
Limit Points, Hausdorff Spaces & Continuous
Functions

Limit Points

A point 𝑥 ∈ 𝑋 is a limit point of a set 𝐴 ⊆ 𝑋 if every open set 𝑈 containing 𝑥 intersects 𝐴
in some point other than 𝑥 itself; that is, (𝑈 − {𝑥}) ∩ 𝐴 ≠ ∅.

Examples

1. In the standard topology on ℝ, every point in the open interval (a,b) is a limit point of
(a,b).

2. In the standard topology on ℝ, the point 𝑎 is a limit point of the set (a,b) since every
open interval containing 𝑎 intersects (a,b) in some point other than 𝑎 itself.

3. In the standard topology on ℝ, if 𝐴 = (0, 1], then 0 is a limit point of 𝐴.
4. What are the limit points of the set 𝐵 above in example 5 of closures? Answer: 0 is the

only limit point of 𝐵 since every open set containing 0 intersects 𝐵 in some point other
than 0 itself. No other point in 𝐵 is a limit point since we can find an open set around
any other point that does not intersect 𝐵 in any other point.

Theorem 5. Let 𝑋 be a topological space, and let 𝐴 ⊆ 𝑋. Then 𝑥 ∈ 𝐴 if and only if 𝑥 is a
limit point of 𝐴 or 𝑥 ∈ 𝐴. That is, 𝐴 ∪ 𝐴′ = 𝐴 where 𝐴′ is the set of limit points of 𝐴. iiii
Proof. Suppose 𝑥 ∈ 𝐴. If 𝑥 ∈ 𝐴, we are done. If 𝑥 ∉ 𝐴, then for every open set 𝑈 containing
𝑥, we have 𝑈 ∩ 𝐴 ≠ ∅ by Theorem 4. Since 𝑥 ∉ 𝐴, it follows that (𝑈 − {𝑥}) ∩ 𝐴 ≠ ∅. Thus,
𝑥 is a limit point of 𝐴. Conversely, suppose 𝑥 is a limit point of 𝐴 or 𝑥 ∈ 𝐴. If 𝑥 ∈ 𝐴, then
clearly 𝑥 ∈ 𝐴. If 𝑥 is a limit point of 𝐴, then for every open set 𝑈 containing 𝑥, we have
(𝑈 − {𝑥}) ∩ 𝐴 ≠ ∅, which implies that 𝑈 ∩ 𝐴 ≠ ∅. By Theorem 4, this means that 𝑥 ∈ 𝐴. ■

Corollary. A set 𝐴 is closed if and only if it contains all its limit points; that is, if 𝐴′ ⊆ 𝐴.

Proof. Suppose 𝐴 is closed. Then 𝐴 = 𝐴 = 𝐴 ∪ 𝐴′ so 𝐴′ ⊆ 𝐴. Conversely, suppose 𝐴′ ⊆ 𝐴.
Then 𝐴 = 𝐴 ∪ 𝐴′ = 𝐴 so 𝐴 is closed. ■
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Applications

As our knowledge & language grows, we can prove things more easily/efficiently, for example:

1. In the standard topology on ℝ, a single point set {𝑥} has no limit points, so it is closed.
2. The same is true for ℤ in the standard topology on ℝ since no point in ℝ is a limit point

of ℤ. Thus, ℤ is closed in ℝ.

Hausdorff Spaces

General topological spaces can be “weird”. For example, not all one-point subsets are closed
in every topology.

Exercise. Build an example of a topology on a three-point set 𝑋 = {𝑎, 𝑏, 𝑐} where the
one-point set {𝑎} is not closed.

Convergence of sequences can also be “weird” in general topological spaces. For example, a
sequence can converge to more than one point. First, we need a definition of convergence in
topological spaces.

Definition. A sequence (𝑥𝑛) in a topological space 𝑋 converges to a point 𝑥 ∈ 𝑋 if for
every open set 𝑈 containing 𝑥, there exists an integer 𝑁 such that for all 𝑛 ≥ 𝑁 , 𝑥𝑛 ∈ 𝑈 .

This definition generalizes the usual definition of convergence in metric spaces. (Here, we avoid
using 𝜖’s and 𝛿’s.)

Exercise. Build an example of a topology on a three-point set 𝑋 = {𝑎, 𝑏, 𝑐} where a sequence
converges to two different points.

To avoid these “weird” situations, we often work with a special∗ class of topological spaces
called Hausdorff spaces.

Definition. A topological space 𝑋 is a Hausdorff space if for every pair of distinct points
𝑥, 𝑦 ∈ 𝑋, there exist open sets 𝑈 and 𝑉 such that 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑉 , and 𝑈 ∩ 𝑉 = ∅.

One can remember the Hausdorff condition by thinking of 𝑈 and 𝑉 as “neighborhoods” that
“House-off” the points 𝑥 and 𝑦 from each other.

Examples

1. Any metric space is a Hausdorff space. (Details later.)
2. The discrete topology on any set is a Hausdorff space.
3. The finite complement topology on an infinite set is not a Hausdorff space. Why?

2



Comment The Hausdorff condition is also called the 𝑇2 axiom. There are other separation
axioms (𝑇0, 𝑇1, 𝑇3, 𝑇4, etc.) that impose different levels of “separability” on topological spaces.
We will not discuss these much, but the Hausdorff condition strikes a good balance: it is strong
enough to avoid many pathological situations, yet weak enough that most topological spaces
we encounter in practice are Hausdorff. This balance is often an element of choice in topology;
too strong a condition excludes too many spaces, while too weak a condition allows too many
pathological cases.

Theorem 6. In a Hausdorff space, every one-point set {𝑥} is closed.

Proof. Apply the Hausdorff condition with 𝑦 being any point other than 𝑥. Then there exist
open sets 𝑈 and 𝑉 such that 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑉 , and 𝑈 ∩ 𝑉 = ∅. Since this is true for any point
𝑦 ≠ 𝑥, we have that 𝑋 − {𝑥} = ⋃𝑦≠𝑥 𝑉𝑦 where each 𝑉𝑦 is an open set containing 𝑦 and disjoint
from some open set containing 𝑥. Thus, 𝑋 − {𝑥} is open, so {𝑥} is closed. ■

The separation axiom 𝑇1 is that every finite set is closed. Theorem 6 shows that Hausdorff
spaces satisfy the 𝑇1 axiom.

Corollary. In a Hausdorff space, every finite set is closed.

Proof. A finite set is a finite union of one-point sets, and finite unions of closed sets are closed.
■

Finally, we can show that sequences in Hausdorff spaces behave more like sequences in metric
spaces.

Theorem 7. In a Hausdorff space, a sequence converges to at most one point.

Proof. Suppose a sequence (𝑥𝑛) converges to both 𝑥 and 𝑦 where 𝑥 ≠ 𝑦. By the Hausdorff
condition, there exist open sets 𝑈 and 𝑉 such that 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑉 , and 𝑈 ∩ 𝑉 = ∅. Since
(𝑥𝑛) converges to 𝑥, there exists an integer 𝑁1 such that for all 𝑛 ≥ 𝑁1, 𝑥𝑛 ∈ 𝑈 . Similarly,
since (𝑥𝑛) converges to 𝑦, there exists an integer 𝑁2 such that for all 𝑛 ≥ 𝑁2, 𝑥𝑛 ∈ 𝑉 . Let
𝑁 = max(𝑁1, 𝑁2). Then for all 𝑛 ≥ 𝑁 , we have 𝑥𝑛 ∈ 𝑈 and 𝑥𝑛 ∈ 𝑉 , which contradicts the
fact that 𝑈 ∩ 𝑉 = ∅. Therefore, a sequence can converge to at most one point in a Hausdorff
space. ■o

Finally, we observe that subspaces of Hausdorff spaces are also Hausdorff, and products of
Hausdorff spaces are also Hausdorff.

Examples

1. The torus is a Hausdorff space since it is the product of two circles, and the circle is a
Hausdorff space as a subspace of ℝ2 with the standard topology.

2. The Möbius strip is a Hausdorff space since it is a subspace of ℝ3 with the standard
topology.
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Continuous Functions

We now turn our attention to functions between topological spaces. We want a definition of
continuity that generalizes the usual 𝜖-𝛿 definition of continuity in metric spaces.

Definition. A function 𝑓 ∶ 𝑋 → 𝑌 between topological spaces 𝑋 and 𝑌 is continuous if for
every open set 𝑉 ⊆ 𝑌 , the preimage 𝑓−1(𝑉 ) = {𝑥 ∈ 𝑋 ∶ 𝑓(𝑥) ∈ 𝑉 } is an open set in 𝑋.

We show that this definition generalizes the usual definition of continuity of a real-valued
function of a real variable.:

Theorem 8. A function 𝑓 ∶ ℝ → ℝ is continuous in the usual 𝜖-𝛿 sense if and only if it is
continuous in the topological sense.

Proof. Suppose 𝑓 is continuous in the usual 𝜖-𝛿 sense. Let 𝑉 ⊆ ℝ be an open set. For each
point 𝑦 ∈ 𝑉 , there exists an 𝜖𝑦 > 0 such that the open interval (𝑦 − 𝜖𝑦, 𝑦 + 𝜖𝑦) ⊆ 𝑉 . Any
𝑥 ∈ 𝑓−1(𝑉 ) determines such a 𝑦, namely 𝑓(𝑥) ∈ 𝑉 , so the previous sentence guarentes that
there exists an 𝜖𝑓(𝑥) > 0 such that (𝑓(𝑥) − 𝜖𝑓(𝑥), 𝑓(𝑥) + 𝜖𝑓(𝑥)) ⊆ 𝑉 . By the continuity of 𝑓 at
𝑥, there exists a 𝛿𝑥 > 0 such that for all 𝑧 ∈ ℝ with |𝑧 − 𝑥| < 𝛿𝑥, we have |𝑓(𝑧) − 𝑓(𝑥)| < 𝜖𝑓(𝑥).
This implies that 𝑓(𝑧) ∈ (𝑓(𝑥)−𝜖𝑓(𝑥), 𝑓(𝑥)+𝜖𝑓(𝑥)) ⊆ 𝑉 . Thus, the open interval (𝑥−𝛿𝑥, 𝑥+𝛿𝑥)
is contained in 𝑓−1(𝑉 ). Since this is true for every 𝑥 ∈ 𝑓−1(𝑉 ), we conclude that 𝑓−1(𝑉 ) is
open in ℝ. Therefore, 𝑓 is continuous in the topological sense.

Conversely, suppose 𝑓 is continuous in the topological sense. Let 𝑥 ∈ ℝ and let 𝜖 > 0. Consider
the open interval 𝑉 = (𝑓(𝑥) − 𝜖, 𝑓(𝑥) + 𝜖). Since 𝑓 is continuous, the preimage 𝑓−1(𝑉 ) is an
open set in ℝ containing 𝑥. Therefore, there exists a 𝛿 > 0 such that the open interval
(𝑥 − 𝛿, 𝑥 + 𝛿) ⊆ 𝑓−1(𝑉 ). This means that for all 𝑧 ∈ (𝑥 − 𝛿, 𝑥 + 𝛿), we have 𝑓(𝑧) ∈ 𝑉 , which
implies that |𝑓(𝑧) − 𝑓(𝑥)| < 𝜖. Thus, 𝑓 is continuous in the usual 𝜖-𝛿 sense. ■
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Figure 1: Continuity Diagram

Our definition of continuity generalizes the definitions of continuity for many familiar types of
functions (curves, maps between surfaces, etc.) since all of these can be viewed as functions
between topological spaces.

Examples

1. Any function from a set 𝑋 with the discrete topology to a topological space 𝑌 is contin-
uous since every subset of 𝑋 is open.

2. Any function from a topological space 𝑋 to a set 𝑌 with the trivial topology is continuous
since the only open sets in 𝑌 are ∅ and 𝑌 itself, and their preimages are ∅ and 𝑋,
respectively, both of which are open in 𝑋.

3. The identity function 𝑖𝑑𝑋 ∶ 𝑋 → 𝑋 is continuous for any topological space 𝑋 since the
preimage of any open set 𝑈 ⊆ 𝑋 is 𝑈 itself, which is open in 𝑋. 4. The inclusion
function 𝑖 ∶ 𝐴 → 𝑋 defined by 𝑖(𝑎) = 𝑎 for all 𝑎 ∈ 𝐴, where 𝐴 is a subspace of 𝑋, is
continuous since the preimage of any open set 𝑈 ⊆ 𝑋 is 𝑈 ∩ 𝐴, which is open in the
subspace topology on 𝐴.

4. Constant functions are continuous since the preimage of any open set containing the
constant value is the entire domain, which is open, and the preimage of any open set not
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containing the constant value is empty, which is also open.
5. Non-Example. The function 𝑓 ∶ ℝ → ℝ defined by 𝑓(𝑥) = 1/𝑥 for 𝑥 ≠ 0 and 𝑓(0) = 0 is

not continuous at 𝑥 = 0 since the preimage of the open set (−1, 1) is (∞, 1)∪{0}∪(1, ∞),
which is not open in ℝ.

6. Non-Example. The function 𝑔 ∶ ℝ → ℝ defined by 𝑔(𝑥) = 0 for 𝑥 ≤ 0 and 𝑔(𝑥) = 1
for 𝑥 > 0 is not continuous at 𝑥 = 0 since the preimage of the open set (−1, 2) is
(−∞, 0] ∪ (0, ∞), which is not open in ℝ.

7. The function ℎ ∶ ℝ → ℝ defined by ℎ(𝑥) = 𝑥2 is continuous since the preimage of any
open set 𝑉 ⊆ ℝ is a union of open intervals, which is open in ℝ.

8. Some identity function between different topologies on the same set may not be contin-
uous.

Theorem 9.

The following are equivalent for a function 𝑓 ∶ 𝑋 → 𝑌 between topological spaces 𝑋 and 𝑌 :

1. 𝑓 is continuous.
2. For every closed set 𝐶 ⊆ 𝑌 , the preimage 𝑓−1(𝐶) is closed in 𝑋.
3. For every subset 𝐴 ⊆ 𝑋, we have 𝑓(𝐴) ⊆ 𝑓(𝐴).

4. For every 𝑥 ∈ 𝑋 and every neighborhood 𝑉 of 𝑓(𝑥) in 𝑌 , there exists a neighborhood 𝑈
of 𝑥 in 𝑋 such that 𝑓(𝑈) ⊆ 𝑉 .

Proof.

(1) ⇒ (2): Suppose 𝑓 is continuous, and let 𝐶 ⊆ 𝑌 be closed. Then 𝑌 − 𝐶 is open in 𝑌 , so
𝑓−1(𝑌 − 𝐶) is open in 𝑋. But 𝑓−1(𝑌 − 𝐶) = 𝑋 − 𝑓−1(𝐶), so 𝑓−1(𝐶) is closed in 𝑋.

(2) ⇒ (1): Suppose that for every closed set 𝐶 ⊆ 𝑌 , the preimage 𝑓−1(𝐶) is closed in 𝑋.
Let 𝑉 ⊆ 𝑌 be open. Then 𝑌 − 𝑉 is closed in 𝑌 , so 𝑓−1(𝑌 − 𝑉 ) is closed in 𝑋. But
𝑓−1(𝑌 − 𝑉 ) = 𝑋 − 𝑓−1(𝑉 ), so 𝑓−1(𝑉 ) is open in 𝑋. Thus, 𝑓 is continuous.

(3) ⇒ (3): Suppose 𝑓 is continuous, and let 𝐴 ⊆ 𝑋. We want to show that 𝑓(𝐴) ⊆ 𝑓(𝐴).
Let 𝑦 ∈ 𝑓(𝐴). Then there exists an 𝑥 ∈ 𝐴 such that 𝑓(𝑥) = 𝑦. Since 𝑥 ∈ 𝐴, every open
set containing 𝑥 intersects 𝐴. Let 𝑉 be any open set containing 𝑦 = 𝑓(𝑥). Since 𝑓 is
continuous, the preimage 𝑓−1(𝑉 ) is an open set containing 𝑥. Therefore, there exists an
element 𝑎 ∈ 𝐴 such that 𝑎 ∈ 𝑓−1(𝑉 ), which implies that 𝑓(𝑎) ∈ 𝑉 . Thus, every open set
containing 𝑦 intersects 𝑓(𝐴), so 𝑦 ∈ 𝑓(𝐴). Hence, 𝑓(𝐴) ⊆ 𝑓(𝐴).

(4) ⇒ (1): Suppose that for every subset 𝐴 ⊆ 𝑋, we have 𝑓(𝐴) ⊆ 𝑓(𝐴). Let 𝑉 ⊆ 𝑌 be open,
and let 𝐶 = 𝑌 −𝑉 , which is closed in 𝑌 . We want to show that 𝑓−1(𝐶) is closed in 𝑋. Let
𝐴 = 𝑓−1(𝐶). Then 𝑓(𝐴) ⊆ 𝐶, so 𝑓(𝐴) ⊆ 𝐶. By assumption, we have 𝑓(𝐴) ⊆ 𝑓(𝐴) ⊆ 𝐶.
Therefore, 𝐴 ⊆ 𝑓−1(𝐶) = 𝐴. Thus, 𝐴 is closed in 𝑋, and hence 𝑓 is continuous
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