
Notes on Needham’s Derivation of the
Riemann Curvature Tensor

Needham defines the covariant derivative of a vector field 𝑤 in the direction of a vector (field)
v as

Covariant Derivative Definition

∇vw ≍
w||(𝑞 → 𝑝) − w(𝑝)

𝜖

where 𝑞 is a point “infinitesimally” close to 𝑝 in the direction of v and w||(𝑞 → 𝑝) is the
parallel transport of w(𝑞) back to 𝑝 along the geodesic from 𝑞 to 𝑝. Needham also indicates
this derivative represents how much the vector w(𝑞) differs from its original position w(𝑝) after
being moved back to 𝑝 via parallel transport. It is implied, then, that the point at which this
derivative is evaluated is 𝑝

∇v(𝑝)w ≍
w||(𝑞 → 𝑝) − w(𝑝)

𝜖 .

The Vector Holonomy

Recall, the holonomy
𝑅𝑈(𝐾) ≡ 𝛿𝐾(∠w||)

measures the angle FROM a fixed fiducial vector field 𝑈 - TO the parallel transported vector
w|| along 𝐾. If we choose the fiducial vector field 𝑈 to be the vector field 𝑤 itself, the holonomy
measures the angle from 𝑤 to its parallel transport w|| along the infinitesimal curve 𝐾 from 𝑝
to 𝑞. This is exactly what the covariant derivative measures, except for a negative sign.
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The Negative Holonomy

The negative vector holonomy −𝑅𝑈(𝐾) measures the opposite - the angle FROM the parallel
transported w|| - TO the fiducial vector field. This is exactly what the covariant derivative
measures in the infinitesimal case! That is,

∇vw ≍
w||(𝑞 → 𝑝) − w(𝑝)

𝜖 − 𝑅w𝐾).

Computing Holonomy Along the 5 Segments

By the Mean Value Theorem, the negative vector holonomy along 𝐾 (being a continuous,
differentiable function measuing the change in 𝑤 from the vector field - to the PT’d vector
along 𝐾) is ultimatly

−𝛿𝑜𝑎(∠w||𝑤) ≍ w(𝑜∗) − w||(𝑜∗) ≍ ∇vw(𝑜∗)

where 𝐾 = 𝑜𝑎 is in the direction of v and 𝑜∗ lies between 𝑜 and 𝑎.

The full negative holonomy of the loop can be computed as the sum of the negative vector
holonomies along each of the 5 segments that make up 𝐾.

Putting it all Together

Thus, the covariant derivative can be computed as the sum of the negative vector holonomies
along each segment of 𝐾:

−𝑅w(𝐿) ≍ −𝑅w(𝑜𝑎) − 𝑅w(𝑎𝑏) − 𝑅w(𝑏𝑞) − 𝑅w(𝑞𝑝) − 𝑅w(𝑝𝑜)

≍ ∇𝛿u 𝑢w(𝑜∗) + ∇𝛿v vw(𝑎∗) + ∇𝑐w(𝑐∗) − ∇𝛿u 𝑢w(𝑞∗) − ∇𝛿v vw(𝑝∗)

where 𝑎∗, 𝑏∗, 𝑐∗, 𝑝∗, 𝑞∗ are points along each segment of 𝐾 coming from the Mean Value Theorem.
The 𝑝∗ point lies between 𝑝 and 𝑜, so we can approximate it as the midpoint of 𝑜𝑝. Similarly
for the other ∗ points, 𝑞∗ is approximately the midpoint of 𝑝𝑞, 𝑐∗ approximately the midpoint
of 𝑏𝑞 and 𝑎∗ approximately the midpoint of 𝑎𝑏.

The 𝑝∗ point lies in a segment traversed in the −𝑣 direction, so we have a negative sign in
front of that term. Similarly for the 𝑞∗ point. Thus, we have

−𝑅w(𝐿) ≍ 𝛿u∇uw(𝑎∗) + 𝛿v∇vw(𝑏∗) + ∇𝑐w(𝑐∗) − 𝛿u∇uw(𝑞∗) − 𝛿v∇vw(𝑝∗)

we prepare to collect the terms with 𝛿u and 𝛿v we collect like terms with color coding:
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−𝑅w(𝐿) ≍ 𝛿u∇uw(𝑎∗) +𝛿v∇vw(𝑏∗) +∇𝑐w(𝑐∗) −𝛿u∇uw(𝑞∗) +𝛿v∇vw(𝑝∗)

Notice that 𝑎∗ and 𝑞∗ are both approximately the midpoint of 𝑎𝑏 and 𝑝𝑞, respectively, so we
can combine those terms. Similarly for 𝑏∗ and 𝑝∗. This gives us

−𝑅w(𝐿) ≍ 𝛿v (∇vw(𝑏∗) − ∇vw(𝑝∗)) − 𝛿u (∇uw(𝑞∗) − ∇uw(𝑎∗)) + ∇𝑐w(𝑐∗)

Recalling the vector 𝑐 is the scaled commutator

𝑐 ≍ 𝛿u 𝛿v[v, u] ≍ −𝛿u 𝛿v[u, v]
so we have

−𝑅w(𝐿) ≍ 𝛿v (∇vw(𝑏∗) − ∇vw(𝑝∗)) − 𝛿u (∇uw(𝑞∗) − ∇uw(𝑎∗)) − ∇[u,v]w(𝑐∗)

−𝑅w(𝐿) ≍ 𝛿v (∇vw(𝑏∗) − ∇vw(𝑝∗)) + 𝛿u (∇uw(𝑞∗) − ∇uw(𝑎∗)) − 𝛿v 𝛿u∇[u,v]w(𝑐∗).

Applying the Mean Value Theorem again to the expressions boxed above, we get

−𝑅w(𝐿) ≍ 𝛿u 𝛿v∇u∇vw(𝑟∗) − 𝛿v 𝛿u∇v∇uw(𝑠∗) − 𝛿u 𝛿v∇[u,v]w(𝑐∗)
where 𝑟∗ is between 𝑎∗ and 𝑞∗ and 𝑠∗ is between 𝑏∗ and 𝑝∗. Both of these points are approxi-
mately the center of the loop 𝐿, so we can combine them into a single point 𝑙∗ at the center
of 𝐿. The point 𝑐∗ too becomes arbitrarily close to 𝑙∗ in the limit thus

−𝑅w(𝐿) ≍ 𝛿u 𝛿v (∇u∇vw(𝑙∗) − ∇v∇uw(𝑙∗) − ∇[u,v]w(𝑙∗)) .

Finally, dividing both sides by the area of the loop 𝛿u 𝛿v taking the limit as the area goes to
zero, we see 𝑙∗ → 𝑜 and

lim
𝐿→𝑜

−𝑅w(𝐿)
Area(𝐿) = ∇u∇vw − ∇v∇uw − ∇[u,v]w.

We can write this more compactly using the commutator notation,

[𝑢, 𝑣] = 𝑢𝑣 − 𝑣𝑢
as 𝑢 = ∇u and 𝑣 = ∇v and reverting back to ultimate equality, and defining the Riemann
Curvature Tensor as:

ℛ(u, v)w ≍ −𝑅w(𝐿)
Area(𝐿) ≍ [∇u, ∇v]w − ∇[u,v]w.

3


	Covariant Derivative Definition
	The Vector Holonomy
	The Negative Holonomy
	Computing Holonomy Along the 5 Segments
	Putting it all Together

