Practice Exam 2 :: Math 115

1. Common Evaluations

Assume $h \neq 0$ and $f(x) = 2x^2 - x$. Evaluate

$$\frac{f(a+h)-f(a)}{h}$$

$$2(a+h)^3-(a+h)-(2a^2-a)$$

2. Rate of Change

Compute the average rate of change of the function

$$f(x) = x^3 - \frac{1}{x}$$

on the interval [1, 5].

$$\frac{f(5)-f(1)}{5-1} = \left(\frac{5^3-\frac{1}{5}}{4}\right)^{-1} = \left(\frac{13-\frac{1}{5}}{4}\right) = \frac{125-\frac{1}{5}}{4} = \frac{125-\frac{2}{5}}{4} = \frac{124.8}{4} \approx \frac{31.2}{4}$$

$$||3 - ||6|| = (|0+1|) - |0|$$

$$= ||6 + 3 \cdot ||6|| + ||3| \cdot ||^{2} + ||-||6||$$

$$= ||33||$$

3. The Domain of Functions

Find the domain of each of the functions

Tunicions
$$\sqrt{(x+3)}$$
 $\sqrt{x^2+x-1}$

Throw out the solutions
$$\frac{\sqrt{(x+3)}}{2x^2+x-1}$$

$$(2x-1)(x+1)=0$$

$$x=\frac{1}{2}, x=-1$$

Domail
$$(-3,-1)U(-1,\frac{1}{2})U(\frac{1}{2},\infty)$$

Start: see
$$\times \neq 1$$
.

Also
$$\begin{pmatrix}
1 + 1 - X \\
1 - X
\end{pmatrix} + \frac{1}{1 - X} = 0$$

strictly greater than is

4. Graphs of Functions

Graph the each of the following polynomials, showing clearly all x- and y-intercepts.

I want to see!

vertex: (2,1)
quadratic, negative
leading

$$x-Mt$$
, $y=0=-(x-2)^2+1$ =) $(x-2)^2=1$
 $x-2=\pm 1$
 $x=2\pm 1$
 $x=2\pm 1$

 $a(x-b)^2+k$

7=0 7=9

depol 3

3) is odd

leadwy osef is possil

5. Consider the following rational functions:

$$r(x) = \frac{2x-1}{x^2-x-2}$$
, $s(x) = \frac{x^3+27}{x^2+4}$, $f(x) = \frac{x^3-9x}{x+2}$, $g(x) = \frac{x^2+x-6}{x^2-25}$

(a) Which of these rational functions has a horizontal asymptote?

(b) Which of these rational functions has a slant asymptote?

(c) Which of these rational functions has no vertical asymptote?

(d) Graph y = g(x) showing clearly any asymptotes.

solution to be set $h(x) = f(x) \cdot g(x)$. h(x) is even if h(-x) = h(x).

plug iv -x! $h(-x) = f(-x) \cdot g(-x)$ 6. Even and Odd Functions

6. Even and Odd Functions

What is the definition of an even function? What is the definition of an odd function?

dl! f(-x) = -f(x)

even: f(-x) = f(x)

if f(x) and g(x) are both QDD, is f(x) times g(x) odd, even or neither?

7. Combining Functions

Combining Functions
Let f(x) = 2x and $g(x) = x^2 + 1$. Compute:

$$f(g(x)) = \frac{f(x^2+1)}{2} = 2x^2+2$$

$$g(f(x)) = \frac{3(2x)^2 + 1}{2(2x)^2 + 1}$$

Also, determine whether the following are odd, even or neither.

$$f(g(x))$$
 _ (x)

$$g(f(x))$$
 ever

$$h(x) = \chi^{2} + \chi^{3}$$
 $h(-x) = (-x)^{2} + (-x)^{3}$
 $= \chi^{2} - \chi^{3} \neq h(x)$
 $\neq -h(x)$

8. Find the inverse of the function

9. Among all rectangles that have a perimeter of 20 ft. find the dimensions

(b) Check/verify year answer
$$f(f^{-1}(x)) = x$$
 show this.

(b) check/verify your answer

$$f(f^{-1}(x)) = x$$
 show this.

 $\frac{11}{-2x-1} - 1(\frac{x-1}{x-1}) - \frac{2x-1-x+1}{x-1}$
 $\frac{-2x-1}{x-1} + 2(\frac{x-1}{x-1}) - \frac{2x-1+2x-2}{x-1}$
 $= \frac{-3x}{-3} = |x|$

9. Among all rectangles that have a perimeter of 20 ft, find the dimensions of the one with the largest area.

$$MG = LG - 0G$$
 $MG = LG - 0G$
 $M = L - 0I$

Area =
$$l.w = l(10-l)$$

= $-l^2 + 10l$
verlex = $(h.t)$
 $h = -\frac{10}{20} = -\frac{10}{2(-1)} = (5)$

$$f(x) = \frac{x-1}{x+2} \implies y = \frac{x-1}{x+2} = y(x+2) = x-1 = yx + 2y = x-1$$

$$yx - x + 2y = -1$$

$$-2y - 2y$$

$$yx - x = -1 - 2y$$

$$x(y-1) = -1 - 2y$$

$$f^{-1}(x) = \frac{-1-2x}{1-2} \iff x = \frac{-1-2y}{1-2}$$

$$f^{-1}(x) = \frac{-1-2x}{x-1} \leftarrow x = \frac{-1-2y}{y-1}$$