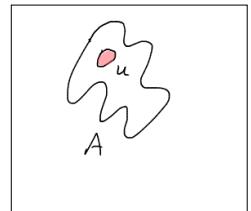


WEEK 3 Wed

Closed sets \nsubseteq Limit Points

(First: recall subspace top: If $A \subset X$, $U \subset A$ is open if $\underline{U} = V \cap A$
w/ V open in X .

(ex) $X = \mathbb{R}$, $A = [0, 5) \cup \{12\} \cup (15, 20]$
describe some open sets in A .



X

(i) A is open in A b/c: $A = A \cap (-1, 21)$
open in \mathbb{R}

(ii) \emptyset is open in A b/c $\emptyset = A \cap \emptyset$

(iii) $(1, 2)$ open in A b/c $(1, 2) = A \cap (1, 2)$

(iv) $(15, 17)$ open in A b/c $(15, 17) = A \cap (15, 17)$

(v) $(15, 16)$ open in A $(15, 16) = A \cap (13, 16)$

(vi) $\{12\}$ open in A $\{12\} = A \cap (11, 13)$

(vii) $(19, 20]$ open in A $(19, 20] = A \cap (19, 20)$

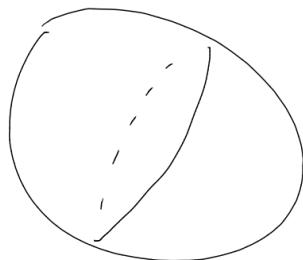
Q1 Define Σ_2 as a topological space. Give it the subspace topology since it embeds in \mathbb{R}^3 .

① open sets (basis elements)

②

1 open
3-ball

③



Closed Sets & Limit Points

Def'n A set $C \subseteq X$ is closed if its complement $X - C$ is open.

(ex) ① In the discrete topology: (where every set is open)

Let C be a ^{sub}set in X , then $X - C$ is also a set, thus $X - C$ is open
 $\Rightarrow C$ is closed. \Rightarrow Every set in discrete is closed.

② In the std. top on \mathbb{R} $[a, b]$
closed intervals are closed sets b/c

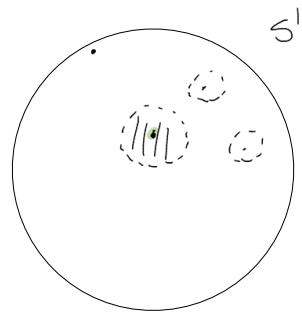
$$\mathbb{R} - [a, b] = (-\infty, a) \cup (b, \infty)$$

open interval (open in std. top)
union is also open

③ $(\mathbb{R}^2, T_{\text{std}})$, $S^1 = \{(x, y) \mid x^2 + y^2 = 1\}$ is closed.

Must show $\mathbb{R}^2 - S^1$ is open. i.e.,

$\forall x \in \mathbb{R}^2 - S^1$ we need to find an open nbhd ⁽ⁱⁱⁱ⁾
containing x but fully inside $\mathbb{R}^2 - S^1$
disjoint from S^1



ALT: $\mathbb{R}^2 - S^1 = \{(x, y) \mid x^2 + y^2 > 1\} \cup \{(x, y) \mid x^2 + y^2 < 1\}$
show these are open ↑ ↑

④ In \mathbb{R} , \mathbb{Z} is closed b/c :

The complement of the integers is all open intervals whose endpoints are $(n, n+1)$ for all $n \in \mathbb{Z}$. Open intervals are open sets, unions of open sets are still open. Thus the entire complement is open.

\mathbb{Y} is neither open nor closed.

⑤ $(\mathbb{R}, T_{\text{std}})$, $\mathbb{Y} = [1, 2] \cup (3, 4)$. Is \mathbb{Y} closed?

$[1, 2]$ is not open

(NB)

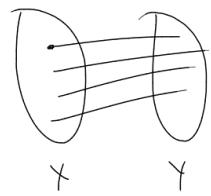
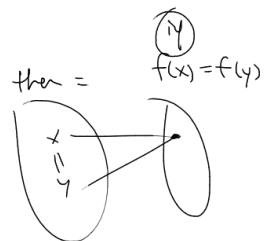
$(3, 4)$ is open

$$\mathbb{R} - \mathbb{Y} = (-\infty, 1) \cup (2, 3) \cup [4, \infty)$$

Is this open? NO
Any ^{open} nbhd of 3 is not contained in $\mathbb{R} - \mathbb{Y}$.

1-1: injective : $f: X \rightarrow Y$ is injective if the following is true

if $f(x) = f(y)$ then $x = y$



onto: surjectivity $f: X \rightarrow Y$ is surjective if

$\forall y \in Y \ \exists x \in X$ s.t. $f(x) = y$.

the properties of any topology can be phrased in terms of closed sets

usual open properties \longrightarrow closed properties

\emptyset is open

it's complement is closed

X is closed

X is open

$X - X = \emptyset$ is closed

arbitrary unions of open are open

open \rightarrow

$\bigcup_{\alpha \in A} U_{\alpha}$ is open

so

$\bigcap_{\alpha \in A} X - U_{\alpha}$ closed

Arbitrary intersections of closed are closed

$X - \bigcup_{\alpha \in A} U_{\alpha}$ is closed

finite intersections of open sets are open

$\bigcap_{n=1}^N U_n$ open $\Rightarrow X - \bigcap_{n=1}^N U_n$ is closed

$\bigcup_{n=1}^N X - U_n$ closed

Finite unions of closed sets are closed

(ex)

$$\bigcup_{n=1}^{\infty} [1, 2 - \frac{1}{n}] = [1, 1] \cup [1, 2 - \frac{1}{2}] \cup [1, 2 - \frac{1}{3}] \cup \dots = [1, 2)$$

here is an infinite union of closed sets that is not closed

not closed

(ex)

$$\bigcap_{n=1}^{\infty} [-\frac{1}{n}, \frac{1}{n}] = \{0\}$$

here we took an infinite intersection of closed and we produced a closed set (we expected this from property above. Note $\{0\}$ is closed not only by this property, but also because its complement is open)

