

Closed Sets & Limit Points

Closed Sets

A set $C \subseteq X$ is **closed** if its complement $X - C$ is open.

Examples

1. In the discrete topology, every set is closed.
2. In the indiscrete topology, only \emptyset and X are closed.
3. In the standard topology on \mathbb{R} , the set $[a,b]$ is closed because its complement $(-\infty, a) \cup (b, \infty)$ is open.
4. In the standard topology on \mathbb{R}^2 , the set $\{(x,y) : x^2 + y^2 = 1\}$ (the unit circle) is closed because its complement is open.
5. In the standard topology on \mathbb{R} , the set \mathbb{Z} is closed because its complement $\mathbb{R} - \mathbb{Z}$ is open.
6. For $Y = [1,2] \cup (3,4)$ is a subspace of \mathbb{R} with the subspace topology. The set $[1,2]$ is open in Y since it is the intersection of the open set $(-\infty, 2.5)$ in \mathbb{R} with Y . Similarly, $(3,4)$ is open in Y . Therefore, the set $[1,2]$ is closed in Y since its complement $(3,4)$ is open in Y . Also $(3,4)$ is closed in Y since its complement $[1,2]$ is open in Y .

The properties of a topology can be rephrased in terms of closed sets.

Theorem 1. The following properties of closed sets hold in any topological space X : 1. The empty set \emptyset and the entire space X are closed. 2. The intersection of any collection of closed sets is closed. 3. The union of any finite number of closed sets is closed.

Examples

1. The infinite union $\bigcup_{n=1}^{\infty} [1, 2 - \frac{1}{n}] = [1, 2)$ is not closed in the standard topology on \mathbb{R}^2 since its complement $(-\infty, 1) \cup [2, \infty)$ is not open. 2. The infinite intersection $\bigcap_{n=1}^{\infty} [-\frac{1}{n}, \frac{1}{n}] = \{0\}$ is closed in the standard topology on \mathbb{R}^2 since its complement $(-\infty, 0) \cup (0, \infty)$ is open.

Terminology

- A set that is both open and closed is called **clopen**. (ajar?)
- **closed in Y** : we say a set $A \subseteq Y$ is closed in Y if $Y - A$ is open in Y .

Similar to how we defined subspace topology, we can define closed sets in a subspace.

Theorem 2. Let Y be a subspace of a topological space X . A set $C \subseteq Y$ is closed in Y if and only if there exists a closed set D in X such that $C = D \cap Y$.

Proof. Suppose C is closed in Y . Then $Y - C$ is open in Y . By the definition of the subspace topology, there exists an open set U in X such that $Y - C = U \cap Y$. Let $D = X - U$. Then D is closed in X and $C = Y - (Y - C) = Y - (U \cap Y) = (X - U) \cap Y = D \cap Y$.

Conversely, suppose there exists a closed set D in X such that $C = D \cap Y$. Let $U = X - D$. Then U is open in X and $Y - C = Y - (D \cap Y) = Y \cap (X - D) = Y \cap U$. Thus, $Y - C$ is open in Y , and so C is closed in Y . ■

Terminology

- **interior** : The interior of a set A in a topological space X is the largest open set contained in A , denoted by $\text{int}(A)$ or $\text{Int}(A)$ or $\overset{\circ}{A}$.
- **closure** : The closure of a set A in a topological space X is the intersection of all closed sets containing A , denoted by \overline{A} or $\text{Cl}(A)$.
- **closure** : This is also the smallest closed set containing A .

How closures work with subspaces:

Theorem 3. Let Y be a subspace of a topological space X . For any subset A of Y , the closure of A in Y is the intersection of the closure of A in X with Y .

Proof. Let x be a point in the closure of A in Y . Then x is in every closed set in Y that contains A . Closed sets in Y are intersections of closed sets in X with Y . Thus, x is in every closed set in X that contains A , so x is in the closure of A in X . Since x is also in Y , we have that x is in the intersection of the closure of A in X with Y .

Pointwise characterization of closures:

Theorem 4. Let X be a topological space, and let $A \subseteq X$. Then $x \in \overline{A}$ if and only if every open set U containing x intersects A ; that is, $U \cap A \neq \emptyset$.

Proof. Suppose $x \in \overline{A}$. Let U be any open set containing x . If $U \cap A = \emptyset$, then $A \subseteq X - U$, and since $X - U$ is closed, we have $\overline{A} \subseteq X - U$. This contradicts the fact that $x \in \overline{A}$ and $x \in U$. Thus, $U \cap A \neq \emptyset$. Conversely, suppose that every open set U containing x intersects A . If $x \notin \overline{A}$, then there exists a closed set C containing A such that $x \notin C$. Let $U = X - C$.

Then U is an open set containing x , but $U \cap A = \emptyset$, contradicting our assumption. Therefore, $x \in \overline{A}$. ■

Contrapositive Proof. Let $x \notin \overline{A}$. Then there exists a closed set C containing A such that $x \notin C$. Let $U = X - C$. Then U is an open set containing x , but $U \cap A = \emptyset$. Thus, there exists an open set U containing x that does not intersect A . Conversely, suppose there exists an open set U containing x such that $U \cap A = \emptyset$. Then $A \subseteq X - U$, and since $X - U$ is closed, we have $\overline{A} \subseteq X - U$. This implies that $x \notin \overline{A}$. ■

Examples

1. In the standard topology on \mathbb{R} , the closure of the open interval (a,b) is the closed interval $[a,b]$.
2. In the standard topology on \mathbb{R} , the closure of the set \mathbb{Q} of rational numbers is \mathbb{R} since every open interval in \mathbb{R} contains rational numbers.
3. In the standard topology on \mathbb{R}^2 , the closure of the set $\{(x,y) : x^2 + y^2 < 1\}$ (the interior of the unit circle) is the set $\{(x,y) : x^2 + y^2 \leq 1\}$ (the unit disk).
4. Let $X = \mathbb{R}$ and let $A = (0, 5]$. Then $\overline{A} = [0, 5]$ in the standard topology on \mathbb{R} since every open set containing 0 intersects A .
5. Let $X = \mathbb{R}$ with $B = \{\frac{1}{n} : n \in \mathbb{Z}^+\}$. Then $\overline{B} = B \cup \{0\}$ in the standard topology on \mathbb{R} since every open set containing 0 intersects B .

Limit Points

A point $x \in X$ is a **limit point** of a set $A \subseteq X$ if every open set U containing x intersects A in some point other than x itself; that is, $(U - \{x\}) \cap A \neq \emptyset$.

Examples

1. In the standard topology on \mathbb{R} , every point in the open interval (a,b) is a limit point of (a,b) .
2. In the standard topology on \mathbb{R} , the point a is a limit point of the set (a,b) since every open interval containing a intersects (a,b) in some point other than a itself.
3. In the standard topology on \mathbb{R} , if $A = (0, 1]$, then 0 is a limit point of A .
4. What are the limit points of the set B above in example 5 of closures? Answer: 0 is the only limit point of B since every open set containing 0 intersects B in some point other than 0 itself. No other point in B is a limit point since we can find an open set around any other point that does not intersect B in any other point.

Theorem 5. Let X be a topological space, and let $A \subseteq X$. Then $x \in \overline{A}$ if and only if x is a limit point of A or $x \in A$. That is, $A \cup A' = \overline{A}$ where A' is the set of limit points of A . iiii

Proof. Suppose $x \in \overline{A}$. If $x \in A$, we are done. If $x \notin A$, then for every open set U containing x , we have $U \cap A \neq \emptyset$ by Theorem 4. Since $x \notin A$, it follows that $(U - \{x\}) \cap A \neq \emptyset$. Thus, x is a limit point of A . Conversely, suppose x is a limit point of A or $x \in A$. If $x \in A$, then clearly $x \in \overline{A}$. If x is a limit point of A , then for every open set U containing x , we have $(U - \{x\}) \cap A \neq \emptyset$, which implies that $U \cap A \neq \emptyset$. By Theorem 4, this means that $x \in \overline{A}$. \blacksquare

Corollary. A set A is closed if and only if it contains all its limit points; that is, if $A' \subseteq A$.

Proof. Suppose A is closed. Then $\overline{A} = A = A \cup A'$ so $A' \subseteq A$. Conversely, suppose $A' \subseteq A$. Then $\overline{A} = A \cup A' = A$ so A is closed. \blacksquare

Applications

As our knowledge & language grows, we can prove things more easily/efficiently, for example:

1. In the standard topology on \mathbb{R} , a single point set $\{x\}$ has no limit points, so it is closed.
2. The same is true for \mathbb{Z} in the standard topology on \mathbb{R} since no point in \mathbb{R} is a limit point of \mathbb{Z} . Thus, \mathbb{Z} is closed in \mathbb{R} .

Hausdorff Spaces

General topological spaces can be “weird”. For example, not all one-point subsets are closed in every topology.

Exercise. Build an example of a topology on a three-point set $X = \{a, b, c\}$ where the one-point set $\{a\}$ is not closed.

Convergence of sequences can also be “weird” in general topological spaces. For example, a sequence can converge to more than one point. First, we need a definition of convergence in topological spaces.

Definition. A sequence (x_n) in a topological space X **converges** to a point $x \in X$ if for every open set U containing x , there exists an integer N such that for all $n \geq N$, $x_n \in U$.

This definition generalizes the usual definition of convergence in metric spaces. (Here, we avoid using ϵ 's and δ 's.)

Exercise. Build an example of a topology on a three-point set $X = \{a, b, c\}$ where a sequence converges to two different points.

To avoid these “weird” situations, we often work with a special* class of topological spaces called **Hausdorff spaces**.

Definition. A topological space X is a **Hausdorff space** if for every pair of distinct points $x, y \in X$, there exist open sets U and V such that $x \in U$, $y \in V$, and $U \cap V = \emptyset$.

One can remember the Hausdorff condition by thinking of U and V as “neighborhoods” that “House-off” the points x and y from each other.

Examples

1. Any metric space is a Hausdorff space. (Details later.)
2. The discrete topology on any set is a Hausdorff space.
3. The finite complement topology on an infinite set is *not a Hausdorff space*. Why?

Comment The Hausdorff condition is also called the T_2 axiom. There are other separation axioms (T_0 , T_1 , T_3 , T_4 , etc.) that impose different levels of “separability” on topological spaces. We will not discuss these much, but the Hausdorff condition strikes a good balance: it is strong enough to avoid many pathological situations, yet weak enough that most topological spaces we encounter in practice are Hausdorff. This balance is often an element of choice in topology; too strong a condition excludes too many spaces, while too weak a condition allows too many pathological cases.

Theorem 6. In a Hausdorff space, every one-point set $\{x\}$ is closed.

Proof. Apply the Hausdorff condition with y being any point other than x . Then there exist open sets U and V such that $x \in U$, $y \in V$, and $U \cap V = \emptyset$. Since this is true for any point $y \neq x$, we have that $X - \{x\} = \bigcup_{y \neq x} V_y$ where each V_y is an open set containing y and disjoint from some open set containing x . Thus, $X - \{x\}$ is open, so $\{x\}$ is closed. ■

The separation axiom T_1 is that every finite set is closed. Theorem 6 shows that Hausdorff spaces satisfy the T_1 axiom.

Corollary. In a Hausdorff space, every finite set is closed.

Proof. A finite set is a finite union of one-point sets, and finite unions of closed sets are closed.

■

Finally, we can show that sequences in Hausdorff spaces behave more like sequences in metric spaces.

Theorem 7. In a Hausdorff space, a sequence converges to at most one point.

Proof. Suppose a sequence (x_n) converges to both x and y where $x \neq y$. By the Hausdorff condition, there exist open sets U and V such that $x \in U$, $y \in V$, and $U \cap V = \emptyset$. Since (x_n) converges to x , there exists an integer N_1 such that for all $n \geq N_1$, $x_n \in U$. Similarly, since (x_n) converges to y , there exists an integer N_2 such that for all $n \geq N_2$, $x_n \in V$. Let $N = \max(N_1, N_2)$. Then for all $n \geq N$, we have $x_n \in U$ and $x_n \in V$, which contradicts the fact that $U \cap V = \emptyset$. Therefore, a sequence can converge to at most one point in a Hausdorff space. ■

Finally, we observe that subspaces of Hausdorff spaces are also Hausdorff, and products of Hausdorff spaces are also Hausdorff.

Examples

1. The torus is a Hausdorff space since it is the product of two circles, and the circle is a Hausdorff space as a subspace of \mathbb{R}^2 with the standard topology.
2. The Möbius strip is a Hausdorff space since it is a subspace of \mathbb{R}^3 with the standard topology.