Exam 2 Guide Part A :: Math 271 :: February 27, 2017

Major Concepts

1. Derivatives: definition, concept, applications

2. Derivative computations: applying rules - sum,power, product, quotient, chain waes J:LDWC(
— e —
3. Derivative of functions: polys, rational, radicals, trig, exponential, logarithmic
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(b) Use the definition of the derivative to compute the derivative of f(z) = 3z2. X (240)
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2. Find the slope of the tangent line to the curve y = 32? + 2z + 1 at x = 5.




3. (a) Express the volume V of a cube as a function of its side length .

(b) Take the derivative of your equation. This is the rate of change of the volume of a cube

as a function of z.
(¢) Compute V'(1), V'(2), V'(5) and V'(10).

(d) Which has the greater affect on volume, lengthening the side length of a small cube by 1
or a large cube by by 17

4. Compute the derivatives of the following.
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5. Suppose that f(z) = b + 10. Evaluat,e'?(‘df)jand f'@3).
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7. Suppose that f(z) = tan — + 3cos (x~?). Evaluate f’(x).
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8. Suppose that f(z) = y/zsin (z).Evaluate f'(z) a /f’(7r).
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9. Suppose that f(z) = %. Evaluate f’(z) and f'(3).
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(a) Find the slope of the tangent line to f(z) at = 2.

M= *F{(l) = 3 ( mw\diV\j)

(b) Find the instantaneous rate of change of f(x) at x = 2.
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(c) Find the equation of the tangent line to f(z) af z = 2. © )
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10. A bungee jumper’s height in feet above the river is given by f(t) = 876e~1" cos (—.05x) where
t is the number of seconds after jumping. Compute the velocity of the jumper at the following
times: t =1, = 19,¢ = 60.
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