Closed Sets & Limit Points

Closed Sets

A set C' C X is closed if its complement X — C' is open.

Examples

1. In the discrete topology, every set is closed.

2. In the indiscrete topology, only () and X are closed.

3. In the standard topology on R, the set [a,b] is closed because its complement (—oo, a) U
(b, ) is open.

4. In the standard topology on R?, the set {(z,y) : 22 + y* = 1} (the unit circle) is closed
because its complement is open.

5. In the standard topology on R, the set Z is closed because its complement R — Z is open.

6. For Y = [1,2] U (3,4) is a subspace of R with the subspace topology. The set [1,2] is
open in Y since it is the intersection of the open set (—o0,2.5) in R with Y. Similarly,
(3,4) is open in Y. Therefore, the set [1,2] is closed in Y since its complement (3,4) is
open in Y. Also (3,4) is closed in Y since its complement [1,2] is open in Y.

The properties of a topology can be rephrased in terms of closed sets.

Theorem 1. The following properties of closed sets hold in any topological space X: 1. The
empty set () and the entire space X are closed. 2. The intersection of any collection of closed
sets is closed. 3. The union of any finite number of closed sets is closed.

Examples

1. The infinite union Uzozl [1,2—1] = [1,2) is not closed in the standard topology on R? since
its complement (—oo, 1) U [2, 00) is not open. 2 The infinite intersection ﬂ:;l[—%, 1=

{0} is closed in the standard topology on R? since its complement (—oo,0) U (0, 00) is
open.



Terminology

o A set that is both open and closed is called clopen. (ajar?)
e closed in Y : we say aset ACY isclosed in Y if Y — A is open in Y.

Similar to how we defined subspace topology, we can define closed sets in a subspace.

Theorem 2. Let Y be a subspace of a topological space X. A set C C Y is closed in Y if
and only if there exists a closed set D in X such that C'=DNY.

Proof. Suppose Cis closed in Y. Then Y —C'is open in Y. By the definition of the subspace
topology, there exists an open set U in X such that Y —C =UNY. Let D =X — U. Then
Disclosedin XandC =Y - (Y -C)=Y—-UNY)=(X-U)nY=DnNY.

Conversely, suppose there exists a closed set D in X such that C = DNY. Let U = X — D.
Then Uisopenin X and Y —C =Y —(DNY)=YN(X—-D)=YNU. Thus, Y —C is open
inY,andso CisclosedinY. H

Terminology

e interior : The interior of a set A in a topological space X is the largest open set contained
in A, denoted by int(A) or Int(A) or A.

e closure : The closure of a set A in a topological space X is the intersection of all closed
sets containing A, denoted by A or Cl(A).

e closure : This is also the smallest closed set containing A.

How closures work with subspaces:

Theorem 3. Let Y be a subspace of a topological space X. For any subset A of Y, the closure
of A in Y is the intersection of the closure of A in X with Y.

Proof. Let x be a point in the closure of A in Y. Then z is in every closed set in Y that
contains A. Closed sets in Y are intersections of closed sets in X with Y. Thus, x is in every
closed set in X that contains A, so z is in the closure of A in X. Since x is also in Y, we have
that z is in the intersection of the closure of A in X with Y.

Pointwise characterization of closures:

Theorem 4. Let X be a topological space, and let A C X. Then x € A if and only if every
open set U containing x intersects A; that is, U N A # ().

Proof. Suppose # € A. Let U be any open set containing . f UN A =, then A C X — U,
and since X — U is closed, we have A C X — U. This contradicts the fact that z € A and
x € U. Thus, UN A # ). Conversely, suppose that every open set U containing z intersects
A. If 2 ¢ A, then there exists a closed set C' containing A such that z ¢ C. Let U = X — C.



Then U is an open set containing z, but U N A = (), contradicting our assumption. Therefore,
rcA N

Contrapositive Proof. Let z ¢ A. Then there exists a closed set C' containing A such that
x ¢ C. Let U =X —C. Then U is an open set containing z, but U N A = (. Thus, there
exists an open set U containing = that does not intersect A. Conversely, suppose there exists
an open set U containing x such that UN A = (). Then A C X — U, and since X — U is closed,
we have A C X — U. This implies that z ¢ AN

Examples

1. In the standard topology on R, the closure of the open interval (a,b) is the closed interval
[a,b].

2. In the standard topology on R, the closure of the set Q of rational numbers is R since
every open interval in R contains rational numbers.

3. In the standard topology on R?, the closure of the set {(z,y) : 2% +3? < 1} (the interior
of the unit circle) is the set {(z,y) : 22 + y? < 1} (the unit disk).

4. Let X = R and let A = (0,5] Then A = [0, 5] in the standard topology on R since every
open set containing 0 intersects A.

5. Let X = R with B = {1 :n € Z*}. Then B = BU {0} in the standard topology on R
since every open set containing ( intersects B.

Limit Points

A point z € X is a limit point of a set A C X if every open set U containing x intersects A
in some point other than z itself; that is, (U — {x}) N A # 0.

Examples

1. In the standard topology on R, every point in the open interval (a,b) is a limit point of
(a,b).

2. In the standard topology on R, the point a is a limit point of the set (a,b) since every
open interval containing a intersects (a,b) in some point other than a itself.

3. In the standard topology on R, if A = (0, 1], then 0 is a limit point of A.

4. What are the limit points of the set B above in example 5 of closures? Answer: 0 is the
only limit point of B since every open set containing 0 intersects B in some point other
than 0 itself. No other point in B is a limit point since we can find an open set around
any other point that does not intersect B in any other point.



Theorem 5. Let X be a topological space, and let A C X. Then z € A if and only if z is a
limit point of A or x € A. That is, AU A’ = A where A’ is the set of limit points of A. iiii
Proof. Suppose x € A. If z € A, we are done. If z ¢ A, then for every open set U containing
x, we have U N A # () by Theorem 4. Since = ¢ A, it follows that (U — {z}) N A # (). Thus,
x is a limit point of A. Conversely, suppose x is a limit point of A or z € A. If x € A, then
clearly € A. If x is a limit point of A, then for every open set U containing z, we have

(U —{x})N A # (), which implies that U N A # (). By Theorem 4, this means that z € A. B
Corollary. A set A is closed if and only if it contains all its limit points; that is, if A" C A.

Proof. Suppose A is closed. Then A = A= AU A’ so A’ C A. Conversely, suppose A’ C A.
Then A= AUA’ = Aso Ais closed. B

Applications

As our knowledge & language grows, we can prove things more easily/efficiently, for example:

1. In the standard topology on R, a single point set {«} has no limit points, so it is closed.
2. The same is true for Z in the standard topology on R since no point in R is a limit point
of Z. Thus, Z is closed in R.

Hausdorff Spaces

General topological spaces can be “weird”. For example, not all one-point subsets are closed
in every topology.

Exercise. Build an example of a topology on a three-point set X = {a,b,c} where the
one-point set {a} is not closed.

Convergence of sequences can also be “weird” in general topological spaces. For example, a
sequence can converge to more than one point. First, we need a definition of convergence in
topological spaces.

Definition. A sequence (z,,) in a topological space X converges to a point z € X if for
every open set U containing x, there exists an integer N such that for alln > N, z, € U.

This definition generalizes the usual definition of convergence in metric spaces. (Here, we avoid
using €’s and 4’s.)
Exercise. Build an example of a topology on a three-point set X = {a, b, c} where a sequence

converges to two different points.

To avoid these “weird” situations, we often work with a special® class of topological spaces
called Hausdorff spaces.



Definition. A topological space X is a Hausdorff space if for every pair of distinct points
x,y € X, there exist open sets U and V such that z € U,y € V,and UNV = (.

One can remember the Hausdorff condition by thinking of U and V as “neighborhoods” that
“House-off” the points x and y from each other.

Examples

1. Any metric space is a Hausdorff space. (Details later.)
2. The discrete topology on any set is a Hausdorff space.
3. The finite complement topology on an infinite set is not a Hausdorff space. Why?

Comment The Hausdorff condition is also called the 7, axiom. There are other separation
axioms (Ty, Ty, T5, T}, etc.) that impose different levels of “separability” on topological spaces.
We will not discuss these much, but the Hausdorff condition strikes a good balance: it is strong
enough to avoid many pathological situations, yet weak enough that most topological spaces
we encounter in practice are Hausdorff. This balance is often an element of choice in topology;
too strong a condition excludes too many spaces, while too weak a condition allows too many
pathological cases.

Theorem 6. In a Hausdorff space, every one-point set {x} is closed.

Proof. Apply the Hausdorff condition with ¢ being any point other than x. Then there exist
open sets U and V such that x € U, y € V, and U NV = (. Since this is true for any point
y # x, we have that X —{z} = Uy . V,, where each V, is an open set containing y and disjoint

from some open set containing z. Thus, X — {x} is open, so {z} is closed. B

The separation axiom 7} is that every finite set is closed. Theorem 6 shows that Hausdorft
spaces satisfy the 77 axiom.

Corollary. In a Hausdorff space, every finite set is closed.

Proof. A finite set is a finite union of one-point sets, and finite unions of closed sets are closed.
|

Finally, we can show that sequences in Hausdorff spaces behave more like sequences in metric
spaces.

Theorem 7. In a Hausdorff space, a sequence converges to at most one point.

Proof. Suppose a sequence (z,,) converges to both = and y where x # y. By the Hausdorff
condition, there exist open sets U and V such that z € U, y € V, and UNV = (. Since
(x,,) converges to x, there exists an integer N, such that for all n > Ny, z,, € U. Similarly,
since (z,,) converges to y, there exists an integer N, such that for all n > N,, x,, € V. Let
N = max(N;, N,). Then for all n > N, we have z,, € U and z,, € V, which contradicts the
fact that U NV = (). Therefore, a sequence can converge to at most one point in a Hausdorff
space. Mo



Finally, we observe that subspaces of Hausdorff spaces are also Hausdorff, and products of
Hausdorff spaces are also Hausdorff.

Examples

1. The torus is a Hausdorff space since it is the product of two circles, and the circle is a
Hausdorff space as a subspace of R? with the standard topology.

2. The Mobius strip is a Hausdorff space since it is a subspace of R? with the standard
topology.
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