MA115 :: Section 6.2 & 6.3 :: Right angle trigonometry

Objective: We will define the trigonometric functions in terms of raios of sides of right triangles and use them to solve practical problems.

For a right triangle with angle θ as one of its acute angles the trig ratios are defined as follows: SOH CAHTOA

Example. Find the six trig ratios of the angle θ of the following triangle:

$$\sin \theta = \frac{2}{\sqrt{13}} = \frac{2\sqrt{13}}{13} \cos \theta = \frac{3}{13} = \frac{3\sqrt{13}}{13} \quad \tan \theta = \frac{2}{3}$$

32+22=13

$$\csc \theta = \frac{\sqrt{13}}{2}$$
 $\sec \theta = \frac{\sqrt{13}}{3}$ $\cot \theta = \frac{3}{2}$

$$\sec \theta = \frac{\sqrt{13}}{3}$$

$$\cot \theta = \frac{3}{2}$$

Example. If $\cos \theta = \sqrt{74}$ find the other five trig ratios of θ .

(3)
$$\sin^2\theta + \cos^2\theta = 1$$
 (4) $\sin^2\theta = 1.74 = .26 \Rightarrow \sin^2\theta = .51$ $\cos^2\theta = \sqrt{.74} = .86 \tan^2\theta = .51$ $\cos^2\theta = \sqrt{.74} = .86 \tan^2\theta = .51$ $\cos^2\theta = \frac{1}{.86} = .593$ $\cos^2\theta = \frac{1}{.51} = 1.96$ $\sec^2\theta = \frac{1}{.86} = 1.16$ $\cot^2\theta = -1.69$

3 First the length
$$x$$
.

3 First the length x .

3 First the length x .

3 First the length x .

4 30°

4 CSC $\theta = \frac{50}{17}$

4 CSC $\theta = \frac{1}{17}$

4 CSC $\theta = \frac{1}{17}$

5 In θ to θ = 1 to θ = $\frac{17}{50}$ = 1.

4 The indicate the length x .

5 In θ to θ = 1 to θ = $\frac{17}{50}$ = 1.

4 The indicate the length x .

5 In θ to θ = 1 to θ = $\frac{17}{50}$ = 1.

4 The indicate the length x .

6 CSC θ = 1 to θ = 1.

6 CSC θ = 1 to θ = 1.

7 In θ = 1.

8 The indicate the length x .

1 The indicate the length x .

2 The indicate the length x .

3 The indicate the length x .

4 The indicate the length x .

5 The indicate the length x .

1 The indicate the length x .

1 The indicate the length x .

2 The indicate the length x .

3 The indicate the length x .

4 The indicate the length x .

5 The indicate the length x .

5 The indicate the length x .

5 The indicate the length x .

6 The indicate the length x .

1 The indicate the length x is the length x .

1 The indicate the length x is the length x .

1 The indicate the length x is the length x in x is the length x is

16. = 0800 C

Untitled

Radians Degrees. 63 × 150 × 36°

r= 3960 miles

d(NY, LA) = 2500 miles

2500 = 3960.0

$$.63 = \frac{2500}{3960} = \theta$$
(radions)

EARTHS CIRCUMPERENCE:

24,901 mi.

venty the younds S= r. 0

$$\theta = \frac{24,901}{3966} = 365$$

Motion Circular

> Renember 5=10

-2H12 = 411

bigger wheels =) faster speed.

rate at which distance traveled changer $V = \frac{S}{t} = \frac{dR}{time}$ Clinear speeds

Angular Speed: rote at which central anylo changer $W = \frac{\Theta}{+}$

Y= F.W

2 incl reliver

1 Hev = 211

Assume: la pedal at 40 RMPs

211.4 = 811

How fast one you going? 1=14-(80) min & Rear Wheel = 1120 x 1ft in to spin @ 88 RPMC = 6.6 m/t.

Untitled

MA115 :: Section 6.2 & 6.3 :: Right angle trigonometry

Example. Solve the triangle

Example. The angle of elevation to the top of the old Jamrich Hall is found to be 60° from 5.5 feet above ground at a distance of 20 feet. Using this information find the height of the old Jamrich Hall.

MA115 :: Section 6.2 & 6.3 :: Right angle trigonometry

There are several methods of measuring angles of varying sophistication (eg., the iGradient app), but I'd like you to learn to use one rather unso-fisticated method. We will use our own body parts to measure angles.

This is how you do it - stretch out your arm. Your fist will cover an angle of about 10°, your index finger 1° and your open hand about 20°.

First, let's check this using some trig.

- 1. Extend your arm in front of you. Measure the distance between your eye and the tip of your finger.
- 2. Measure the width of your index finger. (across your finger nail.)
- 3. Calculate the angular width of your finger in degrees.

MA115 :: Section 6.2 & 6.3 :: Right angle trigonometry
Example. Find the height of the old Jamrich Hall, but this time go outsid and estimate the angle, height and distance yourself. Compare your answe to the previous one.
Example. Mesure the height of a light pole on academic mall.
Example. Time permitting, estimate the height of the northeast corner of the new Jamrich Hall. You'll need a partner to estimate the distance from the fence to the builing using your hands

ust

MA115 :: Section 6.2 & 6.3 :: Right angle trigonometry

Objective: We will define the trigonometric functions in terms of raios of sides of right triangles and use them to solve practical problems.

For a right triangle with angle θ as one of its acute angles the trig ratios are defined as follows:

$$\sin \theta = \frac{\text{opp}}{\text{hyp}} \qquad \cos \theta = \frac{\text{adj}}{\text{hyp}} \qquad \tan \theta = \frac{\text{opp}}{\text{adj}}$$
The verse of the six trig ratios of the angle \$\theta\$ of the following triangle:

$$\sin \theta = \frac{4}{5}$$
 $\cos \theta = \frac{3}{5}$ $\tan \theta = \frac{4}{3}$

$$\cos \theta = \frac{3}{3}$$

$$\tan \theta = \frac{4}{3}$$

$$3 + 4^2 = c^2$$

$$csc \theta = \frac{5}{4}$$
 $sec \theta = \frac{5}{3}$
 $cot \theta = \frac{3}{4}$

$$\sec \theta = \frac{5}{3}$$

$$\cot \theta = \frac{3}{4}$$

Example. If $\cos \theta = \sqrt{74}$ find the other five trig ratios of θ . $\sin \theta = \sqrt{51}$ $\cos \theta = \sqrt{51}$ $\tan \theta = \sqrt{51}$ $\sin \theta = \sqrt{51}$

Cost

$$\sin \theta = \sqrt{5}$$

$$\cos \theta = \sqrt{24}$$

$$an \theta = \sqrt{5}$$

$$\csc \theta = \sec \theta = \cot \theta =$$

- 90 -