
Probability and Bayes Theorem

Relevant Readings: Sections 6.1, 6.2, 6.9 in Mitchell

CS495 - Machine Learning, Fall 2009



Final project

I Start dreaming up possible applications of concept learning to
create agents (like the checkers example) for your final project



Probability

I If A is an event, we will denote the probability that A occurs
as Pr(A)

I Note: Mitchell uses the notation P(A)
I All probabilities are in the range [0, 1]
I If an event is impossible, it has probability 0
I If an event is certain, it has probability 1
I Examples

I Conditional probability
I Pr(A | B) is read: “probability of A, given B”
I If A and B are events, then the conditional probability

Pr(A | B) is defined to be Pr(A | B) = Pr(A∧B)
Pr(B)

I Examples
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Testing for a rare illness:

I Suppose we have tested somone for the illness

I Let I be the event that the person has illness
I Let ⊕ be the event that the test came out positive
I Let 	 be the event that the test came out negative

I We know our test is very accurate:
I Pr(⊕ | I ) = .98
I Pr(	 | I ) = .02
I Pr(⊕ | ¬I ) = .03
I Pr(	 | ¬I ) = .97

I Imagine now that ⊕ happens; the test came out positive
I Which is a more likely hypothesis: that the person has the

illness or not?
I What if I told you that Pr(I ) = .008 and Pr(¬I ) = .992 (i.e.

the illness is very rare)? Does that change your mind?
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Bayes Theorem

I Take any events A and B

I We know by conditional probability (product rule) that
Pr(A | B) Pr(B) = Pr(A ∧ B) = Pr(B | A) Pr(A)

I Divide both sides by Pr(B) (assume it’s nonzero):

I Pr(A | B) = Pr(B|A) Pr(A)
Pr(B)

I This equation is known as Bayes Theorem

I Apply Bayes Theorem to the illness question:
I A = I
I B = ⊕
I Pr(I | ⊕) = Pr(⊕|I ) Pr(I )

Pr(⊕) = (.98)(.008)
Pr(⊕)

I Pr(¬I | ⊕) = Pr(⊕|¬I ) Pr(¬I )
Pr(⊕) = (.03)(.992)

Pr(⊕)
I So the more likely hypothesis is that the person doesn’t have

the illness!
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Naive Bayes

I Hey wait, maybe we can apply Bayes Theorem concept to
machine learning!

I One way to doing this is the called Naive Bayesian Classifier
I It’s simple
I It’s computationally efficient
I It can be remarkably effective (depending on the application)
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Naive Bayes

I Consider the following setting:

I The task, T , is a concept learning task (boolean valued target
function f : D → {0, 1})

I Training experience, E , is input/output examples of f
I Each piece of training data has attributes a1 through an
I We want to find the most likely output, vMAP , of f , given

(a1, a2, . . . , an)
I Sidebar: MAP stands for Maximum A Posteriori

I Then (where B = {0, 1}):
I vMAP = argmaxb∈B Pr(b | a1, a2, . . . , an)
I vMAP = argmaxb∈B

Pr(a1,a2,...,an|b) Pr(b)
Pr(a1,a2,...,an)

(by Bayes Theorem)
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Naive Bayes

I Bottom line: If we just estimate the Pr(b) and Pr(ai | b)
probabilities based on the training data, we have the most
likely output (if our simplifying assumption holds, anyway)

I Won’t zeros cause problems for this?

I One way to handle that is to “invent” some faux training
examples to start out with (called m-estimates)
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Some terminology

I Target concept: the function we are trying to learn

I Hypothesis: one possibility under consideraion for the target
concept

I Hypothesis space: set of all possibilities for the target concept

I Conjunction: an “and” (in the logical sense)

I Disjunction: an “or” (in the logical sense)

I Instance: If f : X → {0, 1} is a target concept, X is the set of
instances

I A posteriori: based on experience (empirical)

I A priori: independent of experience (logical)
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