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p- 14, number 5

Let A be a collection of sets. Determine the truth of each of the following statements and of
their converses.

a. xEUAeA — z € A for at least one A € A.

True. By definition of union, if = is in the union of the sets in A, then there exists at least one
set A in A such that z is in A. Conversely, if € A for at least one A € A, then by definition
of union, x must be in the union of the sets in 4. Thus, both the statement and its converse
are true.

b.zelU,., = z€ Aforevery A€ A.

False. For example, let A = {{1,2},{3,4}}. Thenz=1isinJ,_, = {1,2,3,4}, but 1 is not
in every set in A (it is not in {3,4}). Conversely, if x € A for every A € A, then x must be in
the intersection of all sets in 4. Since the intersection is a subset of the union, x must also be
in the union. Thus, the converse is true.

c. €[, = x € Afor at least one A € A.

True. By definition of intersection, if x is in the intersection of the sets in A, then z is in every
set A in A. Therefore, x is certainly in at least one set A in A. Conversely, if x € A for at
least one A € A, it does not necessarily imply that x is in the intersection of all sets in .A. For
example, let A = {{1,2},{2,3}}. Then x = 1 is in at least one set ({1,2}), but it is not in
the intersection ({2}). Thus, the converse is false.

d. z€(),., = z€ Aforevery A € A

True. By definition of intersection, if x is in the intersection of the sets in A, then z is in every
set A in A. Conversely, if x € A for every A € A, then by definition of intersection, x must
be in the intersection of all sets in .4. Thus, both the statement and its converse are true.



p. 15, number 9

Formalize and prove DeMorgan’s law for arbitrary unions and intersections.

DeMorgan’s laws for arbitrary unions and intersections state the following:

1. The complement of the union of a collection of sets is equal to the intersection of their

complements:
(b)-0s

AeA AeA

2. The complement of the intersection of a collection of sets is equal to the union of their

complements: .
(09 -ur

AeA AcA

Proof of the first law: Let = € (UAe/l A)c. This means that z is not in the union of
the sets in A. Therefore, for every set A in A, = is not in A. This implies that x is in the
complement of each set A, i.e., z € A° for every A € A. Hence, z € [ Acd A¢. Conversely,
let z €N Aca Ac. This means that for every set A in A, = is in the complement of A,
i.e., ¢ is not in A. Therefore, x is not in the union of the sets in A, which implies that

x € (U ses A)c. Thus, we have shown that both sides are equal.

Proof of the second law: Let z € (ﬂAeA A)C. This means that x is not in the intersection
of the sets in A. Therefore, there exists at least one set A in A such that x is not in A.
This implies that = is in the complement of that set A, i.e., x € A€ for some A € A. Hence,
z €, ,A¢ Conversely, let z € J,_, A°. This means that there exists at least one set A
in A such that z is in the complement of A, i.e., z is not in A. Therefore, x is not in the
intersection of the sets in .4, which implies that = € (ﬂ AcA A)C. Thus, we have shown that
both sides are equal.

p. 20, number 1

Let f: A— B. Let Ay C A and B, C B. Prove the following statements.

a. Ay C f1(f(Ay)) and equality holds if f is injective. To prove that A, C f1(f(A,)),
let x € A,. By the definition of the image of a set under a function, f(z) € f(A).
Therefore, by the definition of the preimage, z € f~(f(4,)). This shows that every
element of A, is also in f~1(f(A,)), hence Ay, C f1(f(Ay)). If f is injective, but
somehow equality does not hold, then there exists some y € f~1(f(A,)) such that y ¢ A,.
By the definition of preimage, this means that f(y) € f(A,). Therefore there exists some
x € Ay such that f(y) = f(x). But since f is injective, this implies that y = x, which



contradicts the assumption that y ¢ A,. Therefore, if f is injective, we must have
equality: Ay = f~1(f(A)).

b. f(f71(By)) C By and equality holds if f is surjective. To prove that f(f~1(B,)) C B,,
let y € f(f1(By)). By the definition of the preimage, there exists some z € f~1(B,)
such that f(z) = y. Since z € f~(B,), by the definition of preimage, we have f(z) € B,.
Therefore, y € B,. This shows that every element of f(f~'(B,)) is also in B, hence
f(fY(By)) C B,. If f is surjective, but somehow equality does not hold, then there
exists some y € B, such that y ¢ f(f1(B,)). Since f is surjective, there exists some
x € A such that f(z) =y. Since y € By, this implies that = € f~(B,). Therefore, y =
f(z) € f(f1(By)), which contradicts the assumption that y ¢ f(f 1(B,)). Therefore,
if f is surjective, we must have equality: f(f~1(B,)) = B,-

p- 39, number 4

Let m,n € Z, and let X # ¢.

a. If m < n, find an injective function f: X™ — X". Define the function f: X" — X™ by

F(@1, gy ey Tpy) = (T, Ty ooy Ty Ty Ty ee s Tq)

where we append n — m copies of x; to the end of the tuple. This function is injective
because if f(xy,29,...,2,,) = f(Y1,Yss---,Y,,), then the first m components must be
equal, which implies that (z1,Zg, ..., Z,,) = (Y1, Yas - s Ypn)-

b. Find a bijective map g : X™ x X" — X" Define the function g : X™ x X" — X™*tn
by
g(($1,$27 ,.'Bm), <y17y27 7yn)> = (‘r17x27 ety $m7y17y27 7yn>

This function is bijective because it is both injective and surjective. It is injective
because if g((x1,Zg, ..., x,), (Y1, Yy -, Yn)) = g((uy,usy,...,u,,), (vy,vq,...,v,)), then
the first m components must be equal and the last n components must be equal,
which implies that (x, z,,...,2,,) = (Uy, Ug, ..., U,,) a0d (Y1, Yg, ... s Yy) = (U1, Vg, ..., V).
It is surjective because for any (z1,2g,..,2,,) € X", we can write it as

»m—+n
g((zlv R ey Zm): (zm+1? Bm425 s zm+n>)
c. Find an injective map h : X™ — X“ We append infinitely many copies of the first
element to the end of the tuple. Define the function h : X™ — X% by

h(xy, gy ooy x,) = (X1, Tgyeee s Tpyy Ty, Ty, Ty -e.)

where we append infinitely many copies of x; to the end of the tuple. This function is
injective because if h(zy, g, ..., z,) = h(yy,Ys, .., Y, ), then the first n components must
be equal, which implies that (z,,Zq, ..., 2,) = (Y1, Ys, s Yp)-



d. Find a bijective map k : X" x X¥ — X We concatenate the finite sequence with the
infinite sequence to form a new infinite sequence. Define the function &k : X™ x X% — X%
by

/{7((1‘1,1'2, ,:L‘n), (ylv Y2, )) = (:Eh Loy ooy Ty Y15 Y2, )

This function is bijective because it is both injective and surjective. It is injective because
if k((zq, 29, ..., 2,), (Y1,Yss-..)) = k((uy,uy,...,u,), (vy,0,,...)), then the first n compo-
nents must be equal and the remaining components must be equal, which implies that
(T1,Tgy ey T,,) = (Uq, Ugy vy uy,) a0d (Yq, Yo, -..) = (v1,0y,...). It is surjective because for

any (zq, 2, ...) € X¥, we can write it as k((21, 29, .-, 2,), (Zpt1> Zng2s )

e. Find a bijective map m : X“ x X* — X“ We interleave the two sequences to form a new
sequence. Define the function m : X¥ x X¥ — X“ by

m((@q, Tg, -)s (Y1, Yas ) = (T4, Y1, T2, Yo, )

This function is bijective because it is both injective and surjective. It is injective be-
cause if m((xy, 2y, ...), (Y1,Yss--.)) = m((uy,uy,...), (vy,v,,...)), then the odd-indexed
components must be equal and the even-indexed components must be equal, which im-
plies that (zq,z,,...) = (uq, g, ...) and (yq, Yo, ...) = (vy,v,,...). It is surjective because
for any (2, 29, ...) € X¥, we can write it as m((2y, 23, 25, ---), (23, 24, Zg, ---))-

f. If A C B, show that there is a injective map from m : (A“)"™ — B“. Define the function
m: (Aw>n — B by

M((G11,Aqgy )y (Ao gy eer)y ey (Qppy Aoy o)) = (G115 Aoqy eee s Qppy Qs ooy ee s Aoy -.n)

This function is injective because if m((ayy,aq9,...), (o1, Aogyees)y ey (Ap1y oy -en)) =
m((by1, 019y ), (bo1,bo9y o)y eey (15 bpyay --)),  then the components corresponding
to each A must be equal, which implies that (a;,a;9,...) = (b;1,0;9,...) for each
1 =1,2,...,n. Thus, we have shown that m is injective.

P. 51, number 1

Show that Q is countable. To show that the set of rational numbers Q is countable, we can
construct a bijection between @ and the set of natural numbers N. We can represent each
rational number as a fraction %, where p € Z and ¢ € Z,. We can arrange these fractions
in a two-dimensional grid, where the rows correspond to the numerator p and the columns
correspond to the denominator g. We can then traverse this grid in a diagonal manner, starting
from the fraction % and moving to %, %, %, %, _Tl, and so on. By doing this, we can list all
the rational numbers in a sequence, which shows that there is a bijection between Q and N.
Therefore, Q is countable.



P. 83,1

Let X be a topological space, let A C X. Suppose that for each x € A there is an open set U
containing x such that U C A. Show that A is open in X.

We can prove this by appealling to the definition of a topology, and to what it means for a
set to be open. A set is open if it is a member of the topology. A topology is closed under
arbitrary unions. By the given condition, for each x € A, there is an open set U, containing
x such that U, C A. Therefore, we can express A as the union of all such open sets:

A=JU,

zeA
Since each U, is open and the union of open sets is also open, it follows that A is open in X.

Alternatively, we can prove this in terms of the Union Lemma (which says that open sets are
union of basis elements). In the given condition, each U is an open set and therefore can be
expressed as a union of basis elements. Thus each x € A is contained in a union of (a union
of) basis elements, each of which is contained in A. Therefore, A can be expressed as a union
of basis elements, and by the Union Lemma, A is open in X.
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