Curvature via Curl

ma541 - f25 - assignment 8

Find the curvature of the standard model spaces via their curl as follows.

1. Beginning with the metric for the sphere of radius (R):

$$ds^2 = R^2(\sin^2\phi \, d\theta^2 + d\phi^2)$$

find the metric-induced vector field V=(P,Q) induced by the metric on S^2 where

$$V = \left(\frac{\partial_v(A)}{B}, -\frac{\partial_u(B)}{A}\right).$$

Let L be a small rectangle in the (u, v) plane, \hat{L} its image on S^2 . Use the circulation of V around the boundary of L to find an expression for the curvature at a point (θ, ϕ) on the sphere.

2. Repeat the process for the metric of the torus of revolution with parameters R and r:

$$ds^{2} = (R + r\cos v)^{2}du^{2} + r^{2}dv^{2}$$

to find an expression for the curvature at a point (u, v) on the torus.

- i) What is the sign of the curvature at points where v = 0 or $v = \pi$?
- ii) What is the sign of the curvature at points where u=0 or $u=\pi/2$?
- iii) Explain how these signs relate to the orientation of the Gauss map at these points.
- 3. Repeat the process for the hyperbolic plane with metric:

$$ds^2 = \frac{1}{v^2} (du^2 + dv^2)$$

to verify that the curvature is -1 at all points.

4. (Optional) Use R/Python/MATLAB to visualize the vector fields on the sphere, torus & hyperbolic plane. Numerically approximate the curvature at various points. Compare your numerical results to your analytical expressions from parts 1-3.