MA115 :: Section 2.2

Warm-up Problem Find the equation of the line

$y - 12 = \frac{5}{12} \left(x - (-5) \right)$ $y = \frac{5}{12} x + \frac{169}{12}$

Functions

- 1. To graph piecewise functions, simply think of the function as two different functions and graph each one over ITS GIVEN DOMAIN.
- 2. Sketch the graph of the function

$$f(x) = \left\{ \begin{array}{c} 2x+3 & \text{if } x < -1 \\ 3-x & \text{if } x \ge -1 \end{array} \right.$$

3. Sketch the graph of the function

2×+3

MA115 :: Section 2.2

4. The graph of a piecewise defined function is shown below. Find a formula for the function.

- $f(x) = \begin{cases} 1 & x \leq -1 \\ -x + 1 & -1 \leq x \leq 2 \end{cases}$
- 5. Plot the family of functions on the same axes.

(c)
$$f(x) = x^2 + c$$
 for $c = 0, 2, 4, 6$

(e)
$$f(x) = (x-c)^2$$
 for $c = 0, 1, 2, 3, 4$ (f) $f(x) = (x-c)^3$ for $c = 0, -2, -4$

(f)
$$f(x) = (x-c)^3$$
 for $c = 0, -2, -4$

This slope: 12

- slope
$$1\left(\frac{5}{12}\right)$$

$$y - y_{1} = m(x - x_{1})$$

$$y - y_{2} = \frac{s}{12}(x - (-s)) = \frac{5}{12}x + \frac{2s}{12}$$

$$+12$$

$$y = \frac{5}{12}x + \frac{169}{12}$$

$$y = \frac{5}{12} \times + \frac{169}{12}$$

$$(z=0) = (z=1)^{2}$$

$$(z=0) = (z=1)^{2}$$

$$(z=1) = (x-1)^{2}$$

$$(z=2) = (x-1)^{2}$$

$$(z=2) = (x+2)^{2}$$

$$f(x) \longrightarrow a \cdot f(x)$$

$$f(x) \longrightarrow f(ax)$$

Even junction:
$$f(x) = f(-x)$$
: all even exporents

Odd functions:
$$f(-x) = -f(x)$$
: all odd exporents

$$E_{x}$$
: $f(x) = x^{3} + 3x$

$$f(-x) = (-x)^{3} + 3(-x)$$

$$= -(x^{3} + 3x)$$
...
original