MA115 :: Sections 3.1 & 3.2 & 3.3 Polynomials, Long Division & Rational Zeros

1. The leading term governs the end behavior. Describe the end b ehavior for these functions $f(x) = x^2$, $f(x) = x^2 + x$, $f(x) = -x^3$, $f(x) = -x^3 + 10x^2$, h(x) = 1/x, $g(x) = \frac{-2x^2 + x + 1}{x + 1}$

F(x)	$f(x) \rightarrow \square$ as $x \rightarrow \infty$	$f(x) \rightarrow \square$ as $x \rightarrow -\infty$	
XŽ	00	Ø	
X2+ X	<i>0</i> 0	· · · · · · · · · · · · · · · · · · ·	
-X3+ 10X3	-00	$-(-x)^{3} \rightarrow \infty$	
/x	1/316 → Ø	1/-B16 -> P	
	- 🛇	8	

plotting using a graphing utility using a window $-1 \le x \le 3.5$.

Zeros:

multiplicity

End Behann