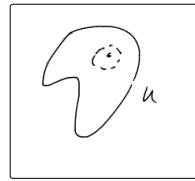
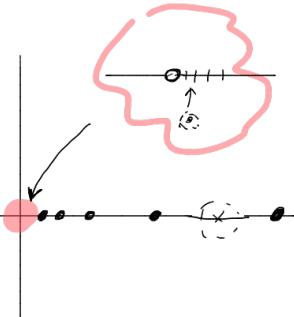


Closure, Limit Points, Hausdorff

warm-up: $S = \{(\frac{1}{n}, 0) \mid n \in \mathbb{N}\} \subseteq \mathbb{R}^2$



• Is S closed in \mathbb{R}^2 ? (Is $\mathbb{R}^2 - S$ open?)

• Is $\mathbb{R}^2 - S$ closed in \mathbb{R}^2 ? (No! b/c S isn't open)

• Is $S \cup \{(0,0)\}$ closed? Yes, S is not union of ϵ -balls)

↓ $\mathbb{R}^2 - (S \cup \{(0,0)\})$ is open

Fact

• $(0,0) \notin S$, so $(0,0) \in \mathbb{R}^2 - S$. If $\mathbb{R}^2 - S$ is open we could find a nbhd of $(0,0)$ contained in $\mathbb{R}^2 - S$. we can't. Any nbhd of $(0,0)$ contains infinitely points of S .

we'll see $\{(0,0)\}$ is a "limit point" of S .

Terminology:

- A set can be both open & closed. (clopen) (ajar)

+ closed in Y ($C \subseteq Y \subseteq X$) means $Y - C$ is open in Y .

Similar to how we define subspace top we define closed sets in subspace

Thm: $Y \subseteq X$, $C \subseteq Y$ is closed iff \exists closed set D in X s.t,

$$C = D \cap Y$$

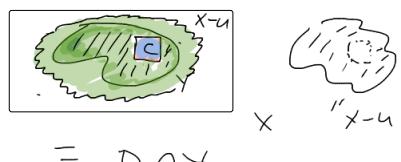
Proof: \Rightarrow Suppose C is closed in Y , thus $Y - C$ is open in Y .

So $Y - C = U \cap Y$ w/ U is open in X . Let $D = X - U$,

which must be closed in X .

$$C = Y - (Y - C)$$

$$= Y - (U \cap Y) = X - U \cap Y$$



$$= D \cap Y$$

$$D =$$

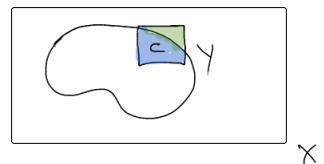
\Leftarrow Suppose \exists closed D in X s.t $C = D \cap Y$

Let $U = X - D$, which is open
(white subset)

$$Y - C = Y - D \cap Y = Y \cap (X - D)$$

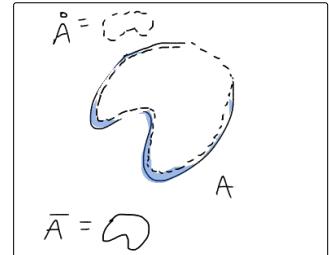
open in X

$$\Rightarrow C \text{ is closed in } Y$$



• interior: interior of A is largest open set contained inside A , $\text{int}(A)$, $\overset{\circ}{A}$

• closure: closure of A is the intersect of all closed sets containing A , \overline{A} , $\text{CL}(A)$
(smallest closed set containing A)



thm: (How closures work w/ subspaces)

For $Y \subseteq X$, if subset $A \subseteq Y$ the closure of A in Y is the intersection of the closure of A in X w/ Y .

Ex) $X = \mathbb{R}$

$$Y = [1, 10) \cup \{15\}$$

$$A = (9, 10)$$

closure of A in Y : intersection of all closed sets in Y that contain A .

$$\begin{aligned} \overline{A} \cap Y &= [9, 10] \cap Y \\ &= [9, 10] \end{aligned}$$

$$\begin{aligned} \overset{\circ}{A} &= (9, 10) \\ A &= [9, 10] \\ \overline{A} &= [9, 10] \end{aligned}$$

$$\overline{A} = [1, 5]$$

$$[0, 10] \text{ closed containing } [1, 5]$$

pointwise characterization of closures

then For $A \subseteq X$

$x \in \bar{A} \iff$ every open set U containing x intersects A , $U \cap A \neq \emptyset$

all nbhds of x intersect A

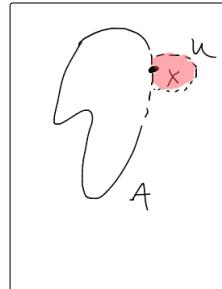
proof: \Rightarrow

let $x \in \bar{A}$, and let U be any nbhd of x

If $U \cap A = \emptyset$, then $A \subseteq x - U$ (a closed set that contains A)

so $\bar{A} \subseteq x - U$. So this contradicts $x \in \bar{A}$

$\Rightarrow U \cap A \neq \emptyset$



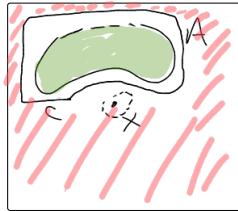
\times

\Leftarrow now suppose every open set U containing x intersects A ,

$\exists x \notin \bar{A}$ so \exists some closed set C containing A , that doesn't contain x .

$U = X - C$ is open $\nsubseteq x \in X - C$ but ... this contradicts the main assumption since

$A \subseteq C$. (i.e. $X - C$ is an open set containing x disjoint from A)



Ex

- In (\mathbb{R}, std) the closure of any open int. is a closed int.
- In (\mathbb{R}, std) , $\overline{\mathbb{Q}} = \mathbb{R}$

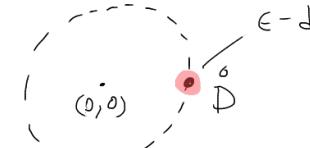
\mathbb{R} is closed and contains \mathbb{Q} , so its immediately a candidate for being \mathbb{Q} -closure. Is there a smaller closed subset that contains \mathbb{Q} ?

the integers,

[1,10]

Any reasonable candidate would have to be missing an interval. But any interval contains some rational.

- $(\mathbb{R}^2, \text{std})$. $A = \overset{\text{open}}{\mathbb{D}} = \text{unit disk} = \{(x, y) \mid x^2 + y^2 < 1\}$,
(see prev. thm.)
 $\{ (1, 0) \} \in \overline{\mathbb{D}}$ b/c
 $\underbrace{\text{any nbhd of } (1, 0)}$ intersects \mathbb{D} (


 $(0,0)$ $\overset{\circ}{\mathbb{D}}$ $\overset{\circ}{\text{epsilon-disk}}$ $(1,0)$

$\overset{\circ}{\mathbb{D}} = \{(x, y) \mid x^2 + y^2 \leq 1\}$
 $(0,0) \in \overline{\mathbb{D}}$ since every nbhd contains ϵ -disc centered @ $(0,0)$.

Limit Points

A point $x \in X$ is a limit point of the set $A \subseteq X$ if every nbhd of x intersects A in a point other than x .

(this means that x is the limit of some sequence of points within A)



(ex) (\mathbb{R}, std) every point in an open interval (a, b) is a limit point of (a, b)

(e.g.) $A = (1, 10)$, let $x = \pi$,

(ex) "the endpoints" of (a, b) are limit points of (a, b)

(ex) $A = (0, 1) \cup \{5\}$.

Is 5 a limit point of A ?

(ex) $\{(0, 0)\}$ is a limit point of $S = \{(0, \frac{1}{n}) \mid n \in \mathbb{Z}^+\}$.

we'll see $\overline{A} \rightarrow$ limit point

$$\overline{A} = A \cup A'$$