
Accurate Fault Prediction of BlueGene/P RAS Logs Via Geometric Reduction

Joshua Thompson1, David W. Dreisigmeyer2, Terry Jones3, Michael Kirby1, and Joshua Ladd3

1101 Weber, Department of Mathematics, Colorado State University , Fort Collins CO 80523, email:
{thompson,kirby}@math.colostate.edu, Contact author: thompson

2601 Thackery Hall, Department of Mathematics, University of Pittsburgh , Pittsburg PA, 15260, email:
david.dreisigmeyer@gmail.com

3Oak Ridge National Laboratory, Oak Ridge TN 37831, {laddjs,trjones}@ornl.gov

Abstract

This investigation presents two distinct and novel ap-
proaches for the prediction of system failures occurring in
Oak Ridge National Laboratory’s Blue Gene/P supercom-
puter. Each technique uses raw numeric and textual subsets
of large data logs of physical system information such as fan
speeds and CPU temperatures. This data is used to develop
models of the system capable of sensing anomalies, or de-
viations from nominal behavior. Each algorithm predicted
event log reported anomalies in advance of their occurrence
and one algorithm did so without false positives. Both al-
gorithms predicted an anomaly that did not appear in the
event log. It was later learned that the fault missing from
the log but predicted by both algorithms was confirmed to
have occurred by the system administrator.

Keywords: high performance computing,fault predic-
tion,resiliency,MSET,NMF

1. Introduction

This report concerns the detection and prediction of
anomalous behavior in large data sets of supercomputer sys-
tem logs. The goal is to identify a system failure in advance
and to maximize the leadtime of an alarm, i.e., the differ-
ence between the timestamp of an alarm and the timestamp
of the nearest fault. The problem is challenging given the
large amount of information available at any instant in time,
that must be analyzed to determine if a failure is imminent.

We propose two distinct approaches for solving this pre-
diction problem. First, non-negative matrix factorization is
used to build a model based on observed failures. Then,

new testing data is presented to the system and the model
bases its prediction on the similarity of the new data to the
failure data. As such it may be viewed as a library based
algorithm that exploits exemplars of behavior that is to be
detected. However, it is based on a function evaluation of
the new exemplar rather than a pattern matching approach.
Secondly, we apply the MSET algorithm to the same data
set. This involves a smooth auto associative map which ap-
proximates the identity on non-fault data and perturbs fault
data. The residual difference between a data point and its
image is a meausre of novelty. When new data contains
novelty the mapping produces a larger than expected resid-
ual indicating a future failure.

In particular we examine data logs generated by Oak
Ridge National Laboratory’s Blue Gene/P supercomputer.
Each technique uses carefully culled subsets of large data
logs of physical system information such as fan speeds and
CPU temperatures. We restrict our attention to the most se-
vere errors that were identified in the event log as fatal.

2. Related Work

There has been substantial work in the general area of
data analysis for computer fault prediction. As such, the
field has proven fertile for a wide-range of techniques and
has sparked diverse efforts yielding varying degrees of suc-
cess. Our work joins the collection with several notable
novel aspects. To our knowledge, we are the first to uti-
lize these mathematical approaches and relatively few stud-
ies have dealt with large machines. Moreover, we utilize
the raw, unreduced numeric values available from hardware
resources in concert with text-based information available
from system event logs; most studies have typically focused



on one or the other. Finally, our accuracy in terms of both
percentage of events forecasted, and the suppression of false
positives, is notable.

Our work is most closely related to that of Leangsuksun
et al., which concentrates on the same domain (high perfor-
mance computing) and incorporates some of the same mo-
tivations (improved resiliency as seen by applications), al-
though we employ different techniques. Leangsuksun used
polling and logs-mining to acquire status and events includ-
ing hardware resource information. Our work differs pri-
marily in the mathematical analysis employed and in the use
of raw data; Leangsukuns team gathered event information
and classified it into categories based on sensor type, thresh-
old level, and severity (critical, ok, etc.,), then subjected the
classified data to filtering and subsequent analysis [8].

The use of classification as a primary step is not uncom-
mon. Vilalta et al., used 26,000 system events, some of
which were labeled critical by a person. Their analysis then
concentrated on two types of target events labeled as criti-
cal [14, 13]. Lan et al., utilized a three phased approach in
their work to analyze Blue Gene logs. In the first pass, data
was scrubbed, the second pass consisted of multiple pre-
dictor schemes based on meta learning; and a third phase
used meta learning and the combination of inputs from the
second phase [8] Our use of unreduced data provided more
accurate predictions albeit at the potential cost of scalabil-
ity; the data size for 110 days of our Blue Gene/P machine
proved feasible, but much longer periods or much larger
machines may require modifications to our method.

Learning algorithms are a common theme in the litera-
ture. Sahoo et al., found rule-based classification algorithms
can predict critical events with 70% accuracy. They used
filtered system activity reports consisting of six fields (rep-
resenting time, process number, user time, idle time, CPU
time, I/O time) together with node topology and event logs
[12]. Liang et al., used a customized nearest neighbor-based
classifier strategy on system event logs. They found 529
failure events from 128K processors over 141 days (3.75
events per day) [10]. Here again, our geometric reduction
based techniques stand apart in terms of accuracy and false-
positive suppression.

The related field of failures among telephone switch
equipment has also provided applicable contributions.
Weiss et al., used a genetic algorithm to predict telecom-
munications equipment failures based on machine learning.
Training based on 110,000 alarms reported from 55 4ESS
switches, test set contained 40,000 alarms reported from 20
different 4ESS switches [16, 15].

Two more teams who utilized an ensemble of system
information for fault prediction are located at Humboldt
University and Sandia National Laboratory. Hoffman et
al., used system data collected by SAR, a utility typically
used for job accounting or system diagnostics, to predict

events captured by system error logs (cputime, pageswaps,
etc.,) [5]. The work of Brandt et al., is primarily intended
for high performance clusters and cloud computing, but the
same techniques are applicable to leadership class systems.
They utilize statistical tools to determine anomalous behav-
ior through outliers. Like our work, the Brandt work does
include sensor data (e.g., cpu temp, core voltage, fan); they
determine outliers by statistical means from raw data or by
comparison to a given model [1, 7]. Our work differs in
the mathematical analysis employed and the high sampling
rates of our data.

3. Data Preprocesing

The log data consisted of many components and sub-
components each reporting asynchronously and sometimes
erroneously. A good deal of the workload fell then to the
pre-processing step, whose goal it was to produce usable,
representative data. In this report we restrict our attention
to one subset S of the system, namely data generated by
Rack 00 - Midplane 00. Although the system behavior of
adjacent midplanes was observed to affect each other in this
preliminary report we simply use data generated by S to
predict faults occurring in S.

Prior to any scaling or cleaning of the data, we performed
a spline interpolation on all of the time series. This was
done in order to have synchronous data. A scaling of the
data was then performed so that large magnitude signals did
not dominate potentially important low-magnitude signals.
The scaling itself was a simple invertible, affine mapping
of the raw data to the interval [0,1]. Portions of the raw
data were corrupt, and contained sporadic extreme values.
After the initial rescaling, we removed any obvious outliers
and repeated the scaling. This was continued in an iterative
fashion until the data was deemed ‘clean’. While the spline
interpolation was performed prior to any data cleaning, this
did not affect any later analysis since the removed data was
located far away from any faults.

A matrix D was created which contained all available
numeric data. Groups of sensor data (fan speeds, voltages,
etc.,) were represented in D as blocks of rows. That is a row
of D was a time series of values for a particular sensor, eg.
fan speed. A column of D was a snapshot of all sensors at
a given time. In general a data point from here forth refers
to a column of D.

The two prediction methods presented each chose vari-
ous sub-rows of D for its analysis. This choice was guided
by the geometry of each of the algorithms. In S there were
six clusters of faults and the table below illustrates a portion
of our results.



FAULT LEADTIME LEADTIME
CLUSTER AFFINE MAP IDENTITY MAP

1 2.5 min. 10.4 hours
2 5 min. 10.2 hours
3 80 min. 2.5 hours
4 32.5 min. 1 hour
5 10 min. 7 min.
6 -2.5 min. -22 hours

Table 1. Fault Prediction Results

4. Affine Transformation and Threshold Detec-
tion

Since all of the data was positive, a Nonnegative Matrix
Factorization (NMF) was performed on the data. This is a
fairly standard technique [9] for data of the type considered
in this paper. Here the initial nonnegative data matrix X is
decomposed into two nonnegative matrices H and W :

X ≈ H ∗W.

The columns of H give the important directions in fea-
ture space. NMF is a generalization of k-means clustering
[17, 3]. So the columns of W can also be considered cluster
centers. The columns of W classify the data into the var-
ious clusters, with the largest entry w∗

ij classifying the jth

point into the ith cluster. In the present situation, we would
expect the fault data to be separated from the normal oper-
ating data. What we would like to do is find a cluster for
the fault data. NMF in conjunction with a thresholding for
alarm signaling performed extremely well on this problem,
consistently finding a vector that gave a rough classification
for fault data.

For testing our prediction method, we either used the last
three clusters to predict the preceding faults, or used the first
three clusters to predict the latter faults. The affine trans-
formation was done in a stepwise fashion. Given the fault
times, we wished to find data points with an obvious fault
signature. Given the rough classification above, the second
step of our method was to use this to pick out a good direc-
tion for separating fault data from non-fault data.

The classification direction can be refined by perform-
ing a Generalized Linear Discriminant Analysis (GLDA).
In the present case of only two classes (fault and non-fault),
GLDA will result in a single direction that maximizes the
between class separation and minimizes the within class
scattering. The details of the method can be found in [6].
The numerical method used to solve the problem is the Gen-
eralized Singular Value Decomposition [4]. The result is
that the fault data F and non-fault data N our decomposed
as

F = M−1 ∗ C ∗ V T

N = M−1 ∗ S ∗WT

where V and W are orthogonal and M is invertible. The
matrices C and S are diagonal and

cii ≥ cjj ≥ 0 when i > j
0 <= sii <= sjj when i > j
C2 + S2 = I.

Since c11 is the largest element of the above decompo-
sition and s11 is the smallest, the first row of M gives the
direction of optimal classification. In this direction the fault
data will have the largest magnitude and the non-fault data
will have the smallest magnitude.

Note the logic here. The NMF is an initial clustering
routine that performs its task semi-independently. The user
must pick out the NMF direction that corresponds to the
fault clustering. However, the data is not a priori labelled.
The classification given by NMF is then used to separate the
data into two classes. These are now fed into the GLDA al-
gorithm which refines the direction used to classify the data.
We found that the direction found by the GLDA algorithm
was significantly better than that provided by the NMF algo-
rithm for final classification of the algorithm. This method
can be easily extended to multiple clusters.

The direction chosen by NMF should not be considered
optimal for classification of the data, though it does seem to
provide a good clustering algorithm. However, we can im-
prove the classification direction by performing a General-
ized Linear Discriminant Analysis (GLDA) [6] on the data.
Here, every point that NMF classifies as fault is windowed,
so that points within 50 time steps are not considered non-
fault data. The data that remains after this is considered
non-fault data, one of the classes for GLDA. The points that
NMF classifies as faults are the second GLDA class.

4.1. Results

After finding the optimal (GLDA) direction, incom-
ing data is simply scaled and projected onto the one-
dimensional subspace. This magnitude was then thresh-
olded to classify a new time point as sounding an alarm or
not. A sliding window of length three sounded a fault detec-
tion if there were two alarms within the window. This lead
to prediction of five out of six faults with leadtimes of ap-
proximately 2.5 mins, 5 mins, 80 mins, 32.5 mins, 10 mins,
and -2.5 mins.

The last time is the fault we missed, though from the sys-
tem administrator we know there was a fault three minutes
after this timestamp. This discrepancy may be attributed to
the coarsness of the data sampling. We discuss this more
in the next section. These results are using the first three
clusters to predict the last three. Similar results were found



2.82e+08 2.84e+08 2.86e+08 2.88e+08

-0
.0
2

0.
00

0.
02

0.
04

0.
06

Fault Detection for LocComp1* #2 (Using End Data)

Times

P
ro
je
ct
io
ns

Projections
Faults
Alarms (with a threshold of 0.035)

(a) This uses the last three fault clusters to predict the ear-
lier ones.

2.82e+08 2.84e+08 2.86e+08 2.88e+08

-0
.0
5

0.
00

0.
05

Fault Detection for LocComp1*

Times

P
ro
je
ct
io
ns

(b) This uses the first three fault clusters to predict the lat-
ter ones.

Figure 1. Fault detection using an affine
transformation with a windowed threshold-
ing.

when we used the last three clusters to predict the first three.
See Figure 1.

5. Detection Using a Mapping of the Identity
on Healthy Data

The Multivariate State Estimation Technique (MSET)
is a well-known non-parametric technique that has been
used to predict anomalous system behavior in large sys-
tems [18]. Since coordinates of data points correspond to
physical properties like fan speeds and temperatures, it is
assumed that data points near faults will have different ge-
ometry than data points arising from healthy periods of the
system. These differences may be subtle, however, and an
MSET algorithm can be tuned to reveal and exploit these
differences.

Data that is considered to be healthy, X is used to de-
fine a non-linear dimension preserving transformation Φ of
the data, which factors through a map ϕ of the data into a
so-called similarity space. New data points that share sim-
ilarities with X are left relatively unchanged by Φ, while
points that are unfamiliar to X are changed significantly by
Φ. Thus the geometrical differences between a data point

and its image under Φ are used to define a Residual which
is used as a threshold to predict faults. We achieved the best
results when we compared both the distance and the angle
between a data point and its image under Φ. In the results
below, we predict a fault at time t if at time t the MSET
residual is above the given threshold.

The similiarity map ϕ is computed using an inverse ma-
trix M−1, which may be calculated or approximated. This
calculation is done only as often as one needs to create a
new model for the system and may be done off-line. To
create a mapping representative of a large range of data
(weeks,months) efficiently, we cluster the data into 1500
model points using the well-known LBG clustering algo-
rithm [2]. We applied this algorithm to various subsets of
X , but saw the best results when applied to smaller, large-
valued portions of X . Nominal states of the system often
exhibited near constant behavior which caused the matrix
M to be non-invertible. Therefore a regularization tech-
nique was applied which slightly spheres the data into an
invertible matrix that is a close approximation to the origi-
nal data set. This has virtually no effect on the prediction
ability.

5.1. MSET Details

A memory matrix X of size (m,n) is obtained from a
collection of sensors over time. In the case here, X was
created by clustering roughly 10K points of D into 1200.
The mth row of X contains n samples from the mth sensor.
The ith column is an observation vector X(i) of the system
at time i

X(i) = [x1(i), x2(i), . . . , xn(i)]T

where xj(i) is the measurement from sensor j at time i.
Given a new pattern P we construct a feature vector W

which exposes hidden similarity between each X(i) and P .
This feature vector is found by applying a chosen non-linear
kernel operator ⊗ to the memory matrix X and the pattern
P as shown

W ≡ W (P ) = (XT ⊗X)−1(XT ⊗ P ).

The matrix XT ⊗ X is called a similarity matrix and ex-
presses the self-correlations of the samples X(i) in the
memory matrix. The matrix XT ⊗P expresses the similar-
ity of the given pattern P with each sample in the memory.

Definition 1 Given X ∈ Rm × Rn and Y ∈ Rm × Rk,
we define X ⊗ Y ∈ Rn × Rk as the matrix whose (i, j)
coordintate is given by

X ⊗ Y(i,j) = 1− ‖ X(i) ‖2 − ‖ Y (j) ‖2

‖ X(i) − Y (j) ‖2
.



The MSET mapping ϕ defined as

ϕ(P ) ≡ X ∗W (P )

where ∗ indicates the matrix product, maps the feature vec-
tor W (P ) onto a particular linear combination of the ob-
served patterns.

The ith coordinate of the feature vector corresponds to
the ith pattern vector in the memory matrix X . So ϕ(P ) is
an approximation of P in terms of the observed patterns.

Assume the pattern P is contained in X , say P = X(j).
The feature vector W (P ) then has one non-zero coordinate
in the jth position

P = X(j) ∈ X =⇒ W (P ) = [0, . . . , 0, 1, 0, . . . , 0]T .

Therefore W (P ) is transformed by X directly into P . Oth-
erwise P is novel and W (P ) will have many non-zero co-
ordinates and ϕ(P ) will differ from P .

5.2. Results

The data sets contained six clusters of faults, and we
let N1 denote the non-fault data whose timestamps ranged
from 2.81e8 to 2.83e8. This is the first large chunk of non-
fault data in Figure 5.2. We let N2 denote the non-fault
data whose timestamps fell in the range 2.855e8 to 2.875e8.
This is the large chunk of non-fault data in Figure 5.2.

Figures 5.2 and 5.2 below indicate results from our pre-
diction scheme. Each training set was used to predict both
the first 3 and the last 3 fault clusters. A Residual in the fig-
ures below is a scalar multiple of the norm of the difference
between data point xt and its image under Φ

R =‖ Φ(xt)− xt ‖ .

The scalar multiple contains information about the angle at
which the two given vectors intersect.

The leadtimes generated from using N1 to predict the last
faults, as well as the leadtimes from using N2 to predict the
first faults are presented in Table 1. The leadtimes generated
from using N1 and N2 to predict the first and last faults,
respectively are: -15 mins, 10.2 hours, 2.5 hours, 55 mins,
13 mins, -22 mins. This iteration of the algorithm missed
the first and the last fault. We observed that the first fault is
of a different geometric character than the others, and our
MSET mapping needs to be further tuned to reflect this.

The last fault was missed however we know from the
system administrator that there were other problems with
the machine at this time. Also there was another fault that
present, that both algorithms caught although it did not ap-
pear in the event logs. Indeed, we asked the BlueGene/P
System Administrator to check his notes for this time, since

(a) MSET Using N2 to Predict First Three
Faults

(b) MSET Using N2 to Predict Last Three
Faults

Figure 2. Fault detection using a mapping of
the identity on non-fault data

we thought the strong pulse in our Residual was too pe-
culiur to overlook. He reported back that, as part of his
own routine checks he observed anamolous behavior near
this timestamp. Interestingly, his routine check happend 15
minutes AFTER our predicted alarm. So we not only caught
a fault that was missed by the event log, we outperformed a
human who happened to be running a routine check during
this time.

6. Discussions and Proposed Algorithm En-
hancement

We have proposed two algorithms for predicting anoma-
lies in supercomputer log data. Each method presented was
successful in predicting 5 of 6 event-log recorded anomalies
and both algorithms caught an anomaly not registered in the
log data. This study was preliminary and the methods were
not highly tuned. We now propose several enhancements to
the model that should improve their predictive qualities.

The non-negative matrix factorization method is an
affine transformation onto a 1-D subspace followed by a
classification using the magnitude of this projection. One
could generalize our method as follows:



(a) MSET Using N1 to Predict First Three
Faults

(b) MSET Using N1 to Predict Last Three
Faults

Figure 3. Fault detection using a mapping of
the identity on non-fault data

• Continue to use the NMF to classify the affinely trans-
formed data into fault and normal. A window will still
be put around any NMF predicted fault cluster.

• With this classified data, we will find a separating
hyper-plane of the fault from non-fault data. The nor-
mal of this hyper-plane will be the projection direction
to classify the data by a simple threshold (perhaps us-
ing the windowing method above).

• We should be willing to accept misclassifying normal
data as faults since these misclassifications tend to be
separated in time. If an alarm is sounded when two
out of three points are classified as faults, false alarms
should be avoided (as above). This needs to be incor-
porated into our optimization routine.

Notice what we end up with is a SVM classifier with an
affine (versus nonlinear) transformation of the original data.
A reasonable approach is to use positive slack variables only
for the non-fault data. Let N be the set of normal/non-
fault data points. Modifying the standard SVM optimiza-
tion problem results in the primal problem

min :
1
2
w ·w + C

∑
i∈N

λi (1a)

subject to the constraints

yi(w · xi + b) ≥ 1− λi , for i ∈ N (1b)
yj(w · xj + b) ≥ 1 , for j 6∈ N (1c)

λi ≥ 0. (1d)

Here the xk are the coordinates of the data points, and
yk = ±1 denote the classification of the data points from
the NMF procedure. C is chosen a priori, though an ROC
analysis with training and test data could be used to re-
fine the choice. Final classification is given by the function
f(x) = sign(w · x + b)

Improvements to the MSET algorithm begin with the
similarity mapping ϕ. This map depends on a choice of a
metric i.e., a way to compare points in the data set. We wit-
nessed classification rates rise when ϕ was tuned to encode
both the distance and the angle between two data points.
We propose to extend ϕ further to encode the subspaces
spanned by two points. These subspaces correspond to pat-
terns of physical system behavior such as a combination of
fan speed, temperature and voltage. Optimizing the result-
ing MSET routine over all possible subspaces would not
only produce the best fault detection but would simultane-
ously find the subspaces which carry the most predictive
power.

Secondly, when the MSET algorithm is iterated certain
points quickly converge to the training data while others



converge to the training data much more slowly. This it-
eration can be done on-line and in parallel since the main
inverse matrix computation need not be repeated and the
iteration of any point p1 is independent of that of p2. The
varying convergence rates provide a measure of an anomaly,
i.e., an extremely strong fault will have a slow convergence
rate. Such a measure could be used to improve classification
and reduce false positives.

The basic regularization approach used here should be
optimized, and the windowing method for fault detection
is simple yet effective. We expect that a method such as
Sequential Probability Ratio Testing (SPRT) [11] will be
more effective. Lastly, a similar analysis could also be done
with regards to other types of anomaly than the fatal errors
discussed here.

7. Conclusions

Raw numeric and textual log data from Oak Ridge Na-
tional Laboratory’s Blue Gene/P supercomputer was used
to build two anomaly detection algorithms. The methods,
based on a non-negative matrix factorization and MSET,
were used to successfully predict extreme events (faults) ex-
perienced by the machine.

Non-negative matrix factorization used samples of fail-
ures to build a model capable of detecting similar failures. It
worked well whether the first three fault clusters were used
to predict the last three, or vice-versa. Lead times on the
first five clusters were 15+ minutes.

The MSET algorithm was trained using only non-fault
data. It was designed to fix any point similar to what it had
seen, and perturb points that were unfamiliar. Therefore,
in contrast to non-negative matrix factorization, MSET pre-
dicts anomalies that it has not seen before. As a result, it
is particularly well suited to predict new types of failures in
real time. Results were generally consistent regardless of
which training set was used. Overall, MSET was able to
predict the same instances of failure as non-negative matrix
factorization but with lead times from seven minutes to ten
hours.

Of the six faults in the event log, five were predicted by
both algorithms with lead times ranging from seven min-
utes to ten hours. Both algorithms predicted a seventh fault,
which was confirmed to exist by the system administrator,
though it did not appear in the log. The last fault cluster was
never predicted, however we have learned from the system
administrator that the system did experience a fault near our
predicted time.

8. Acknowledgments

This work was made possible by the Directorate of Cen-
tral Intelligence Postdoctoral Program and Grant HM1582-

08-1-0041.

References

[1] J. Brandt, B. Debusschere, A. Gentile, J. Mayo, P. Pebay,
D. Thompson, and M. Wong.

[2] Y. L. A. Buzo and R. Gray. An algorithm for vector
quantizer design. IEEE Transactions on Communications,
28:84–94, 1980.

[3] C. Ding, X. He, and H. Simon. On the equivalence of non-
negative matrix factorization and spectral clustering. Proc.
SIAM Int’l Conf. Data Mining, pages 606–610, 2005.

[4] G. Golub and C. V. Loan. Matrix Computations. Johns Hop-
kins University Press, 1996.

[5] G. Hoffman, F. Salfner, and M. Malek. Advanced failure
prediction in complex software systems. SRDS.

[6] P. Howland and H. Park. Generalizing discriminant analysis
using the generalized singular value decomposition. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
26(8):995–1006, 2004.

[7] O. P. http://ovis.ca.sandia.gov.
[8] C. Leangsuksun, T. Liu, S. Scott, T. Rao, and R. Libby.

A failure predictive and policy-based high availability strat-
egy for linux high performance computing cluster. Proceed-
ings of 5th LCI International Conference on Linux Clusters,
2004.

[9] D. D. Lee and H. S. Seung. Learning the parts of objects by
non-negative matrix factorization. Nature, 401(6755):788–
791, 1999.

[10] Y. Liang, Y. Zhang, H. Xiong, and R. Sahoo. Failure pre-
diction in ibm bluegene/l event logs. Seventh IEEE Interna-
tional Conference on Data Mining, pages 583–588, 2007.

[11] J. L. Romeu. Understanding binomial sequential testing.
Technical report, Reliability Analysis Center, 2005.

[12] R. Sahoo, A. Oliner, I. Rish, M. Gupta, J. Moreira, S. Ma,
R. Vilalta, and A. Sivasubramaniam.

[13] R. Vilalta and S. Ma. Predicting rare events in temporal do-
mains. ICDM, IBM Research T. J. Watson Research Center,
Yorktown Heights, NY:474–481, 2002.

[14] R. Vilalta and S. Ma. Predicting rare events in temporal
domains using associative classification rules. Technical Re-
port, IBM Research T. J. Watson Research Center, Yorktown
Heights, NY:426–435, 2002.

[15] G. Weiss and H. Hirsh. Learning to predict rare events in
categorical time-series data. AAAI Workshop, 1998.

[16] G. Weiss and H. Hirsh. Learning to predict rare events in
event sequences. KDD, IBM Research T. J. Watson Re-
search Center, Yorktown Heights, NY:359–363, 1998.

[17] R. Zass and A. Shashua. A unifying approach to hard and
probabilistic clustering”. International Conference on Com-
puter Vision (ICCV), 2005.

[18] N. Zavaljevski and K. Gross. Sensor fault detection in nu-
clear power plants using multivariate state estimation tech-
nique and support vector machines. Third International
Conference of the Yugoslav Nuclear Society YUNCSC 2000,
3, 2000.


