Warm-up 1: If
$$f(g(x)) = 6(x^7 + 7)^9$$
 and $g(x) = x^7 + 7$, find $f(x)$.

$$f(x) = 6x$$

$$g\left(\frac{1}{x+3}\right) = \frac{1}{x+3}$$
Warm-up 2: If $f(x) = x + 3$ and $g(x) = x + 3$, find
$$(f \circ g)(2) = \frac{1}{x+3} = \frac{1}{x+3} + \frac{3}{x+3} = \frac{3}{x+3} + \frac{3}{x+3} = \frac$$

$$f(g(x)) = f(x+3) = \frac{(f \circ g)(2)}{(x+3)} = \frac{1+3x+9}{(x+3)} = \frac{3x+10}{x+3}$$

$$f(g(x)) = \frac{10}{2+3} = \frac{16}{5} = 3.2$$

The Inverse of a Function

If f is a 1-1 function with domain A and range B, then its inverse function f^{-1} has domain B and range A and s defined by

$$f^{-1}(y) = x \iff f(x) = y$$

- What it means to be an inverse in words: if f takes x onto y, then f-inverse takes y back onto x.
 - 2. What it means to be an inverse in pictures:

3. To find the inverse for specific values: If f(0) = 1, f(2) = 3, f(4) = 5, then If fis I-1 then

$$f^{-1}(1) =$$
 $f^{-1}(3) =$ $f^{-1}(5) =$ $f^{-1}(5) =$

4. What it means to be 1-1 in a graph:

$$\bullet$$
 $(a,b) \in graph(f) \iff (b,a) \in graph(f^{-1})$

5. To verify that two functions are inverses: $f(x) = x^2$, $g(x) = \sqrt{x}$.

$$f(g(x)) = f(\sqrt{x}) = (\sqrt{x})^2 = x$$
$$g(f(x)) = g(x^2) = \sqrt{x^2} = x$$

check:
$$f^{-1}(f(x)) = f^{-1}(5x+3) = \frac{1}{5}(5x+3) - \frac{3}{5} = x + \frac{7}{3} - \frac{3}{5} = x$$

How to find the inverse of a 1-1 function

- 1. Set y = f(x)
- 2. Solve for x
- 3. Interchange x and y, to get $y = f^{-1}(x)$

multiply by 5, then add 3

multiply by 1/5 then subtract

Example: Find the inverse of
$$f(x) = 5x + 3$$

$$y = 5x + 3$$

$$y - 3 = 5x$$

$$\frac{1}{5}y - \frac{3}{5}$$

$$= y - \frac{3}{5} = x$$

Example: Find the inverse of
$$f(x) = \sqrt{x+3}$$

$$y = \sqrt{x+3}$$

$$y^2 = x+3$$

Example: Find the inverse of $f(x) = \frac{\sqrt{x} + 6}{7 - \sqrt{x}}$

$$y = \frac{\sqrt{x+6}}{7-\sqrt{x}} \quad \text{cross.} \quad y(7-\sqrt{x}) = \sqrt{x}+6$$

$$7y-y\sqrt{x}=\sqrt{x}+6 \quad \text{what's god?}$$

$$7y-6 = y\sqrt{x}+\sqrt{x} \quad \text{solve for } x.$$

$$7y-6 = y\sqrt{x} + \sqrt{x}$$
$$= \sqrt{x}(y+1)$$

$$f'(x) = \left(\frac{7x-6}{x+1}\right)^{2}$$

$$= \sqrt{x} \left(\frac{y+1}{y+1}\right)$$

$$= \sqrt{x} \left(\frac{y+1}{y+1}\right)$$

$$= \sqrt{x} \left(\frac{y+1}{y+1}\right)$$

$$= \sqrt{x} \left(\frac{7y-6}{y+1}\right)^{2} = x$$

$$f'(\frac{7}{6}) = \left(\frac{7(\frac{7}{6})-6}{\frac{7}{2}+1}\right)^{2} = x$$

$$= \left(\frac{49 - \frac{36}{6}}{\frac{7}{2} + 6}\right)^2 = \left(\frac{17}{6}\right)^2 - \left(\frac{2}{13}\right)^2 = 1$$

now square both sides

Warm-up 1: If $f(g(x)) = 6(x^7 + 7)^9$ and $g(x) = x^7 + 7$, find f(x). f takes g(x) and ... raises it to the 9th, then multiplies by 6 so ... f(x) = 6x

For **certain** functions, there is an equal and opposite function, an *inverse* function. This function "undoes" whatever the function has done. Functions that have inverses are called *one-to-one*.

- 1. What it means to be 1-1 in words: never take on the same value twice
- 2. What it means to be 1-1 in pictures:
- 3. What it means to be 1-1 in math:

If
$$f(x_1) = f(x_2)$$
 then $x_1 = x_2$

4. What it means to be 1-1 in a graph: f f f or a matrice when the y=x.

Example:
$$f(x) = x^3$$

Example:
$$f(x) = |x|$$

(1-1)

Example.
$$f(x) = \sqrt{x}$$

at constant

$$yb, likes are 1-$$
(assumely, a $\neq 0$)

Yes of graph satisfie

HIRIZUNTAL LINE TEST

The Inverse of a Function

If f is a 1-1 function with domain A and range B, then its inverse function f^{-1} has domain B and range A and s defined by

- 2. What it means to be an inverse in pictures:
- To find the inverse for specific values: If f(0) = 1, f(2) = 3, f(4) = 5,

$$f^{-1}(1) =$$
 $f^{-1}(3) =$ $f^{-1}(5) =$

4. What it means to be 1-1 in a graph:

$$\bigstar \quad (a,b) \in graph(f) \iff (b,a) \in graph(f^{-1})$$

Joverify that two functions are inverses:
$$f(x) = x^2$$
, $g(x) = \sqrt{x}$.

Heads: $f \circ g(x) = x$

$$f(g(x)) = f(f(x))$$

$$= g(f(x)) = g(x^2) = f(x^2) = x$$

$$= (f(x))^2 = x$$

$$= (f(x))^2 = x$$

Venty:
$$f \circ f'(x) = \chi ... f'(f(x)) = \frac{1}{5} (5x+3) - \frac{3}{5} = x + \frac{7}{5} - \frac{7}{5} = \frac{x}{5}$$

MA115:: Section 2.8:: Inverse Functions

How to find the inverse of a 1-1 function

f(x): multiply by 5, add 3

1. Set
$$y = f(x)$$

2. Solve for x

3. Interchange x and y, to get $y = f^{-1}(x)$

f(x): mull. by 1 the subtract 3

Example: Find the inverse of
$$f(x) = 5x + 3$$

$$y = f^{-1}(x) = \frac{1}{5}x - \frac{3}{5}$$

$$y = 5x + 3$$

$$y = 5x + 3$$

$$y - 3 = 5x$$
Example: Find the inverse of $f(x) = \sqrt{x + 3}$

$$y = \sqrt{x + 3}$$

$$y = \sqrt{x + 3}$$

$$f'(x)=y=x^2-3$$
 $(y^2=(y+7)^2=x+3)$

Example: Find the inverse of $f(x) = \frac{\sqrt{x} + 6}{7 - \sqrt{x}} = y$

$$(7-\sqrt{x})y = \sqrt{x} + 6$$

$$7y - y\sqrt{x} = \sqrt{x} + 6$$

-6 + y/x - 6 + y/x $+ (x) = y = 0$

$$\frac{7y-6}{1+y} = \sqrt{x} \quad \text{Square} \quad X = \begin{bmatrix} 1 \\ 1+y \end{bmatrix}$$

$$X = \left(\frac{7y-6}{1+4y}\right)^2$$