Notes on Needham’s Derivation of the
Riemann Curvature Tensor

Needham defines the covariant derivative of a vector field w in the direction of a vector (field)
vV as

Covariant Derivative Definition

V. ow = W||(q —p) —w(p)
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where ¢ is a point “infinitesimally” close to p in the direction of v and W”(q — p) is the
parallel transport of w(q) back to p along the geodesic from ¢ to p. Needham also indicates
this derivative represents how much the vector w(q) differs from its original position w(p) after
being moved back to p via parallel transport. It is implied, then, that the point at which this
derivative is evaluated is p

V. (p)w = Wu(q —p)— W(p)'
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The Vector Holonomy

Recall, the holonomy

measures the angle FROM a fixed fiducial vector field U - TO the parallel transported vector
w) along K. If we choose the fiducial vector field U to be the vector field w itself, the holonomy
measures the angle from w to its parallel transport w| along the infinitesimal curve K from p
to g. This is exactly what the covariant derivative measures, except for a negative sign.



The Negative Holonomy

The negative vector holonomy —Ry;(K) measures the opposite - the angle FROM the parallel
transported wy| - TO the fiducial vector field. This is exactly what the covariant derivative
measures in the infinitesimal case! That is,

Vow = w (g = p) — w(p) _RK).
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Computing Holonomy Along the 5 Segments

By the Mean Value Theorem, the negative vector holonomy along K (being a continuous,
differentiable function measuing the change in w from the vector field - to the PT’d vector
along K) is ultimatly

—0pq (LW w) X W(0") —w) (0") < V,w(0")

where K = oa is in the direction of v and o* lies between o and a.

The full negative holonomy of the loop can be computed as the sum of the negative vector
holonomies along each of the 5 segments that make up K.

Putting it all Together

Thus, the covariant derivative can be computed as the sum of the negative vector holonomies
along each segment of K:

—Ry (L) = =Ry (0a) — Ry, (ab) — Ry, (bq) — Ry, (qp) — Ry, (po)
= véuuw(0*> + v(vavv<a’*> + VCW(C*> - véuuw(q*> - V5VVW(])*)

where a*, b*, ¢*, p*, ¢* are points along each segment of K coming from the Mean Value Theorem.
The p* point lies between p and o, so we can approximate it as the midpoint of op. Similarly
for the other * points, ¢* is approximately the midpoint of pq, ¢* approximately the midpoint
of bg and a* approximately the midpoint of ab.

The p* point lies in a segment traversed in the —v direction, so we have a negative sign in
front of that term. Similarly for the ¢* point. Thus, we have

—R,, (L) < ouV,w(a*) + ovV,w(b*) + V w(c*) — uV, w(q*) — vV w(p*)

we prepare to collect the terms with du and dv we collect like terms with color coding:



—R (L) <| 6uV,w(a*) | +ovv, w(t*) | +V,w(c) | —ouv,w(g") | +ovV,w(p") |

Notice that a* and ¢* are both approximately the midpoint of ab and pq, respectively, so we
can combine those terms. Similarly for b* and p*. This gives us

—R (L) <[ 6v(V,w(b") — V,w(p")) | - | ou(V,w(g") — V w(a’)) |+ [ Vow(c) |

Recalling the vector c is the scaled commutator
¢ =< dudvlv,u] < —dudviu,v]

so we have

—Ry (L) <[ 6v (V,w(b") — V,w(p)) | - | 0u(V,w(g") — Vow(a)) | [ Viuyw(c’)

—Ry, (L) = 0V (V,w(b") — V,w(p")) |+ 0u (V,w(q") — V,w(a")) |- 6vduV, ywi(c).

Applying the Mean Value Theorem again to the expressions boxed above, we get
—Ry (L) < 6uévV,V w(r") —véuV,V,w(s*) —dudvVy, w(c")

where r* is between a* and ¢* and s* is between b* and p*. Both of these points are approxi-
mately the center of the loop L, so we can combine them into a single point [* at the center
of L. The point ¢* too becomes arbitrarily close to [* in the limit thus

—Ry, (L) < 6udv (V,V,w(l*) = V,V,w(l*) = Vi, yw(l")) .

Finally, dividing both sides by the area of the loop dudv taking the limit as the area goes to
zero, we see [* — o and

lim )

F Area(L) = vquW — Vvvuw — V[u’v]w.

We can write this more compactly using the commutator notation,
[u, v] = uv —vu

as u = V, and v = V,, and reverting back to ultimate equality, and defining the Riemann
Curvature Tensor as:

R(u, v)w = —= =< [V, Vi Jw — V|, W,




	Covariant Derivative Definition
	The Vector Holonomy
	The Negative Holonomy
	Computing Holonomy Along the 5 Segments
	Putting it all Together

