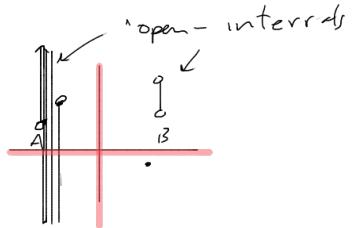


Order Relations: on a set X is a relation \subset s.t.

- ① Comparability: either $a = b$, $a < b$ or $b < a$
- ② Transitivity: $a < b \wedge b < c \Rightarrow a < c$
- ③ Non-reflexivity: $a \not< a$

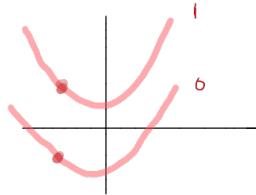
① usual order on \mathbb{R}



② lexicographic order on \mathbb{R}^2 : $(a_1, a_2) < (b_1, b_2)$ if $a_1 < b_1$ or $a_1 = b_1 \wedge a_2 < b_2$

③ lexicographic ordering on English words: {although in group theory, a word = element in a group}

④ parabolic ordering on \mathbb{R}^2 : $(x_0, y_0) < (x_1, y_1)$ if



$$y_0 - x_0^2 < y_1 - x_1^2 \quad \text{if} \quad y_0 - x_0^2 = y_1 - x_1^2 \wedge x_0 < x_1$$

Order Topology
 Given a set X w/ order relation $<$ the order top on X is generated by the basis: all open intervals $(a, b) = \{x \in X : a < x < b\}$ along w/ $[a_0, b)$ w/ a_0 = least elt.
 $(a, b_0]$ w/ b_0 = greatest elt.

ex ① the order top on \mathbb{R} is the same as the standard top

② lexicographical order on \mathbb{R}^2 has two types of open sets

$$\begin{array}{c} \parallel \parallel \parallel \parallel \\ \text{a} \xrightarrow{\text{---}} \text{b} \end{array} = (a \times b, c \times d) \text{ w/ } a < c$$

vertical open int $(a \times b, a \times d) \quad b < d$

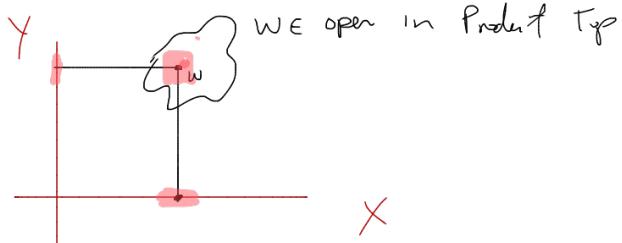
questions ① which of these form a basis? vertical ones (Union Lemma)

② How to define rays? $(a \times b, a \times \infty)$

$$\begin{array}{c} \parallel \parallel \parallel \parallel \\ \text{b} \xrightarrow{\text{---}} \infty \end{array}$$

Product Topology

given top. spaces (X, τ_X) $\&$ (Y, τ_Y) the product topology on $X \times Y$ is generated by the basis 'all open sets $U \times V$ w/ $U \in \tau_X$, $V \in \tau_Y$



Question: Is this basis also a topology?

- No? union of rectangles not always a rectangle

ex) Product top on $\mathbb{R} \times \mathbb{R}^3$ is the same as the std. top on \mathbb{R}^2 .
 why: basis elts \mathcal{T} :

basis elts \mathcal{T} :

ex) we'll see torus inherits a product topology from $S^1 \times S^1$
 circle unit.

Main Thm

Another basis for the product top $\sim X \times Y$ is:

all products of basis $B_x \times B_y$ w/ B_x, B_y are bases of X, Y .

Proof:

Recall: B is a basis for a top $\sim X$ if

$\forall x \in X \nexists$ and \forall neighborhood U ,

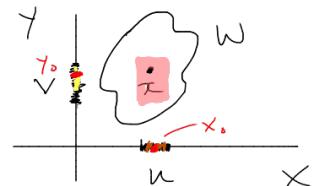
$\exists B_x \in B$ st $x \in B_x \subset U$.

So let $x \in X \times Y \nexists$ let W be a nbhd,

By def of product top \exists a basis st $U \times V \subset W$
s.t. $x \in U \times V$.

$x = x_0 \times y_0 \nexists x_0 \in U, y_0 \in V$.

So $x \in B_x \times B_y \subseteq U \times V \subset W$



Since B_x is a basis,
 $\exists B \in B_x \ x \in B \subset U$
Similarly for B_y

Subspace Topology: (how subsets become top spaces themselves)

given (X, τ) and a subset $Y \subset X$ the subspace top on Y is all sets:

$U \cap Y$ where $\underbrace{U \in \tau}$ (i.e. U is open) (i.e., a set $V \subset Y$ is open in subspace top if \exists open set $U \subset X$ s.t. $V = U \cap Y$.)

why is this a topology?

① whole space: Y is open in subspace top b/c: $Y = X \cap Y$

② null space: \emptyset is open in subspace top b/c: $\emptyset = \emptyset \cap Y$

③ ∞ unions: let $\{V_\alpha\}$ be a collection of open sets in subspace top

For each $\alpha \exists$ some $V_\alpha = \underbrace{U_\alpha \cap Y}_{\text{open in } X}$

$$\bigcup_\alpha V_\alpha = \bigcup_\alpha (U_\alpha \cap Y) = \bigcup_\alpha U_\alpha \cap Y \quad \text{open by property of top. of } X$$

our goal was to show the union of all the V -alpha was open. we found a larger open set whose intersection with Y was exactly V -alpha, thus V -alpha is open in SS-top.

④ finite intersections: follows similarly (exercise)

Terminology:

If $Y \subset X$ we say

U is open in Y : U is open in Subspace top on Y

U is open in X : U is open in top on X .

(ex) $X = \mathbb{R}$ (std. top)

$$Y = [0, 1].$$

what are open sets in subspace top on Y?

① $(4, 14) \cap [0, 1] = \emptyset$ is thus open!
(open!)

② $(-\frac{1}{2}, \frac{1}{2}) \cap [0, 1] = [0, \frac{1}{2})$ open!

③ $(-\infty, \infty) \cap [0, 1] = [0, 1]$ open

④ $(\frac{1}{2}, \frac{3}{2}) \cap [0, 1] = (\frac{1}{2}, 1]$ open!

⑤ $(0, 1) \cap [0, 1] = (0, 1)$ open!

} (in Subspace Top)

These are all the main types

(2) $X = \mathbb{R}^2$ (std. top)

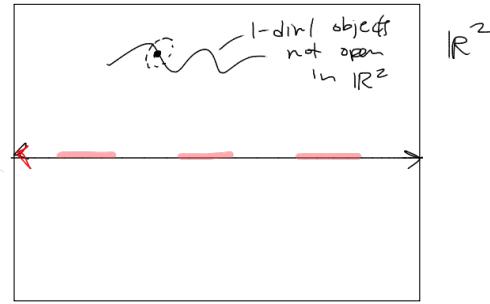
$$Y = x\text{-axis}$$

Describe the subspace top on Y.

- Y is open: $Y = Y \cap \mathbb{R}^2$

- \emptyset is open: $\emptyset = Y \cap \emptyset$

- $(-1, 1)$ is open: $(-1, 1) = Y \cap D'$ (open unit disc)



(3) $X = \mathbb{R}$ (std. top)

$$Y = \mathbb{Q}$$

$$\left(\frac{1}{3}, \frac{2}{3}\right) \subset \mathbb{Q}$$

Describe open sets in subspace top on \mathbb{Q} .

$U \subset \mathbb{Q}$ is open $\Leftrightarrow U = \bigcup_{x \in U} \text{open set in } \mathbb{R} \cap \mathbb{Q}$

$$\left(\frac{1}{3}, \frac{2}{3}\right) = \left(\frac{1}{3}, \frac{2}{3}\right) \cap \mathbb{Q}$$

all rationals b/w $\frac{1}{3}$ & $\frac{2}{3}$.

NO
Is $\left\{\frac{1}{2}\right\}$ open in \mathbb{R}^2 ?
any open set containing $\frac{1}{2}$ also contains other rationals.