

Recall:

x is a limit pt of a set A if every nbhd of x intersects A, in a point other than x.

(ex)

$$(\mathbb{R}, \text{std}) \quad A = [5, 13] \cup \{20\}$$

① 5 is a limit pt of A b/c every nbhd of 5 contains $(5 - \epsilon, 5 + \epsilon)$ for some $\epsilon > 0$, this interval intersects A in

20 isn't limit pt of A b/c the nbhd of 20 $(19, 21) \cap A = \{20\}$

$[5, 5 + \epsilon]$.

13 is (replace 5 above w/ 13) $\Rightarrow (13 - \epsilon, 13) \subset$ Every nbhd of $\{13\} \cap A$

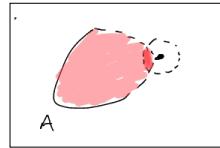
Thm: $A \cup A' = \bar{A}$ ($A' =$ all limit pts of A), $\bar{A} =$ closure of A.

(ex)

$$A = [5, 13] \cup \{20\} \quad (A' \neq \{13\})$$

$$\bar{A} = [5, 13] \cup \{20\} = A \cup \{13\} \quad A' = [5, 13]$$

Proof: Let $x \in \bar{A}$. If $x \in A$ we're done, so assume $x \notin A$. So \exists nbhd U_x of x , $U_x \cap A \neq \emptyset$. Also $(U_x - \{x\}) \cap A \neq \emptyset$. So x is a limit point.



Conversely, let $x \in A \cup A'$. If $x \in A$ (Always $A \subset \bar{A}$)
then $x \in \bar{A}$, alternatively if $x \in A'$.

Thus every nbhd of x intersects A in some other point.
This implies every nbhd of x intersects A . This last part is equivalent to x being in the closure (Thm).

Cor $A \subseteq X$ is closed $\Leftrightarrow A$ contains its limit pts

Applications: (more language + knowledge) \Rightarrow more efficient (shorter) proofs

① (\mathbb{R}, std) $\{x\}$ is closed b/c it has no limit points.

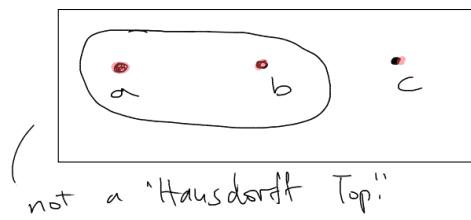
② $\mathbb{Z} \subseteq \mathbb{R}$ \mathbb{Z} is closed b/c \mathbb{Z} contains no limit pts.

Hausdorff Spaces

General topological spaces can be "weird". (Ex, not all $\{x\}$ are closed in every topology)

Ex Build a topology on $X = \{a, b, c\}$ where $\{a\}$ is not closed.

(open set \equiv box/circle containing x)



$= X$

this is a top. on $\{a, b, c\}$,
 $\{a\}$ is closed

$\{a\}$ is not closed b/c
 $X - \{a\} = \{b, c\}$

 (box around $\{b, c\}$)

Df. X is Hausdorff if every pair of points have disjoint nbhds.

Ex \mathbb{R}, \mathbb{R}^n w/std topologies are Hausdorff

Ex any metric space is Hausdorff

Ex F.C.T. on \mathbb{R} is not a Hausdorff Space.
Finite Complement Top

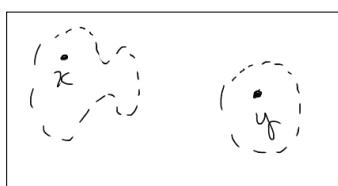
$W = \mathbb{R} - \bigcup_{n=1}^{\infty} \left(\frac{1}{n}\right)$ is a nbhd of $\{1\}$

$\frac{1}{n} \in W \cap \{1\} \neq \emptyset$

$U = (-\infty, 1) \cup (1, \infty)$ is open
yet doesn't
contain $\{1\}$
 V is a nbhd (in F.C.T) of $\{1\}$ if $V = (-\infty, 0) \cup (0, \infty)$

thm: In a Hausdorff Space Every one point set is closed. \leftarrow $\textcircled{T_1}$

pro (show $X - \{x\}$ is open, $\forall x \in X$). Let $x \in X$. Pick $y \notin X$)



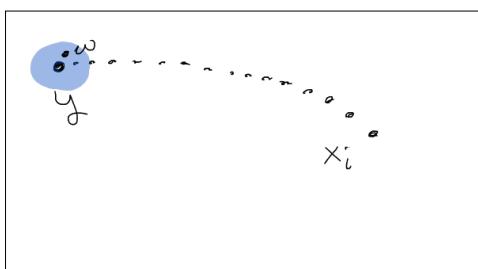
apply Hausdorff condition \Rightarrow

nbhd U_y of y that is disjoint from
some nbhd U_x of x . We can do this

for all $y \in X - \{x\}$ by Hausdorff cond. This

implies $X - \{x\}$ is open.

thm: In a Hausdorff space, a sequence converges to a most one point,



ex The torus is a Hausdorff Space (is a product of two circles
the circle $S^1 \subset \mathbb{R}^2$ is Hausdorff (its a subspace of a Hausdorff space)
 \therefore the product of Hausdorff Spaces is Hausdorff)

Continuous Functions

Defn: $f: X \rightarrow Y$ a mapping b/w topological space is cts if.

the preimage of every open set is open,

i.e.

If open sets $V \subseteq Y$ the preimage

$f^{-1}(V) = \{x \in X \mid f(x) \in V\}$ is open in X .

ϵ - δ defn

$f: \mathbb{R} \rightarrow \mathbb{R}$ is cts, if $\forall \epsilon > 0 \exists \delta > 0$ s.t.

whenever $|x - x_0| < \delta$

then

$$|f(x) - f(x_0)| < \epsilon$$

Ex: $f: \mathbb{R} \rightarrow \mathbb{R}$ set $f(x) = x$, $f: (\mathbb{R}, \text{std}) \rightarrow (\mathbb{R}, \text{std})$ is cts

w/ $f: (\mathbb{R}, \text{std}) \rightarrow (\mathbb{R}, \text{Lower Limit})$ $[\alpha, b)$ is not cts

Thm: A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is cts in the usual ϵ - δ sense \Leftrightarrow its cts in the topological sense

\Rightarrow Suppose f is ϵ - δ cts. Let $V \subseteq \mathbb{R}$ be an open set. (show $f^{-1}(V)$ is open)

For every $y \in V \exists \epsilon_y > 0$ s.t. $(y - \epsilon_y, y + \epsilon_y) \subseteq V$. Every $x \in f^{-1}(V)$ has a $y = f(x) \in V$ so the previous \uparrow applies.

$(f(x) - \epsilon_{f(x)}, f(x) + \epsilon_{f(x)})$ is open nbhd in V .

By continuity of f , $\exists \delta_x > 0$ s.t. $\forall z \in \mathbb{R}$ s.t. $|z - x| < \delta_x$ $|f(z) - f(x)| < \epsilon_{f(x)}$. $\Rightarrow f(z) \in (f(x) - \epsilon_{f(x)}, f(x) + \epsilon_{f(x)})$

thus, $(x - \delta_x, x + \delta_x) \subseteq f^{-1}(V)$. this is true & every

$x \in f^{-1}(V) \Rightarrow f^{-1}(V)$ is open.

FF Munkres

common cts functions

① Any function that maps a space w/ the discrete top to a top. space is cts.

$$f: \mathbb{N} \rightarrow \mathbb{Q}$$

②

$$f: \mathbb{R}^2 \rightarrow \{x\}$$

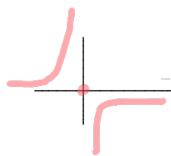
D" the set $\{x\} \subseteq \mathbb{R}^2$ w/ the subspace top. = target

$\{x\}$ is open

③ non-example

$$f: \mathbb{R} \rightarrow \mathbb{R}$$

$$f(x) = \begin{cases} 1/x & x \neq 0 \\ 0 & x = 0 \end{cases}$$



the set $(-1, 1) \subset \mathbb{R}$ is open

$$f^{-1}(-1, 1) = (-1, 0) \cup \{0\} \cup (0, 1)$$

even though as a set this is all of \mathbb{R} , it's not open since it's the union of two open sets and the non-open $\{0\}$

④

$$f: \mathbb{R} \rightarrow \mathbb{R}$$

is cts
b/c.

$$f(x) = x^2$$

open set $J \subset \mathbb{R}$, say (a, b)

$$f^{-1}(a, b)$$

