THURSDAY - Jon 29 - Text , 1.10 & 1.11 -Lines & Variation We DWM: $-2x^2 \le 30$ $-\frac{1}{2}(-2x^2 - 30 \le 0)$ $x^2 + |5| \ge 0$ $x^2 \ge -15$ ロ y = 30y = -2x2+ 0 Here, Notre x2>0 % x2+15 it always 30 50'n (-0,00) . Push everything lite I super-fraction on left, of a right $\frac{\chi}{\chi_{-1}} > \frac{\chi}{7}$ $\frac{x}{x-1} \left(\frac{7}{7}\right) - \frac{x}{7} \left(\frac{x-1}{x-1}\right) \qquad 7 \qquad 7x-x^2+x=6 \qquad 7(x-1)=6 \qquad x=1$ $-x^2+8x=6 \qquad x=1$ $-x(x-8)=0 \qquad x=0, x=8$ $\frac{7x-x^2+x}{7(x-1)} > 0 \qquad 12$ x=0, x=8 $\frac{7x-x^2+x}{7(x-1)} > 0 \qquad 12$ x=0, x=8 x=0, x=1 x=0, x-x(x) = -x (-1000 this >0 $\frac{1}{R} = \frac{R_2 l}{R_2 R_1} + \frac{l}{R_2 R_1}$ Solve for R_1 R = R2 + R1 cosi mult $R(R_2+R_1) = R_1R_2$ $RR_2 + RR_1 = R_1R_2$ $-RR_1 - RR_1$ $= R_1(R_2-R)$ $3. \qquad \frac{7\times+5}{8} \leq 1$ $-1 \leq \frac{7x+5}{8} \leq 1$ -12 = x = 2 = 2 [-13] 3] 18 Two plans: A \$30 + 12 cent / miles
6 \$50 unlimited miles
for what range of miles is 6 cheaper? x=# miles \$50 < \$30 + .12X 20 < -12× 166) = 10 (200 = 2000 = 200 = x

Inclusive
$$\stackrel{\leftarrow}{=}$$
 $\stackrel{\leftarrow}{=}$ $\stackrel{\leftarrow}$

$$\left[\frac{5}{9} \cdot (-38), \frac{5}{9}\right]$$

Solution = set of x-value for which graph $y = -2x^2$ is below

graph tells you $-2x^2$ is always ≤ 30 , always ≤ 30 , $(-\infty, \infty)$ $(-\infty, \infty)$ $(-\infty, \infty)$

algebra:
$$-2x^2 \leq 30$$

$$x^2 \geq -15$$

X2+15 ≥0 doesn't factor so just tool any point since X2+15≠0.

$$\frac{1}{R} = \frac{R_2}{R_1R_1} + \frac{1}{R_2}\frac{R_1}{R_2}$$

$\frac{1}{R} = \frac{R_2 I}{R_2 R_1} + \frac{1}{R_2} \frac{R_1}{R_2}$ Solve yor R_1 $\frac{1}{R} = \frac{R_2 I}{R_2 R_1} + \frac{1}{R_2} \frac{R_1}{R_2} = \frac{R_1 R_2}{R_1} + \frac{1}{R_2} \frac{R_2}{R_1} = \frac{R_1 R_2}{R_2} + \frac{1}{R_2} \frac{R_2}{R_1} = \frac{1}{R_2} \frac{R_1}{R_2} + \frac{1}{R_2} \frac{R_2}{R_1} = \frac{1}{R_2} \frac{R_2}{R_2} + \frac{1}{R_2} \frac{R_2}{R_2} + \frac{1}{R_2} \frac{R_2}{R_2} + \frac{1}{R_2} \frac{R_2}{R_2} = \frac{1}{R_2} \frac{R_2}{R_2} + \frac{1}{R_2}$

ther
$$R_1$$
 terms $\frac{1}{2}$ remove parenthells $\frac{1}{2}$ $\frac{1}{2}$

$$R_2R_1 - RR_1 = RR_2$$

 $factor$
 $R_1(R_2-R) = RR_2$
 $R_1 = RR_2/(R_2-R)$

(O)

Rectangle is 50cm longer than it is wide. Express the perimeter of this rectangle in terms of the width.

