured foliation that is transverse toF and that is also projectively
invariant by f . This proves that f is pseudo-Anosov. This last step is the
most technically involved part of Thurston’s proof. See Exposé 9 of FLP for
the details.

The Thurston compactification for the torus. The Thurston compactifica-
tion of Teich(T 2) can be described quite explicitly as follows. Let α, β, and
γ denote the (1, 0), (0, 1), and (1, 1) curves in T 2. Recording the lengths
of α, β, and γ gives an injective map Teich(T 2) → R3

≥0. Each point of
P (R3

≥0) can be represented by a unique point in the plane x + y + z = 1.
For any flat metric on T 2, there are representatives of α, β, and γ that form a
Euclidean triangle, and so their lengths satisfy the triangle inequality. Thus
the image of Teich(T 2) in the plane x + y + z = 1 is the open triangular
region T consisting of positive points that satisfy the triangle inequality.
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Taking the measures of α, β, and γ gives an injective map MF(T 2) →
R3
≥0. As in step 3, the image of this map is the set of points in R3

≥0 that
satisfy a degenerate triangle inequality. This set is precisely the cone on
∂T , punctured at the origin. By projectivizing, we can see concretely how
PMF(T 2)∪Teich(T 2) is homeomorphic to a closed disk; see Figure 15.15
and [61, Exposé 1]. We remark that, as we move toward the boundary of
T , the corresponding points of Teich(T 2) (before projectivization) move
further and further from the origin.

Teich(T 2)

PMF(T 2)

Figure 15.15 The closed ball Teich(T 2) ∪ PMF(T 2) sitting in R3
≥0.

15.3 MARKOV PARTITIONS

It has already been mentioned that part of Thurston’s analysis is the con-
struction of a Markov partition for a pseudo-Anosov mapping class. As we
explained above, the example in Section 15.1 is the image of

A =

⎛⎜⎝ 2 1

1 1

⎞⎟⎠ ∈ SL(2,Z) ≈ Mod(T 2)

under the homomorphism Mod(T 2) → Mod(S0,4) induced by the twofold
branched cover T 2 → S0,4. In this section we illustrate the idea by con-
structing the Markov partition for this simple example.
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Figure 15.16 An Anosov map of the torus.

Again, the unstable and stable foliations Fu and Fs for A are the pro-
jections to T 2 of the foliations of R2 by lines parallel to the (irrational)
eigenspaces for the eigenvalues λ > 1 and λ−1 of A. Choose a small subarc
τ of a leaf of Fs. Similar to the construction in Section 14.3, we can use
τ , Fu, and Fs to construct a rectangle decomposition of T 2 adapted to Fu
and Fs. The situation here is slightly simpler since Fu is orientable and
nonsingular.

First we subdivide τ along all backward images of endpoints of τ . Then
each segment of the subdivision gives a rectangle in T 2 obtained by push-
ing that segment forward along Fu. For one such example of a rectangle
decomposition, see the left-hand side of Figure 15.16. In that figure we can
locate the arc τ by taking the union of the vertical sides of the rectangles.

The linear map A ∈ Homeo+(T 2) takes the picture on the left-hand
side of Figure 15.16 to the picture on the right-hand side. We see that a
lot of the structure is preserved. In particular, A takes rectangles to unions
of subrectangles, A preserves the horizontal and vertical directions, and A
takes sides of rectangles lying in Fs to other such sides.

Decomposing T 2 into its constituent rectangles gives a picture as at the
top of Figure 15.17 (note the identifications).

Figure 15.17 taken all at once gives another view of the linear home-
omorphism A. Here we can see how the combinatorial structure for Fu
given by the rectangles translates into a purely combinatorial description of
A: it stretches the gray rectangle twice over itself and once over the white
rectangle, and it stretches the white rectangle once over each. Turning this



444 CHAPTER 15

�

�

�

�

�

�

�

�

a
c

d

be
f

e
f

b

d

ca

Figure 15.17 An Anosov map demystified(?).

information into a matrix in the obvious way gives a transition matrix:⎛⎜⎝ 2 1

1 1

⎞⎟⎠ .

Much (in this case, all) of the original information about the mapping class
[A] ∈ Mod(T 2) is contained in the transition matrix. In general, we should
not expect the transition matrix to bear any resemblance to the original
Anosov map. In fact, we could have chosen a rectangle decomposition with
more rectangles and gotten a larger matrix.

We remark that the two rectangles of the above Markov partition are sim-
ilar. This is related to the fact that in this case the transition matrix is equal
to its transpose; in general, the lengths and widths of the rectangles come
from the transition matrix and its transpose, respectively.

As discussed above, one ingredient in Thurston’s approach to the
Nielsen–Thurston classification is that such a scheme as the one above is
always possible. That is, given a pseudo-Anosov f ∈ Mod(Sg), there is on
Sg a particular rectangle decomposition, called a Markov partition, so that
f has a combinatorial description as above. Instead of cutting along a single
stable arc, however, one typically needs to cut along several. The construc-
tion of Markov partitions is much more technically involved for pseudo-
Anosov homeomorphisms than for linear Anosov homeomorphisms. But
once a Markov partition is constructed, it is a powerful tool.

For example, from the transition matrix of a Markov partition for f , one
can determine various properties of f . In particular, the stretch factor of f
is the largest real eigenvalue of the transition matrix. This approach can be
used quite easily to give proofs of Theorems 14.8 and 14.9 and one direction
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of Theorem 14.10. The point is to show that any pseudo-Anosov mapping
class of a fixed surface has a transition matrix whose size (number of rows)
is uniformly bounded from above and use the fact that the set of eigenvalues
of integral n×n matrices is discrete. The other direction of Theorem 14.10
is by explicit construction.

In addition to the above, Theorems 14.16 and 14.24 and Corollary 14.25
can all be proved using the theory of Markov partitions. The idea for the
latter two is that, as we iterate a pseudo-Anosov mapping class, any curve
gets closer and closer to the horizontal foliation in each rectangle, and the
number of horizontal components in each rectangle grows like λn, where
here we are thinking of λ as the largest eigenvalue of the transition matrix.
We refer the reader to [61] for the details.

The theory of Markov partitions is closely related to the theory of train
tracks. We encourage the reader to find the train track hidden in Fig-
ure 15.17.

15.4 OTHER POINTS OF VIEW

There are other approaches to proving the Nielsen–Thurston classification.
One aspect we have not touched on is the theory of measured laminations.
A geodesic lamination in a hyperbolic surface S is a nonempty closed sub-
set of S that is a disjoint union of simple (possibly infinite) geodesics in S.
It is also possible to endow a geodesic lamination with a transverse mea-
sure. The dictionary relating train tracks to foliations can be extended to
relate both of these objects to geodesic laminations. For instance, to obtain
a geodesic lamination from a foliation, we simply replace each leaf with its
corresponding geodesic (as determined by the endpoints of the lift of a leaf
to H2).

One can prove the Nielsen–Thurston classification using geodesic lami-
nations. The Hausdorff metric gives a metric on the set of geodesic lamina-
tions in Sg. Since Sg is compact, the resulting topological space L(Sg) is
compact. As with the other approaches, for a given f ∈ Mod(S) we con-
sider the sequence fn(c), where c is an isotopy class of simple closed curves
in S. Each fn(c) has a unique geodesic representative in Sg, which can be
regarded as a point in L(S). Since L(S) is compact, the sequence (fn(c))
has a convergent subsequence. The limit L is the unstable lamination for
f . If L has closed leaves then f is reducible or finite order. Otherwise, f is
pseudo-Anosov. This point of view is discussed in the book by Casson and
Bleiler [44] and in the book by Calegari [43]. While this method quickly
finds an invariant lamination, one now needs to do some work in order to
find an invariant foliation. It is the finer structure of a projectively invari-
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ant measured foliation that allowed us to prove most of the properties of
pseudo-Anosov homeomorphisms.

Nielsen’s original point of view was to look directly at the action of a
mapping class on ∂H2. A streamlined version of his approach can be found
in the paper by Handel and Thurston [81]. Bestvina and Handel introduced
a combinatorial algorithm for finding a train track for a mapping class,
and in particular for determining the Nielsen–Thurston type of a mapping
class [17]. Also, the Markov partition for a pseudo-Anosov homeomorphism
yields a great amount of dynamical information [61, Exposé 10]. Ivanov
proved a number of structural theorems about Mod(S) using the dynamics
of the action on the Thurston boundary [106].

The Nielsen–Thurston classification is the starting point for a number
of active research directions. This is analogous to the fact that the Jordan
canonical form for a matrix is one basic fact used in the vast study of Lie
groups and other groups of matrices. Some places to find open problems in
these and many related directions are Kirby’s problem list [123], Bestvina’s
problem list [18], Mosher’s problem list [163], and the book Problems on
Mapping Class Groups and Related Topics [58].
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4g + 2 theorem, 203
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G-invariants of a group action, 364
Sg-bundle over S1, 379
Sg-tile, 273
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ε-thick part, 354
kth Torelli group, 199
2-chain relation, 107

affine transformation, 393
Alexander lemma, 47
Alexander method, 58, 59

proof, 62
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algebraic intersection number, 28, 165

on the torus, 29
algebraic topology on Teichmüller space,

269
ambient isotopy, 34
Anosov, 369
Anosov package, 368, 390
arational, 441
arc, 35

simple, 35
arc complex, 134
area of a lattice, 266
Artin group, 127
aspherical orbifold, 350
axis for a pseudo-Anosov mapping class,

389
axis of a hyperbolic isometry, 20

belt trick, 245
Beltrami differentials, 334

versus quadratic differentials, 336

Beltrami equation, 334
Bers’ constant, 356
big diagonal, 242
bigon, 30
bigon criterion, 30

first proof, 31
second proof, 32

biholomorphic, 297
Birman exact sequence, 96

for the Torelli group, 185
forgetful map, 96
generalized, 245
nonsplitting of, 153
point-pushing map, 97
statement, 97

Birman–Craggs–Johnson maps, 198
Birman–Hilden theorem, 253, 254

for closed surfaces, 257
Borel construction, 136
boundary components, 18
bounding pair, 40, 184
bounding pair map, 184
braid, 240
braid diagram, 240
braid group, 240

abelianization, 247
as a mapping class group, 243
center, 247
low-complexity cases, 246
modulo center, 248
on three strands, 88
presentation, 246
pure, 248
roots of central elements, 248
standard generators, 240
torsion-freeness, 247

braid relation, 77, 256
converse, 79

branch points, 391
branched cover, 307, 391



466 INDEX

of a Riemann surface, 316
of a topological surface, 307
ramification point of, 316

bundle isomorphism, 154
Burkhardt generators, 164

canonical form for a mapping class, 376
canonical reduction system, 373
capping the boundary, 85, 102

in the Torelli group, 185
carried (by a train track), 426, 428
Cayley graph, 222
center, 75
central extension of a group, 147
chain of simple closed curves, 40, 107,

229
chain relation, 107, 256
change of coordinates principle, 36, 38

examples, 39
characteristic classes, 156
characteristic subgroup, 181, 199
classification of simple closed curves, 37
classification of surfaces, 17
classifying map, 154
classifying space, 154
click, 203
click homeomorphism, 46, 374
closed curve, 22

essential, 22
multiple, 23

collar lemma, 380
complex derivatives, 296
complex dilatation, 268, 333
complex hyperplane arrangement, 243
complex of curves, 92, 359

connectedness, 92
sporadic cases, 94

complex of nonseparating curves, 95
complex of spaces, 137
complex structures versus hyperbolic

structures, 295
configuration space, 242
conformal map, 297
conformal structures, 295
congruence subgroup

of the mapping class group, 177
of the symplectic group, 176

conjugacy separable, 179
conjugate representations, 155

coordinate system of curves, 279
curve, 22

lift of, 23
separating, 37
simple closed, 25

curves
isotopic, 33

cut system complex, 128
cut systems, 128
cutting a surface, 36
cylinder decomposition, 285

degenerate star relation, 132
degree at a point

of an orbifold covering, 207
Dehn twists, 65

action on homology, 169
action on simple closed curves, 66
and free groups, 79
and intersection number, 69
basic properties, 73
conjugates, 73
definition, 64
groups generated by, 82
have infinite order, 69
left versus right, 66
nontriviality, 67
on the torus, 65
powers, 74
relations between, 77
roots, 108
via cutting and gluing, 65

Dehn–Lickorish theorem, 89
proof, 105

Dehn–Nielsen–Baer theorem, 221
analytical proof, 238
for punctured surfaces, 221, 234
quasi-isometry proof, 229
topological proof, 237

dilatation, 297
do-si-do, 118
double of a surface, 68

Earle-Eells theorem, 156
earthquake map, 290
ellipse field, 333
elliptic isometry, 383
enlarging a curve, 307
equivalent geodesic rays, 19
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ergodic, 418
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Euclidean algorithm for simple closed

curves, 166
Euclidean metric, 21
Euclidean surface, 21
Euler characteristic, 18
Euler class, 148, 149

classical version, 147
for the mapping class group, 148
via lifted mapping classes, 148

Euler–Poincaré formula, 301
for quadratic differentials, 312

exhaustion of moduli space, 354
extended mapping class group, 6

examples, 219
of the four-times-punctured sphere,

220
of the punctured torus, 220
of the thrice-punctured sphere, 220
of the torus, 220

factor mix, 164
factor rotation, 164
factor set, 147
factor swap, 164
fake bounding pair maps, 184
Farey complex, 94, 130, 134, 215
Fenchel–Nielsen coordinates, 282

for nonclosed surfaces, 284
for the torus, 285

Fibonacci number, 425
filling curves, 38, 59, 72, 391
filtration, 199
first homology group, 120
first variation principle, 278
flag complex, 92
flat metric, 21
flat surface, 21
FLP, 378, 435
foliations

action by homeomorphisms, 304
from a polygon, 305
from filling curves, 308
measured, 303
on the torus, 300
singular, 301
via branched covers, 307

forgetful map, 96

frame, 201
free homotopy, 21
Fricke’s theorem, 278, 349

proof, 352
Fundamental observation of geometric

group theory, 224

Gauss–Bonnet theorem for orbifolds,
208

genus, 18
of a bounding pair map, 188

geodesic
in a metric space, 223

geodesic laminations, 378, 445
geodesic metric space, 224
geometric intersection number, 28

on the torus, 29
geometric symplectic basis, 165
Gervais presentation, 131
good atlas, 410
Grötzsch’s problem, 325, 352
Grassmann manifolds, 154
group action

without rotations, 136
grows like, 419

half-bigon, 35
half-twist, 114, 244, 255
handle mix, 172
handle pushes, 185
handle rotation, 171
handle swap, 172
harmonic map, 238
Hatcher flow, 135
hexagonal torus, 201, 348
holomorphic, 297
holomorphic 1-forms, 311
holomorphic cotangent bundle, 309
holomorphic quadratic differential, 309
homological criterion, 397
homology 3-spheres, 182
homothety of R2, 266
homotopy colimit, 137
homotopy relative to the boundary, 35
Hopf formula, 140
horizontal foliation, 310
horizontal stretch factor, 320
Humphries generators, 89, 112

minimality, 174
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hyperbolic Sg-tile, 273, 274
hyperbolic distance on π1(S), 222
hyperbolic isometry, 383
hyperbolic metric, 21
hyperbolic orbifold, 205

minimal volume, 209
hyperbolic plane, 18

boundary at infinity, 19
classification of isometries, 20
compactification of, 20
curvature, 19
elliptic isometries, 20
geodesics, 19
hyperbolic isometries, 20
loxodromic isometries, 20
parabolic isometries, 20
Poincaré disk model, 19
upper half-plane model, 18

hyperbolic structures versus complex
structures, 295

hyperbolic surface, 21
hyperelliptic involution, 46, 215

of the four-times-punctured sphere, 56
special cases, 76
uniqueness of, 215

hyperelliptic relations, 122, 123, 126

ideal triangle, 278
inclusion homomorphism, 66
incompressible torus, 379
initial differential, 320
injectivity radius, 353

of a lattice in Rn, 354
inner automorphism group, 220
innermost disk, 31
integral symplectic group, 163
intersection number

algebraic, 28, 165
geometric, 28

invariance of domain, 332
involution, 216
isometries

action on first homology, 178
of a hyperbolic orbifold, 206
of closed hyperbolic surfaces, 204
of punctured spheres, 201
of the torus, 201

isomorphic Riemann surfaces, 295
isospectral surfaces, 358

isothermal coordinates, 295
isotopy

extension from curves to surfaces, 34
for curves, 33
of a surface, 34
relative to the boundary, 35

Jacobian, 295
Johnson filtration, 198
Johnson homomorphism, 190, 396

computations, 194
for closed surfaces, 192
kernel, 197
surjectivity, 197
via mapping tori, 193

k-chain relation, 107
Klein quartic surface, 214
Kra’s construction, 401

lantern relation, 116
via the push map, 118

lattice, 266
lattices

in Rn, 354
injectivity radius of, 354
moduli space of, 355
volume of, 355

leaf-preserving isotopy, 302
leaves of a foliation, 301
Lefschetz fixed point theorem, 202
Lefschetz number, 202, 417
length functions, 265

continuity, 271
convexity with respect to twists, 287

length homomorphism, 247
length parameter, 280
Lickorish generators, 108
Lickorish twists, 109
lift of a curve, 23
linear group, 179
linear symplectic group, 163

elementary matrices, 164
linked at infinity, 227
locally orientable foliation, 301
lower central series, 199

Mahler’s compactness criterion, 355
mapping class, 45
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mapping class group
action on first homology, 168
action on Teichmüller space, 342
action on the fundamental class, 221
center, 75
conjugacy classes of finite subgroups,

215
definition, 44
exceptional surfaces, 46
extended, 219
finite solvable subgroups, 372
finite-index torsion-free subgroup, 178
first examples of elements, 46
first homology of, 120
generating by involutions, 218
generating with torsion, 216
generators, 89

non-closed surfaces, 113
punctured spheres, 101

of a pair of pants, 87
of a torus minus an open disk, 87
of the annulus, 50
of the disk, 47
of the four-times-punctured sphere, 55
of the once-punctured disk, 48
of the once-punctured sphere, 49
of the once-punctured torus, 54
of the pair of pants, 50
of the plane, 49
of the sphere, 49
of the thrice-punctured sphere, 49
of the torus, 52
of the twice-punctured sphere, 50
other notations, 45
presentation, 124
proof of finite presentability, 134, 137
punctures versus boundary, 45
punctures versus marked points, 45
residual finiteness of, 178
second homology of, 140
surjectivity onto Sp(2g,Z), 170
symplectic representation, 162, 169
the word problem for, 91
torsion in, 200
with marked points, 45

mapping class groups of surfaces with
boundary are torsion free, 201

mapping classes as symplectic automor-
phisms, 168

mapping torus, 379
Margulis lemma, 381
marked hexagon, 276
marked lattice, 266, 354
marked length spectrum, 287
marked points, 18, 45
Markov partitions, 442
Matsumoto presentation, 131
maximal reduction system, 373
measurable Riemann mapping theorem,

334
measured foliation space, 435
measured foliations, 303

action of Homeo(S), 304
arational, 441
as 1-forms, 304
four constructions, 305
from a pair of filling curves, 308
from a polygon, 305
length spectrum, 440
near a puncture, 305
normal form, 438
on surface with boundary, 305
on the torus, 300
via branched covers, 307

measured train track, 426
measured train track space

coordinate charts, 430
Meyer signature cocycle, 153

definition, 157
Milnor–Švarc lemma, 223, 224
minimal position, 29
modular group, 45
modular surface, 345
moduli space, 342, 343

ends, 360
fundamental group at infinity, 361
length spectrum, 406
manifold cover, 350
simple connectivity, 360

monodromy
of a surface bundle, 379

multicurve, 33
multiple

of a closed curve, 23
multitwist, 84, 392
Mumford’s compactness criterion, 354

proof, 357
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natural coordinates
for a measured foliation, 304
for quadratic differentials, 311

naturality
for the Johnson homomorphism, 192
for the point-pushing map, 99

neighborhood of a puncture, 21
Nielsen realization theorem, 201

for cyclic groups, 200
proof, cyclic case, 371

Nielsen–Thurston classification, 376
for the torus, 369
proof, 383

Nielsen-equivalent, 417
nonnegative matrix, 393
nonseparating simple closed curve, 37
Novikov additivity, 157

one end, 360
one-pronged singularity, 305
orbifold, 205

cone point, 205
Gauss–Bonnet theorem for, 208
homotopy in, 361
regular point, 205
signature, 206
volume, 209

orbifold covering map, 206
orbifold fundamental group, 205, 361
ordinary cusp singularity, 88
orientable foliation, 301
orientation cover, 404
orientation homomorphism, 404
outer automorphism group, 220

pair of pants, 50, 87, 236
hyperbolic structures on, 275
mapping class group of, 87
Teichmüller space of, 275

palindromic polynomial, 397
pants decomposition, 236, 275
parabolic isometry, 383
path metric, 222
Penner’s construction, 396
perfect group, 120
period, 416
periodic mapping classes, 370

for the torus, 368
peripheral leaf, 408

Perron number, 406
Perron–Frobenius theorem, 393
ping pong lemma, 80
Poincaré recurrence, 415
Poincaré recurrence for foliations, 409,

439
point-pushing map, 97

in terms of Dehn twists, 98
polygon for a foliation, 410
positive matrix, 393
primitive, 23, 166
primitive matrix, 393
profinite completion, 178
proper arc, 35
proper metric space, 223
properly discontinuous, 223, 349
pseudo-Anosov homeomorphism, 375

dense orbits of, 414
density of periodic points, 415
ergodicity, 419
for nonclosed surfaces, 375
intersection numbers under iteration,

422
lengths of curves under iteration, 420
number of periodic points, 416

pseudo-Anosov mapping classes, 374
construction for braid groups, 402
construction via branched covers, 391
construction via point pushing, 401
construction via the homology action,

397
constructions via Dehn twists, 391
in the Torelli group, 395

pseudo-Anosov stretch factors, 374
discreteness in R, 406

punctures, 18
pure braid group, 248

abelianization, 252
as iterated extension, 252
center, 250
generators, 249
presentation, 251
splitting over center, 252

push map, 97
naturality, 99

quadratic differentials, 309
areas and lengths, 312
as tangent vectors, 323
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constructions, 313
dimension count, 318
foliations of, 310
on the torus, 313
versus 1-forms, 311
versus Beltrami differentials, 336
via branched covers, 316

quadratic integer, 390
quasi-isometric embedding, 223
quasi-isometry, 223
quasiconformal map, 297

raw length spectrum, 350
discreteness of, 351

rays
equivalence of, 19

real symplectic vector space, 163
realizing finite groups, 213
reducible mapping classes, 372

examples, 372
for the torus, 368

reduction system, 372
Reeb component, 412
Reidemeister move, 246
representations

conjugate, 155
discrete and faithful, 269

residually finite
group, 178
ring, 180

Riemann surface, 295
Riemann’s theorem, 317
Riemann–Hurwitz formula, 207
Riemann–Roch theorem, 318
right-angled hexagons, 276
right-angled pentagon formula, 381
Rochlin invariant, 198
Royden’s theorem, 344

screw map, 65
seams, 279
separating simple closed curve, 37

genus, 38
side of an element of π1(S), 229
signature, 157
signature of an orbifold, 206
simple arc, 35
simple closed curve, 25

nonseparating, 37

on the torus, 26
separating, 37

simplicial star, 135
singular Euclidean structure, 393
singular points of a foliation, 301
sink, 431, 432
source, 432
source-sink dynamics, 431
spherical braid group, 245
spin map, 97
splitting of H1(Sg; Z), 186
square complex, 308
square torus, 201
stable foliations, 374

density of leaves, 412
on the torus, 368
unique ergodicity, 413

standard handlebody, 182
standard symplectic form, 163
star relation, 131
strand, 240
strange fact, 124
stretch factors, 374

are algebraic integers, 403
surface, 17, 18

cut, 36
surface braid group, 244
surface bundles, 153
Swiss cross, 313
switch condition, 426
symetrically isotopic, 257
symmetric homeomorphism, 254
symmetric mapping class group, 254
symplectic representation of the mapping

class group, 162
symplectic structure on H1(Sg; Z), 165
symplectic vector space, 162
symplectically irreducible polynomial,

397

Teichmüller disks, 338
Teichmüller distance, 337
Teichmüller geodesics, 338
Teichmüller line, 323
Teichmüller mapping, 299, 320
Teichmüller metric, 295, 299, 337

for the torus, 339
is completely geodesic, 339
on moduli space, 350



472 INDEX

Teichmüller Navigator, 275
Teichmüller space, 264

dimension counts, 272
for S0,4, 284
for S1,1, 284
for the torus, 265
in terms of representations, 269
in terms of tilings, 273
of S0,3, 278
of a pair of pants, 275
the algebraic topology on, 269

Teichmüller theory, 294
for 1-manifolds, 322
for nonclosed surfaces, 323

Teichmüller’s existence theorem, 321
Teichmüller’s extremal problem, 299
Teichmüller’s uniqueness theorem, 322
terminal differential, 320
Thurston compactification, 440

for the torus, 441
Thurston’s construction, 392
topological type of a simple closed curve,

38
Torelli group, 5, 181, 182

abelianization, 198
action on curves, 186
finite generation, 189
generators, 187
genus 2, 190
torsion-freeness, 183

torsion and the symplectic representa-
tion, 202

torus
classification of homeomorphisms,

367
Fenchel–Nielsen coordinates for, 285
mapping class group of, 52
moduli space of, 345
Teichmüller space for, 265
transverse measured foliation on, 300

train track, 397, 426
measured, 426

train track matrix, 428
transition matrix, 444
translation length, 383
transpositions, 114
transvection, 164, 174

in Sp(2g,Z/mZ), 174
transverse arc

to a foliation, 302
transverse foliations, 303
transverse measure

for the torus, 300
of a foliation, 303

trefoil knot complement, 88
twist map of the annulus, 64
twist parameter

well definedness, 281
twisting number, 280

uniformization theorem, 295
unique ergodicity, 413
universal bundle, 154
universal central extension of SL(2, Z),

87
unstable foliations, 374

on the torus, 368
unstable lamination, 445
unzipping, 433
upper half-plane model, 18

vertical foliation, 310

Wajnryb presentation, 124
weight on a train track, 426
Weil–Petersson form, 286
Whitehead moves, 422
without rotations, 136
Wolpert’s formula, 286
Wolpert’s lemma, 351
word length, 222
word metric, 222
word problem, 91

zipping, 426
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