Total Volume: 15,000 ft3

Relate the volume to rading

Relati the volume $\int = \frac{100 \ln 1}{1000} + \frac{1}{2} \cdot \frac{1}{3} \ln^3 \frac{1}{3}$ This is

15000 = 211 F + 3011 F = 3011 F

a ic ved

b is red

c. I

it

thi

thi

thi

it

in thi

in th

-1.1 = -12 = -(-1)=1

The natural number ea 2.71. Performs surprisingly well when attempting to model natural of (x) = ex. exponential fundari $f(x) = e^{x}$ exponential fundion $f(x) = e^{x}$ $as x \to \infty$ $f(x) = e^{x}$ exponential fundion $exponential fundion
<math display="block">f(x) = e^{x}$ $f(x) = e^{x}$ $f(x) \to \infty$ $f(x) \to \infty$ f(xThe invove function of ex is $ln(x) = log_e x$ inverse log 2x 10 inverse leg 10 X. Def: $log_{\alpha} X = Y$ same, same, same $\alpha'' = X$ exponential equation $\log_2(\frac{1}{8}) = ?$ To solve

this

This Jud A, B. Dexposetil of log 2 = 4 => \| 16 = 2 3 FmJ x. log x 343 = 3. ←P x 3 = 343 x = 3/343 = 7. we took the cube root (4) $3^{\times} = 343$ can't take the x^{\pm} root.

4) $3^{\times} = 343$ can't take the x^{\pm} root. $\log_3(3^{\times}) = \log_3(343)$ Solve by applying the inverse function, of 3^{\times} in $\log_3 \times$ $\times = \log_3(343)$

 $\log_3(3^{\times}) =$ exponent you must value the base (3) so that $\log_3(3^{\times}) =$ equals $3^{\times} -$ has to be x.

(11) $\log_3(3^{\times}) =$ $y = 3^{\circ} = 3^{\times}$ $c_0 \times = y$

 $f(x) = Co^{x}$ exponential function.

Passes thru $(0,3) \stackrel{?}{\downarrow} (3,24)$ $x^{2}(x) \stackrel{?}{\downarrow} (3,24)$ Starting point.

I plug in $(0,3) \rightarrow f(0) = C.(0) = 3$ so C=3.

2 Now do: $(3,24) \rightarrow f(3) = 3.0 = 24$ Solve 3.0 = 24 5 = 8 4 = 8

sample of vertical translation doesn't change the property of the property of

$$f(x) = Ca^*$$
, Passes than $(0,5)$
 $(3,10)$

$$f(0) = C\left(\frac{0}{\alpha}\right) = C = 5$$

$$f(x) = 5ia^{x}$$

 $f(3) = 5ia^{x} = 10$ solve

$$3\sqrt{a^3} = 3\sqrt{2}$$
 $a = 3\sqrt{2}$

$$V(t) = 80(1 - e^{-Rt})$$
 $t = 80$ or $V(t) = -t/Rec$

$$t = secondr$$

 $V(t) = -f^{\dagger}/gec$

Honzorth , V(t) as $t \rightarrow BIG$ Asymptote $V(t) = 80 \left(1 - \frac{1}{e^{2t}}\right)$

1 terminal velocity: 80 ffac (horrzostal

(Think: \$150 i=.05 = 5') 41 / 42. Money-Invest &p into account earning annual interest i. P + Pi = P(1+i)
principal = interest earned After year After year 2 $P(1+i) + i \cdot P(1+i) = P(1+i)(1+i) = P(1+i)^{d}$ new principal $= P(1+i)^3$ After year After year Interest compunded annually P(1+i) $(1+\frac{1}{4})^* \longrightarrow e$ $P(1+\frac{r}{n})^{\frac{n}{r}}$ as

the function Pe^(rt) is often used to model natural behavior.

this calculation suggests that nature compounds continuously

More applications of exponential functions

$$V(\pm) = 80 (1 - e^{-2t}) = 80 (1 - e^{-2(t)}) \rightarrow 80 (1 - 0)$$
 as $t \rightarrow \infty$

(a) Initial Velvition, to
$$\frac{300}{100} = \frac{100}{100} = \frac{$$

(6)
$$V(5) = 80 (1 - e^{-2.5}) = 50.6 \frac{\text{ft}}{84.6} \times \frac{1 \text{ to }}{5280 \text{ ft}} \times \frac{3600}{14 \text{ ft}} = 34$$

 $V(10) = 80 (1 - e^{2.5}) = 69.1 \frac{\text{ft}}{2} \times \frac{1 \text{ to }}{2} \times \frac{3600}{14 \text{ ft}} = 34$

log_a(x) = y means
$$a^{1} = x$$

log_arithmiz
form (equation)

Ex. log₂(32) = x. same as $a^{x} = 32$
 $x = 5$

Ex.
$$\log_2(32) = x$$
. Same as $\lambda = 32$ $(x=5)$

Ex
$$log_{\alpha}(100) = 3$$
 Same $a^{2} = 100 = 50$ $a=10$

b.
$$\log x$$
 (no task written, assume $\tan z = 10$)

 $\ln x$ $\tan z = e$ $\ln x = \log_e x$
 $\log x \neq 10^x$ are inverte functions.

 $\log (10^x) = y$ same $10^y = 10^x$ so $(x = y)$

Richter Scale

To = base intensity (background viliation)

$$M = \log \left(\frac{I}{I_0}\right)$$
 $M = \log \left(\frac{I}{I_0}\right) = \log \left(1\right) = 0$
 $M = \log \left(\frac{I}{I_0}\right) = \log \left(1\right) = 0$

Mag of earthquele 10 times as intonse as state quale

$$I = 10I_0 \rightarrow M = log \left(\frac{10T_0}{T_0}\right) \qquad (N = 10)$$

$$= log (0 = 1)$$

lastly, logs make big #'s small -