
Order, Product & Subpace topologies

Order Relations

An order relation on a set 𝑋 is a relation < satisfying for all 𝑎, 𝑏, 𝑐 ∈ 𝑋:

1. (Comparability) Either 𝑎 < 𝑏, 𝑎 = 𝑏, or 𝑎 > 𝑏.
2. (Transitivity) If 𝑎 < 𝑏 and 𝑏 < 𝑐, then 𝑎 < 𝑐.
3. (Non-reflexivity) 𝑎 ≮ 𝑎.

Examples

1. The usual order on ℝ.
2. The (dictionary order) lexicographic order on ℝ2: (𝑎1, 𝑎2) < (𝑏1, 𝑏2) if either 𝑎1 < 𝑏1 or

𝑎1 = 𝑏1 and 𝑎2 < 𝑏2.
3. The dictionary order on words: 𝑎 < 𝑏 if either the first letter where they differ is earlier

in the alphabet in 𝑎 than in 𝑏, or 𝑎 is a prefix of 𝑏.
4. The parabolic order on ℝ2 below:
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Figure 1: parabolic order

Order Topology

Given a set 𝑋 with an order relation <, the order topology on 𝑋 is generated by the basis
consisting of all open intervals (𝑎, 𝑏) = {𝑥 ∈ 𝑋 ∶ 𝑎 < 𝑥 < 𝑏}, along with intervals of the
form [𝑎0, 𝑏) = {𝑥 ∈ 𝑋 ∶ 𝑥 < 𝑏} if 𝑎0 is the least element of 𝑋, and intervals of the form
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(𝑎, 𝑏0] = {𝑥 ∈ 𝑋 ∶ 𝑎 < 𝑥} if 𝑏0 is the greatest element of 𝑋.

Examples

1. The order topology on ℝ is the standard topology.
2. The (lexicographic) dictionary order topology on ℝ2 has two typs of open sets:

1. Open intervals of the form (𝑎 × 𝑏, 𝑐 × 𝑑) for 𝑎 < 𝑐
2. Vertical open intervals of the form (𝑎 × 𝑏, 𝑎 × 𝑑) for 𝑏 < 𝑑

Questions

1. Why do sets of the second type form a basis?
2. What should rays be in this topology?

Product Topology

Given topological spaces (𝑋, 𝒯𝑋) and (𝑌 , 𝒯𝑌 ), the product topology on 𝑋 × 𝑌 is generated by
the basis consisting of all products of open sets 𝑈 × 𝑉 where 𝑈 ∈ 𝒯𝑋 and 𝑉 ∈ 𝒯𝑌 .

Examples

1. The product topology on ℝ × ℝ is the standard topology on ℝ2.
2. The product topology on ℝ×ℝ where ℝ has the standard topology and ℝ has the discrete

topology.
3. We will see that the torus inherits a product topology from 𝑆1 × 𝑆1. (First, we need to

define the topology on 𝑆1.)
4. The product topology on ℝ × ℝ × ℝ is the standard topology on ℝ3.

Question

1. Is the bases ℬ actually the entire topology? (No, unions of rectangles are not rectangles.)
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Main Theorems

Theorem 1 : A (another) basis for the product topology on 𝑋 × 𝑌 is given by the collection
of all products of basis elements 𝐵𝑋 × 𝐵𝑌 where 𝐵𝑋 is a basis element for 𝑋 and 𝐵𝑌 is a
basis element for 𝑌 .

Proof : Recall, that ℬ is a basis for a topology on 𝑋 if for every point 𝑥 ∈ 𝑋 and every open
neighborhood 𝑈 of 𝑥, there is a basis element 𝐵 ∈ ℬ such that 𝑥 ∈ 𝐵 ⊆ 𝑈 . Let 𝑥 ∈ 𝑋 and
assume 𝑈 is an open neighborhood of 𝑥. Then by definition of the product topology, there is
a basis element 𝑈𝑋 × 𝑈𝑌 such that 𝑥 ∈ 𝑈𝑋 × 𝑈𝑌 ⊆ 𝑈 . Since 𝐵𝑋 is a basis for 𝑋, there is a
basis element 𝐵𝑋 such that 𝑥𝑋 ∈ 𝐵𝑋 ⊆ 𝑈𝑋. Similarly, there is a basis element 𝐵𝑌 such that
𝑥𝑌 ∈ 𝐵𝑌 ⊆ 𝑈𝑌 . Thus, we have that

𝑥 ∈ 𝐵𝑋 × 𝐵𝑌 ⊆ 𝑈𝑋 × 𝑈𝑌 ⊆ 𝑈

as desired. □

Subspace Topology

Given a topological space (𝑋, 𝒯) and a subset 𝑌 ⊆ 𝑋, the subspace topology on 𝑌 is all sets of
the form 𝑈 ∩ 𝑌 where 𝑈 ∈ 𝒯. In other words, a set 𝑉 ⊆ 𝑌 is open in the subspace topology
if there is an open set 𝑈 in 𝑋 such that 𝑉 = 𝑈 ∩ 𝑌 .

Why is this a topology?

1. 𝑌 = 𝑋 ∩ 𝑌 is open in the subspace topology since 𝑋 is open in 𝑋.

2. 𝜙 = 𝜙 ∩ 𝑌 is open in the subspace topology since 𝜙 is open in 𝑋.

3. Let {𝑉𝛼} be a collection of open sets in the subspace topology. Then for each 𝛼, there
is an open set 𝑈𝛼 in 𝑋 such that 𝑉𝛼 = 𝑈𝛼 ∩ 𝑌 . Thus,

⋃
𝛼

𝑉𝛼 = ⋃
𝛼

(𝑈𝛼 ∩ 𝑌 ) = (⋃
𝛼

𝑈𝛼) ∩ 𝑌

which is open in the subspace topology since ⋃𝛼 𝑈𝛼 is open in 𝑋.

4. Let 𝑉1, 𝑉2, … , 𝑉𝑛 be a finite collection of open sets in the subspace topology. Then for
each 𝑖, there is an open set 𝑈𝑖 in 𝑋 such that 𝑉𝑖 = 𝑈𝑖 ∩ 𝑌 . Thus,

𝑛
⋂
𝑖=1

𝑉𝑖 =
𝑛

⋂
𝑖=1

(𝑈𝑖 ∩ 𝑌 ) = (
𝑛

⋂
𝑖=1

𝑈𝑖) ∩ 𝑌

which is open in the subspace topology since ⋂𝑛
𝑖=1 𝑈𝑖 is open in 𝑋.

It follows that the intersection of basis elements forms a basis for the subspace topology.
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Terminology

With subspaces, we need to keep track of two different types of open sets. If 𝑌 ⊆ 𝑋, we say 𝑈
is open in 𝑌 if 𝑈 is open in the subspace topology on 𝑌 . We say 𝑈 is open in 𝑋 if 𝑈 is open
in the topology on 𝑋.

Examples

1. Let 𝑋 = ℝ with the standard topology and let 𝑌 = [0, 1]. Then the open sets in the
subspace topology on 𝑌 are all sets of the form (𝑎, 𝑏) ∩ [0, 1] where (𝑎, 𝑏) is an open
interval in ℝ. Thus, the open sets in the subspace topology on 𝑌 are:

1. The empty set
2. Intervals of the form (𝑎, 𝑏) where 0 < 𝑎 < 𝑏 < 1
3. Intervals of the form [0, 𝑏) where 0 < 𝑏 ≤ 1
4. Intervals of the form (𝑎, 1] where 0 ≤ 𝑎 < 1
5. The entire set [0, 1]

2. Let 𝑋 = ℝ2 with the standard topology and let 𝑌 be the 𝑥-axis. Then the open sets in
the subspace topology on 𝑌 are all sets of the form 𝑈 ∩ 𝑌 where 𝑈 is an open set in
ℝ2. Since open sets in ℝ2 are unions of open balls, it follows that the open sets in the
subspace topology on 𝑌 are unions of open intervals on the 𝑥-axis. Thus, the subspace
topology on 𝑌 is the standard topology on ℝ.

3. Let 𝑋 = ℝ with the standard topology and let 𝑌 = ℚ be the set of rational numbers.
Then the open sets in the subspace topology on 𝑌 are all sets of the form (𝑎, 𝑏)∩ℚ where
(𝑎, 𝑏) is an open interval in ℝ. Thus, the open sets in the subspace topology on 𝑌 are
unions of open intervals (of rationals) with rational endpoints.

4. Let 𝑋 = ℝ with the standard topology and let 𝑌 = ℤ be the set of integers. Then the
open sets in the subspace topology on 𝑌 are all sets of the form (𝑎, 𝑏) ∩ ℤ where (𝑎, 𝑏) is
an open interval in ℝ. Thus, the open sets in the subspace topology on 𝑌 are all subsets
of ℤ since for any subset of integers, we can find an open interval in ℝ that contains
exactly those integers. This is the discrete topology on ℤ.

5. Let 𝑋 = ℝ with the standard topology and let 𝑌 = [0, 1) ∪ {2}. Then the open sets in
the subspace topology on 𝑌 are all sets of the form (𝑎, 𝑏) ∩ 𝑌 where (𝑎, 𝑏) is an open
interval in ℝ. Thus, the open sets in the subspace topology on 𝑌 are:

1. The empty set
2. Intervals of the form (𝑎, 𝑏) where 0 < 𝑎 < 𝑏 < 1
3. Intervals of the form [0, 𝑏) where 0 < 𝑏 ≤ 1
4. Intervals of the form (𝑎, 1] where 0 ≤ 𝑎 < 1
5. The entire set [0, 1) ∪ {2}
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6. The singleton set {2}
7. Unions of the above sets.

6. Let 𝑋 = 𝕊1 be the unit circle in ℝ2 with the subspace topology inherited from the
standard topology on ℝ2. Then the open sets in the subspace topology on 𝑋 are all sets
of the form 𝑈 ∩ 𝕊1 where 𝑈 is an open set in ℝ2. Since open sets in ℝ2 are unions of
open balls, it follows that the open sets in the subspace topology on 𝑋 are unions of
open arcs on the circle.

7. Let 𝑋 = 𝕊1 × 𝕊1 be the torus with the product topology inherited from the standard
topology on ℝ2 × ℝ2 ≅ ℝ4. Then the open sets in the product topology on 𝑋 are all
sets of the form 𝑈1 × 𝑈2 where 𝑈1 and 𝑈2 are open sets in 𝕊1. Since open sets in 𝕊1 are
unions of open arcs on the circle, it follows that the open sets in the product topology
on 𝑋 are unions of products of open arcs on the two circles.

8. Let 𝑋 be the torus with the subspace topology inherited from the standard topology
on ℝ3 via the usual embedding of the torus in ℝ3. Then the open sets in the subspace
topology on 𝑋 are all sets of the form 𝑈 ∩ 𝑋 where 𝑈 is an open set in ℝ3. Since open
sets in ℝ3 are unions of open balls, it follows that the open sets in the subspace topology
on 𝑋 are unions of open “patches” on the torus. It follows from Theorem 3 below that
this topology is the same as the product topology on 𝑋.

Some basic Theorems

Lemma 2 : If 𝑈 ⊆ 𝑌 ⊆ 𝑋, and 𝑈 is open in 𝑌 and 𝑌 is open in 𝑋, then 𝑈 is open in 𝑋.

Proof : Since 𝑈 is open in 𝑌 , there is an open set 𝑉 in 𝑋 such that 𝑈 = 𝑉 ∩ 𝑌 . Since 𝑌 is
open in 𝑋, we have that 𝑈 = 𝑉 ∩ 𝑌 is open in 𝑋 as the intersection of two open sets. □

Theorem 3 : If 𝐴 ⊂ 𝑋 and 𝐵 ⊂ 𝑌 , then the subspace topology on 𝐴×𝐵 as a subset of 𝑋 ×𝑌
is the same as the product topology on 𝐴 × 𝐵 where 𝐴 and 𝐵 have the subspace topologies
inherited from 𝑋 and 𝑌 , respectively.

Proof : Let 𝒯1 be the subspace topology on 𝐴 × 𝐵 as a subset of 𝑋 × 𝑌 and let 𝒯2 be the
product topology on 𝐴 × 𝐵 where 𝐴 and 𝐵 have the subspace topologies inherited from 𝑋
and 𝑌 , respectively. We will show that 𝒯1 ⊆ 𝒯2 and 𝒯2 ⊆ 𝒯1.

(𝒯1 ⊆ 𝒯2) Let 𝑈 ∈ 𝒯1. Then there is an open set 𝑉 in 𝑋 × 𝑌 such that 𝑈 = 𝑉 ∩ (𝐴 × 𝐵).
Since 𝑉 is open in the product topology on 𝑋 × 𝑌 , there is a basis element 𝑈𝑋 × 𝑈𝑌 such that
𝑥 ∈ 𝑈𝑋 × 𝑈𝑌 ⊆ 𝑉 . Thus,

𝑈 = 𝑉 ∩ (𝐴 × 𝐵) ⊇ (𝑈𝑋 × 𝑈𝑌 ) ∩ (𝐴 × 𝐵) = (𝑈𝑋 ∩ 𝐴) × (𝑈𝑌 ∩ 𝐵)

Since 𝑈𝑋 is open in 𝑋, we have that 𝑈𝑋 ∩ 𝐴 is open in the subspace topology on 𝐴. Similarly,
𝑈𝑌 ∩ 𝐵 is open in the subspace topology on 𝐵. Thus, (𝑈𝑋 ∩ 𝐴) × (𝑈𝑌 ∩ 𝐵) is a basis element
for the product topology on 𝐴 × 𝐵, and so 𝑈 is open in 𝒯2.
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(𝒯2 ⊆ 𝒯1) Let 𝑈 ∈ 𝒯2. Then there are open sets 𝑈𝐴 in 𝐴 and 𝑈𝐵 in 𝐵 such that 𝑈 = 𝑈𝐴 ×𝑈𝐵.
Since 𝑈𝐴 is open in the subspace topology on 𝐴, there is an open set 𝑉𝐴 in 𝑋 such that
𝑈𝐴 = 𝑉𝐴 ∩ 𝐴. Similarly, there is an open set 𝑉𝐵 in 𝑌 such that 𝑈𝐵 = 𝑉𝐵 ∩ 𝐵. Thus,

𝑈 = 𝑈𝐴 × 𝑈𝐵 = (𝑉𝐴 ∩ 𝐴) × (𝑉𝐵 ∩ 𝐵) = (𝑉𝐴 × 𝑉𝐵) ∩ (𝐴 × 𝐵)

Since 𝑉𝐴 is open in 𝑋 and 𝑉𝐵 is open in 𝑌 , we have that 𝑉𝐴 × 𝑉𝐵 is open in the product
topology on 𝑋 × 𝑌 . Thus, 𝑈 is open in 𝒯1. □
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