
ma516-hw1

p. 14, number 5

Let 𝒜 be a collection of sets. Determine the truth of each of the following statements and of
their converses.

a. 𝑥 ∈ ⋃𝐴∈𝒜 ⟹ 𝑥 ∈ 𝐴 for at least one 𝐴 ∈ 𝒜.

True. By definition of union, if 𝑥 is in the union of the sets in 𝒜, then there exists at least one
set 𝐴 in 𝒜 such that 𝑥 is in 𝐴. Conversely, if 𝑥 ∈ 𝐴 for at least one 𝐴 ∈ 𝒜, then by definition
of union, 𝑥 must be in the union of the sets in 𝒜. Thus, both the statement and its converse
are true.

b. 𝑥 ∈ ⋃𝐴∈𝒜 ⟹ 𝑥 ∈ 𝐴 for every 𝐴 ∈ 𝒜.

False. For example, let 𝒜 = {{1, 2}, {3, 4}}. Then 𝑥 = 1 is in ⋃𝐴∈𝒜 = {1, 2, 3, 4}, but 1 is not
in every set in 𝒜 (it is not in {3, 4}). Conversely, if 𝑥 ∈ 𝐴 for every 𝐴 ∈ 𝒜, then 𝑥 must be in
the intersection of all sets in 𝒜. Since the intersection is a subset of the union, 𝑥 must also be
in the union. Thus, the converse is true.

c. 𝑥 ∈ ⋂𝐴∈𝒜 ⟹ 𝑥 ∈ 𝐴 for at least one 𝐴 ∈ 𝒜.

True. By definition of intersection, if 𝑥 is in the intersection of the sets in 𝒜, then 𝑥 is in every
set 𝐴 in 𝒜. Therefore, 𝑥 is certainly in at least one set 𝐴 in 𝒜. Conversely, if 𝑥 ∈ 𝐴 for at
least one 𝐴 ∈ 𝒜, it does not necessarily imply that 𝑥 is in the intersection of all sets in 𝒜. For
example, let 𝒜 = {{1, 2}, {2, 3}}. Then 𝑥 = 1 is in at least one set ({1, 2}), but it is not in
the intersection ({2}). Thus, the converse is false.

d. 𝑥 ∈ ⋂𝐴∈𝒜 ⟹ 𝑥 ∈ 𝐴 for every 𝐴 ∈ 𝒜.

True. By definition of intersection, if 𝑥 is in the intersection of the sets in 𝒜, then 𝑥 is in every
set 𝐴 in 𝒜. Conversely, if 𝑥 ∈ 𝐴 for every 𝐴 ∈ 𝒜, then by definition of intersection, 𝑥 must
be in the intersection of all sets in 𝒜. Thus, both the statement and its converse are true.
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p. 15, number 9

Formalize and prove DeMorgan’s law for arbitrary unions and intersections.

DeMorgan’s laws for arbitrary unions and intersections state the following:

1. The complement of the union of a collection of sets is equal to the intersection of their
complements:

( ⋃
𝐴∈𝒜

𝐴)
𝑐

= ⋂
𝐴∈𝒜

𝐴𝑐

2. The complement of the intersection of a collection of sets is equal to the union of their
complements:

( ⋂
𝐴∈𝒜

𝐴)
𝑐

= ⋃
𝐴∈𝒜

𝐴𝑐

Proof of the first law: Let 𝑥 ∈ (⋃𝐴∈𝒜 𝐴)𝑐
. This means that 𝑥 is not in the union of

the sets in 𝒜. Therefore, for every set 𝐴 in 𝒜, 𝑥 is not in 𝐴. This implies that 𝑥 is in the
complement of each set 𝐴, i.e., 𝑥 ∈ 𝐴𝑐 for every 𝐴 ∈ 𝒜. Hence, 𝑥 ∈ ⋂𝐴∈𝒜 𝐴𝑐. Conversely,
let 𝑥 ∈ ⋂𝐴∈𝒜 𝐴𝑐. This means that for every set 𝐴 in 𝒜, 𝑥 is in the complement of 𝐴,
i.e., 𝑥 is not in 𝐴. Therefore, 𝑥 is not in the union of the sets in 𝒜, which implies that
𝑥 ∈ (⋃𝐴∈𝒜 𝐴)𝑐

. Thus, we have shown that both sides are equal.

Proof of the second law: Let 𝑥 ∈ (⋂𝐴∈𝒜 𝐴)𝑐
. This means that 𝑥 is not in the intersection

of the sets in 𝒜. Therefore, there exists at least one set 𝐴 in 𝒜 such that 𝑥 is not in 𝐴.
This implies that 𝑥 is in the complement of that set 𝐴, i.e., 𝑥 ∈ 𝐴𝑐 for some 𝐴 ∈ 𝒜. Hence,
𝑥 ∈ ⋃𝐴∈𝒜 𝐴𝑐. Conversely, let 𝑥 ∈ ⋃𝐴∈𝒜 𝐴𝑐. This means that there exists at least one set 𝐴
in 𝒜 such that 𝑥 is in the complement of 𝐴, i.e., 𝑥 is not in 𝐴. Therefore, 𝑥 is not in the
intersection of the sets in 𝒜, which implies that 𝑥 ∈ (⋂𝐴∈𝒜 𝐴)𝑐

. Thus, we have shown that
both sides are equal.

p. 20, number 1

Let 𝑓 ∶ 𝐴 → 𝐵. Let 𝐴0 ⊆ 𝐴 and 𝐵0 ⊆ 𝐵. Prove the following statements.

a. 𝐴0 ⊆ 𝑓−1(𝑓(𝐴0)) and equality holds if 𝑓 is injective. To prove that 𝐴0 ⊆ 𝑓−1(𝑓(𝐴0)),
let 𝑥 ∈ 𝐴0. By the definition of the image of a set under a function, 𝑓(𝑥) ∈ 𝑓(𝐴0).
Therefore, by the definition of the preimage, 𝑥 ∈ 𝑓−1(𝑓(𝐴0)). This shows that every
element of 𝐴0 is also in 𝑓−1(𝑓(𝐴0)), hence 𝐴0 ⊆ 𝑓−1(𝑓(𝐴0)). If 𝑓 is injective, but
somehow equality does not hold, then there exists some 𝑦 ∈ 𝑓−1(𝑓(𝐴0)) such that 𝑦 ∉ 𝐴0.
By the definition of preimage, this means that 𝑓(𝑦) ∈ 𝑓(𝐴0). Therefore there exists some
𝑥 ∈ 𝐴0 such that 𝑓(𝑦) = 𝑓(𝑥). But since 𝑓 is injective, this implies that 𝑦 = 𝑥, which
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contradicts the assumption that 𝑦 ∉ 𝐴0. Therefore, if 𝑓 is injective, we must have
equality: 𝐴0 = 𝑓−1(𝑓(𝐴0)).

b. 𝑓(𝑓−1(𝐵0)) ⊆ 𝐵0 and equality holds if 𝑓 is surjective. To prove that 𝑓(𝑓−1(𝐵0)) ⊆ 𝐵0,
let 𝑦 ∈ 𝑓(𝑓−1(𝐵0)). By the definition of the preimage, there exists some 𝑥 ∈ 𝑓−1(𝐵0)
such that 𝑓(𝑥) = 𝑦. Since 𝑥 ∈ 𝑓−1(𝐵0), by the definition of preimage, we have 𝑓(𝑥) ∈ 𝐵0.
Therefore, 𝑦 ∈ 𝐵0. This shows that every element of 𝑓(𝑓−1(𝐵0)) is also in 𝐵0, hence
𝑓(𝑓−1(𝐵0)) ⊆ 𝐵0. If 𝑓 is surjective, but somehow equality does not hold, then there
exists some 𝑦 ∈ 𝐵0 such that 𝑦 ∉ 𝑓(𝑓−1(𝐵0)). Since 𝑓 is surjective, there exists some
𝑥 ∈ 𝐴 such that 𝑓(𝑥) = 𝑦. Since 𝑦 ∈ 𝐵0, this implies that 𝑥 ∈ 𝑓−1(𝐵0). Therefore, 𝑦 =
𝑓(𝑥) ∈ 𝑓(𝑓−1(𝐵0)), which contradicts the assumption that 𝑦 ∉ 𝑓(𝑓−1(𝐵0)). Therefore,
if 𝑓 is surjective, we must have equality: 𝑓(𝑓−1(𝐵0)) = 𝐵0.

p. 39, number 4

Let 𝑚, 𝑛 ∈ ℤ+ and let 𝑋 ≠ 𝜙.

a. If 𝑚 ≤ 𝑛, find an injective function 𝑓 ∶ 𝑋𝑚 → 𝑋𝑛. Define the function 𝑓 ∶ 𝑋𝑚 → 𝑋𝑛 by

𝑓(𝑥1, 𝑥2, … , 𝑥𝑚) = (𝑥1, 𝑥2, … , 𝑥𝑚, 𝑥1, 𝑥1, … , 𝑥1)

where we append 𝑛 − 𝑚 copies of 𝑥1 to the end of the tuple. This function is injective
because if 𝑓(𝑥1, 𝑥2, … , 𝑥𝑚) = 𝑓(𝑦1, 𝑦2, … , 𝑦𝑚), then the first 𝑚 components must be
equal, which implies that (𝑥1, 𝑥2, … , 𝑥𝑚) = (𝑦1, 𝑦2, … , 𝑦𝑚).

b. Find a bijective map 𝑔 ∶ 𝑋𝑚 × 𝑋𝑛 → 𝑋𝑚+𝑛. Define the function 𝑔 ∶ 𝑋𝑚 × 𝑋𝑛 → 𝑋𝑚+𝑛

by
𝑔((𝑥1, 𝑥2, … , 𝑥𝑚), (𝑦1, 𝑦2, … , 𝑦𝑛)) = (𝑥1, 𝑥2, … , 𝑥𝑚, 𝑦1, 𝑦2, … , 𝑦𝑛)

This function is bijective because it is both injective and surjective. It is injective
because if 𝑔((𝑥1, 𝑥2, … , 𝑥𝑚), (𝑦1, 𝑦2, … , 𝑦𝑛)) = 𝑔((𝑢1, 𝑢2, … , 𝑢𝑚), (𝑣1, 𝑣2, … , 𝑣𝑛)), then
the first 𝑚 components must be equal and the last 𝑛 components must be equal,
which implies that (𝑥1, 𝑥2, … , 𝑥𝑚) = (𝑢1, 𝑢2, … , 𝑢𝑚) and (𝑦1, 𝑦2, … , 𝑦𝑛) = (𝑣1, 𝑣2, … , 𝑣𝑛).
It is surjective because for any (𝑧1, 𝑧2, … , 𝑧𝑚+𝑛) ∈ 𝑋𝑚+𝑛, we can write it as
𝑔((𝑧1, 𝑧2, … , 𝑧𝑚), (𝑧𝑚+1, 𝑧𝑚+2, … , 𝑧𝑚+𝑛)).

c. Find an injective map ℎ ∶ 𝑋𝑛 → 𝑋𝜔 We append infinitely many copies of the first
element to the end of the tuple. Define the function ℎ ∶ 𝑋𝑛 → 𝑋𝜔 by

ℎ(𝑥1, 𝑥2, … , 𝑥𝑛) = (𝑥1, 𝑥2, … , 𝑥𝑛, 𝑥1, 𝑥1, 𝑥1, …)

where we append infinitely many copies of 𝑥1 to the end of the tuple. This function is
injective because if ℎ(𝑥1, 𝑥2, … , 𝑥𝑛) = ℎ(𝑦1, 𝑦2, … , 𝑦𝑛), then the first 𝑛 components must
be equal, which implies that (𝑥1, 𝑥2, … , 𝑥𝑛) = (𝑦1, 𝑦2, … , 𝑦𝑛).
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d. Find a bijective map 𝑘 ∶ 𝑋𝑛 × 𝑋𝜔 → 𝑋𝜔 We concatenate the finite sequence with the
infinite sequence to form a new infinite sequence. Define the function 𝑘 ∶ 𝑋𝑛 ×𝑋𝜔 → 𝑋𝜔

by
𝑘((𝑥1, 𝑥2, … , 𝑥𝑛), (𝑦1, 𝑦2, …)) = (𝑥1, 𝑥2, … , 𝑥𝑛, 𝑦1, 𝑦2, …)

This function is bijective because it is both injective and surjective. It is injective because
if 𝑘((𝑥1, 𝑥2, … , 𝑥𝑛), (𝑦1, 𝑦2, …)) = 𝑘((𝑢1, 𝑢2, … , 𝑢𝑛), (𝑣1, 𝑣2, …)), then the first 𝑛 compo-
nents must be equal and the remaining components must be equal, which implies that
(𝑥1, 𝑥2, … , 𝑥𝑛) = (𝑢1, 𝑢2, … , 𝑢𝑛) and (𝑦1, 𝑦2, …) = (𝑣1, 𝑣2, …). It is surjective because for
any (𝑧1, 𝑧2, …) ∈ 𝑋𝜔, we can write it as 𝑘((𝑧1, 𝑧2, … , 𝑧𝑛), (𝑧𝑛+1, 𝑧𝑛+2, …)).

e. Find a bijective map 𝑚 ∶ 𝑋𝜔 ×𝑋𝜔 → 𝑋𝜔 We interleave the two sequences to form a new
sequence. Define the function 𝑚 ∶ 𝑋𝜔 × 𝑋𝜔 → 𝑋𝜔 by

𝑚((𝑥1, 𝑥2, …), (𝑦1, 𝑦2, …)) = (𝑥1, 𝑦1, 𝑥2, 𝑦2, …)

This function is bijective because it is both injective and surjective. It is injective be-
cause if 𝑚((𝑥1, 𝑥2, …), (𝑦1, 𝑦2, …)) = 𝑚((𝑢1, 𝑢2, …), (𝑣1, 𝑣2, …)), then the odd-indexed
components must be equal and the even-indexed components must be equal, which im-
plies that (𝑥1, 𝑥2, …) = (𝑢1, 𝑢2, …) and (𝑦1, 𝑦2, …) = (𝑣1, 𝑣2, …). It is surjective because
for any (𝑧1, 𝑧2, …) ∈ 𝑋𝜔, we can write it as 𝑚((𝑧1, 𝑧3, 𝑧5, …), (𝑧2, 𝑧4, 𝑧6, …)).

f. If 𝐴 ⊆ 𝐵, show that there is a injective map from 𝑚 ∶ (𝐴𝜔)𝑛 → 𝐵𝜔. Define the function
𝑚 ∶ (𝐴𝜔)𝑛 → 𝐵𝜔 by

𝑚((𝑎11, 𝑎12, …), (𝑎21, 𝑎22, …), … , (𝑎𝑛1, 𝑎𝑛2, …)) = (𝑎11, 𝑎21, … , 𝑎𝑛1, 𝑎12, 𝑎22, … , 𝑎𝑛2, …)

This function is injective because if 𝑚((𝑎11, 𝑎12, …), (𝑎21, 𝑎22, …), … , (𝑎𝑛1, 𝑎𝑛2, …)) =
𝑚((𝑏11, 𝑏12, …), (𝑏21, 𝑏22, …), … , (𝑏𝑛1, 𝑏𝑛2, …)), then the components corresponding
to each 𝐴𝜔 must be equal, which implies that (𝑎𝑖1, 𝑎𝑖2, …) = (𝑏𝑖1, 𝑏𝑖2, …) for each
𝑖 = 1, 2, … , 𝑛. Thus, we have shown that 𝑚 is injective.

P. 51, number 1

Show that ℚ is countable. To show that the set of rational numbers ℚ is countable, we can
construct a bijection between ℚ and the set of natural numbers ℕ. We can represent each
rational number as a fraction 𝑝

𝑞 , where 𝑝 ∈ ℤ and 𝑞 ∈ ℤ+. We can arrange these fractions
in a two-dimensional grid, where the rows correspond to the numerator 𝑝 and the columns
correspond to the denominator 𝑞. We can then traverse this grid in a diagonal manner, starting
from the fraction 0

1 and moving to 1
1 , 1

2 , 2
1 , 0

2 , −1
1 , and so on. By doing this, we can list all

the rational numbers in a sequence, which shows that there is a bijection between ℚ and ℕ.
Therefore, ℚ is countable.
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P. 83, 1

Let 𝑋 be a topological space, let 𝐴 ⊆ 𝑋. Suppose that for each 𝑥 ∈ 𝐴 there is an open set 𝑈
containing 𝑥 such that 𝑈 ⊆ 𝐴. Show that 𝐴 is open in 𝑋.

We can prove this by appealling to the definition of a topology, and to what it means for a
set to be open. A set is open if it is a member of the topology. A topology is closed under
arbitrary unions. By the given condition, for each 𝑥 ∈ 𝐴, there is an open set 𝑈𝑥 containing
𝑥 such that 𝑈𝑥 ⊆ 𝐴. Therefore, we can express 𝐴 as the union of all such open sets:

𝐴 = ⋃
𝑥∈𝐴

𝑈𝑥

Since each 𝑈𝑥 is open and the union of open sets is also open, it follows that 𝐴 is open in 𝑋.

Alternatively, we can prove this in terms of the Union Lemma (which says that open sets are
union of basis elements). In the given condition, each 𝑈 is an open set and therefore can be
expressed as a union of basis elements. Thus each 𝑥 ∈ 𝐴 is contained in a union of (a union
of) basis elements, each of which is contained in 𝐴. Therefore, 𝐴 can be expressed as a union
of basis elements, and by the Union Lemma, 𝐴 is open in 𝑋.
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