Probability and Bayes Theorem

Relevant Readings: Sections 6.1, 6.2, 6.9 in Mitchell

CS495 - Machine Learning, Fall 2009

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Final project

 \triangleright Start dreaming up possible applications of concept learning to create agents (like the checkers example) for your final project

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

If A is an event, we will denote the probability that A occurs as $Pr(A)$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

If A is an event, we will denote the probability that A occurs as $Pr(A)$

 \blacktriangleright Note: Mitchell uses the notation $P(A)$

If A is an event, we will denote the probability that A occurs as $Pr(A)$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

- \triangleright Note: Mitchell uses the notation $P(A)$
- All probabilities are in the range $[0, 1]$

If A is an event, we will denote the probability that A occurs as $Pr(A)$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

- \blacktriangleright Note: Mitchell uses the notation $P(A)$
- \blacktriangleright All probabilities are in the range $[0, 1]$
- If an event is impossible, it has probability 0

If A is an event, we will denote the probability that A occurs as $Pr(A)$

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

- \blacktriangleright Note: Mitchell uses the notation $P(A)$
- \blacktriangleright All probabilities are in the range $[0, 1]$
- If an event is impossible, it has probability 0
- If an event is certain, it has probability 1

If A is an event, we will denote the probability that A occurs as $Pr(A)$

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

- \triangleright Note: Mitchell uses the notation $P(A)$
- \blacktriangleright All probabilities are in the range $[0, 1]$
- If an event is impossible, it has probability 0
- If an event is certain, it has probability 1
- \blacktriangleright Examples

If A is an event, we will denote the probability that A occurs as $Pr(A)$

KORK ERKER ADE YOUR

- \triangleright Note: Mitchell uses the notation $P(A)$
- \blacktriangleright All probabilities are in the range $[0, 1]$
- If an event is impossible, it has probability 0
- If an event is certain, it has probability 1
- \blacktriangleright Examples
- \blacktriangleright Conditional probability

If A is an event, we will denote the probability that A occurs as $Pr(A)$

KORK ERKER ADE YOUR

- \triangleright Note: Mitchell uses the notation $P(A)$
- \blacktriangleright All probabilities are in the range $[0, 1]$
- If an event is impossible, it has probability 0
- If an event is certain, it has probability 1
- \blacktriangleright Examples
- \blacktriangleright Conditional probability
	- Pr($A \mid B$) is read: "probability of A, given B"

- If A is an event, we will denote the probability that A occurs as $Pr(A)$
	- \triangleright Note: Mitchell uses the notation $P(A)$
	- \blacktriangleright All probabilities are in the range $[0, 1]$
	- If an event is impossible, it has probability 0
	- If an event is certain, it has probability 1
	- \blacktriangleright Examples
- \blacktriangleright Conditional probability
	- Pr(A | B) is read: "probability of A, given B"
	- If A and B are events, then the conditional probability $Pr(A | B)$ is defined to be $Pr(A | B) = \frac{Pr(A \wedge B)}{Pr(B)}$

- If A is an event, we will denote the probability that A occurs as $Pr(A)$
	- \triangleright Note: Mitchell uses the notation $P(A)$
	- \blacktriangleright All probabilities are in the range $[0, 1]$
	- If an event is impossible, it has probability 0
	- If an event is certain, it has probability 1
	- \blacktriangleright Examples
- \blacktriangleright Conditional probability
	- Pr(A | B) is read: "probability of A, given B"
	- If A and B are events, then the conditional probability $Pr(A | B)$ is defined to be $Pr(A | B) = \frac{Pr(A \wedge B)}{Pr(B)}$

KORKAR KERKER E VOOR

 \blacktriangleright Examples

- If A is an event, we will denote the probability that A occurs as $Pr(A)$
	- \triangleright Note: Mitchell uses the notation $P(A)$
	- \blacktriangleright All probabilities are in the range $[0, 1]$
	- If an event is impossible, it has probability 0
	- If an event is certain, it has probability 1
	- \blacktriangleright Examples
- \blacktriangleright Conditional probability
	- Pr(A | B) is read: "probability of A, given B"
	- If A and B are events, then the conditional probability $Pr(A | B)$ is defined to be $Pr(A | B) = \frac{Pr(A \wedge B)}{Pr(B)}$

KORKAR KERKER E VOOR

 \blacktriangleright Examples

 \blacktriangleright Suppose we have tested somone for the illness

 \blacktriangleright Suppose we have tested somone for the illness

 \blacktriangleright Let *I* be the event that the person has illness

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

 \triangleright Suppose we have tested somone for the illness

- \blacktriangleright Let *I* be the event that the person has illness
- \triangleright Let \oplus be the event that the test came out positive

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

 \triangleright Suppose we have tested somone for the illness

- \blacktriangleright Let *I* be the event that the person has illness
- \blacktriangleright Let \oplus be the event that the test came out positive
- \blacktriangleright Let \ominus be the event that the test came out negative

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

- \triangleright Suppose we have tested somone for the illness
	- \blacktriangleright Let *I* be the event that the person has illness
	- \blacktriangleright Let \oplus be the event that the test came out positive
	- \blacktriangleright Let \ominus be the event that the test came out negative

KOD KARD KED KED E VOOR

- \triangleright Suppose we have tested somone for the illness
	- \blacktriangleright Let *I* be the event that the person has illness
	- \blacktriangleright Let \oplus be the event that the test came out positive
	- \blacktriangleright Let \ominus be the event that the test came out negative

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

- \triangleright We know our test is very accurate:
	- \triangleright Pr(⊕ | *I*) = .98

- \triangleright Suppose we have tested somone for the illness
	- \blacktriangleright Let *I* be the event that the person has illness
	- \blacktriangleright Let \oplus be the event that the test came out positive
	- \blacktriangleright Let \ominus be the event that the test came out negative

KOD KARD KED KED E VOOR

$$
\blacktriangleright \; \mathsf{Pr}(\oplus \mid I) = .98
$$

$$
\blacktriangleright \; \mathsf{Pr}(\ominus \mid I) = .02
$$

- \triangleright Suppose we have tested somone for the illness
	- \blacktriangleright Let *I* be the event that the person has illness
	- \blacktriangleright Let \oplus be the event that the test came out positive
	- \blacktriangleright Let \ominus be the event that the test came out negative

KOD KARD KED KED E VOOR

$$
\blacktriangleright \; \mathsf{Pr}(\oplus \mid I) = .98
$$

$$
\blacktriangleright \; \mathsf{Pr}(\ominus \mid I) = .02
$$

$$
\blacktriangleright \; \mathsf{Pr}(\oplus \mid \neg I) = .03
$$

- \triangleright Suppose we have tested somone for the illness
	- \blacktriangleright Let *I* be the event that the person has illness
	- \blacktriangleright Let \oplus be the event that the test came out positive
	- \blacktriangleright Let \ominus be the event that the test came out negative

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

$$
\blacktriangleright \; \mathsf{Pr}(\oplus \mid I) = .98
$$

$$
\blacktriangleright \; \mathsf{Pr}(\ominus \mid I) = .02
$$

$$
\blacktriangleright \; \mathsf{Pr}(\oplus \mid \neg I) = .03
$$

$$
\blacktriangleright \; \mathsf{Pr}(\ominus \mid \neg I) = .97
$$

- \triangleright Suppose we have tested somone for the illness
	- \blacktriangleright Let *I* be the event that the person has illness
	- \blacktriangleright Let \oplus be the event that the test came out positive
	- \blacktriangleright Let \ominus be the event that the test came out negative
- \triangleright We know our test is very accurate:

$$
\blacktriangleright \; \mathsf{Pr}(\oplus \mid I) = .98
$$

- \blacktriangleright Pr(\ominus | *I*) = .02
- \blacktriangleright Pr(\oplus | \neg I) = .03
- \blacktriangleright Pr(\ominus | \neg I) = .97

Imagine now that \oplus happens; the test came out positive

- \triangleright Suppose we have tested somone for the illness
	- \blacktriangleright Let *I* be the event that the person has illness
	- \blacktriangleright Let \oplus be the event that the test came out positive
	- \blacktriangleright Let \ominus be the event that the test came out negative
- \triangleright We know our test is very accurate:
	- \triangleright Pr(⊕ | *I*) = .98
	- Pr(\ominus | I) = .02
	- \blacktriangleright Pr(\oplus | \neg I) = .03
	- \blacktriangleright Pr(\ominus | \neg I) = .97
- Imagine now that $oplus$ happens; the test came out positive
	- \triangleright Which is a more likely hypothesis: that the person has the illness or not?

- \triangleright Suppose we have tested somone for the illness
	- \blacktriangleright Let *I* be the event that the person has illness
	- \blacktriangleright Let \oplus be the event that the test came out positive
	- \blacktriangleright Let \ominus be the event that the test came out negative
- \triangleright We know our test is very accurate:
	- \triangleright Pr(⊕ | *I*) = .98
	- \blacktriangleright Pr(\ominus | *I*) = .02
	- \blacktriangleright Pr(\oplus | \neg I) = .03
	- \blacktriangleright Pr(\ominus | \neg I) = .97

Imagine now that $oplus$ happens; the test came out positive

- \triangleright Which is a more likely hypothesis: that the person has the illness or not?
- ▶ What if I told you that $Pr(I) = .008$ and $Pr(\neg I) = .992$ (i.e. the illness is very rare)? Does that change your mind?

- \triangleright Suppose we have tested somone for the illness
	- \blacktriangleright Let *I* be the event that the person has illness
	- \blacktriangleright Let \oplus be the event that the test came out positive
	- \blacktriangleright Let \ominus be the event that the test came out negative
- \triangleright We know our test is very accurate:
	- \triangleright Pr(⊕ | *I*) = .98
	- \blacktriangleright Pr(\ominus | *I*) = .02
	- \blacktriangleright Pr(\oplus | \neg I) = .03
	- \blacktriangleright Pr(\ominus | \neg I) = .97

Imagine now that $oplus$ happens; the test came out positive

- \triangleright Which is a more likely hypothesis: that the person has the illness or not?
- ▶ What if I told you that $Pr(I) = .008$ and $Pr(\neg I) = .992$ (i.e. the illness is very rare)? Does that change your mind?

 \blacktriangleright Take any events A and B

- \blacktriangleright Take any events A and B
- \triangleright We know by conditional probability (product rule) that $Pr(A | B) Pr(B) = Pr(A \wedge B) = Pr(B | A) Pr(A)$

KOD KARD KED KED E VOOR

- \blacktriangleright Take any events A and B
- \triangleright We know by conditional probability (product rule) that $Pr(A | B) Pr(B) = Pr(A \wedge B) = Pr(B | A) Pr(A)$

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

 \triangleright Divide both sides by Pr(B) (assume it's nonzero):

 \blacktriangleright Take any events A and B

 \triangleright We know by conditional probability (product rule) that $Pr(A | B) Pr(B) = Pr(A \wedge B) = Pr(B | A) Pr(A)$

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

 \triangleright Divide both sides by Pr(B) (assume it's nonzero):

$$
\Pr(A \mid B) = \frac{\Pr(B|A)\Pr(A)}{\Pr(B)}
$$

- \blacktriangleright Take any events A and B
- \triangleright We know by conditional probability (product rule) that $Pr(A | B) Pr(B) = Pr(A \wedge B) = Pr(B | A) Pr(A)$

KORK ERKER ADE YOUR

 \triangleright Divide both sides by Pr(B) (assume it's nonzero):

$$
\Pr(A \mid B) = \frac{\Pr(B|A)\Pr(A)}{\Pr(B)}
$$

 \blacktriangleright This equation is known as Bayes Theorem

- \blacktriangleright Take any events A and B
- \triangleright We know by conditional probability (product rule) that $Pr(A | B) Pr(B) = Pr(A \wedge B) = Pr(B | A) Pr(A)$

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

Divide both sides by $Pr(B)$ (assume it's nonzero):

$$
\Pr(A \mid B) = \frac{\Pr(B|A)\Pr(A)}{\Pr(B)}
$$

- \blacktriangleright This equation is known as Bayes Theorem
- \blacktriangleright Apply Bayes Theorem to the illness question:

- \blacktriangleright Take any events A and B
- \triangleright We know by conditional probability (product rule) that $Pr(A | B) Pr(B) = Pr(A \wedge B) = Pr(B | A) Pr(A)$

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

Divide both sides by $Pr(B)$ (assume it's nonzero):

$$
\Pr(A \mid B) = \frac{\Pr(B|A)\Pr(A)}{\Pr(B)}
$$

- \blacktriangleright This equation is known as Bayes Theorem
- \blacktriangleright Apply Bayes Theorem to the illness question:

$$
\blacktriangleright A = I
$$

- \blacktriangleright Take any events A and B
- \triangleright We know by conditional probability (product rule) that $Pr(A | B) Pr(B) = Pr(A \wedge B) = Pr(B | A) Pr(A)$

KORKAR KERKER E VOOR

Divide both sides by $Pr(B)$ (assume it's nonzero):

$$
\Pr(A \mid B) = \frac{\Pr(B|A)\Pr(A)}{\Pr(B)}
$$

- \blacktriangleright This equation is known as Bayes Theorem
- \blacktriangleright Apply Bayes Theorem to the illness question:

$$
\blacktriangleright A = I
$$

 \rightarrow $B = \oplus$

- \blacktriangleright Take any events A and B
- \triangleright We know by conditional probability (product rule) that $Pr(A | B) Pr(B) = Pr(A \wedge B) = Pr(B | A) Pr(A)$

KORKAR KERKER E VOOR

Divide both sides by $Pr(B)$ (assume it's nonzero):

$$
\Pr(A \mid B) = \frac{\Pr(B|A)\Pr(A)}{\Pr(B)}
$$

- \blacktriangleright This equation is known as Bayes Theorem
- \blacktriangleright Apply Bayes Theorem to the illness question:

$$
\blacktriangleright \ A = I
$$

$$
\blacktriangleright \ B = \oplus
$$

$$
\blacktriangleright \; \Pr(I \mid \oplus) = \frac{\Pr(\oplus | I) \Pr(I)}{\Pr(\oplus)} = \frac{(.98)(.008)}{\Pr(\oplus)}
$$

- \blacktriangleright Take any events A and B
- \triangleright We know by conditional probability (product rule) that $Pr(A | B) Pr(B) = Pr(A \wedge B) = Pr(B | A) Pr(A)$

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

Divide both sides by $Pr(B)$ (assume it's nonzero):

$$
\Pr(A \mid B) = \frac{\Pr(B|A)\Pr(A)}{\Pr(B)}
$$

- \blacktriangleright This equation is known as Bayes Theorem
- \blacktriangleright Apply Bayes Theorem to the illness question:

$$
\blacktriangleright \ A = I
$$

 \rightarrow $B = \oplus$

$$
\begin{array}{ll}\n\text{Pr}(I \mid \oplus) = \frac{\Pr(\oplus | I) \Pr(I)}{\Pr(\oplus)} = \frac{(.98)(.008)}{\Pr(\oplus)} \\
\text{Pr}(\neg I \mid \oplus) = \frac{\Pr(\oplus | \neg I) \Pr(\neg I)}{\Pr(\oplus)} = \frac{(.03)(.992)}{\Pr(\oplus)}\n\end{array}
$$

- \blacktriangleright Take any events A and B
- \triangleright We know by conditional probability (product rule) that $Pr(A | B) Pr(B) = Pr(A \wedge B) = Pr(B | A) Pr(A)$
- \triangleright Divide both sides by Pr(B) (assume it's nonzero):

$$
\Pr(A \mid B) = \frac{\Pr(B|A)\Pr(A)}{\Pr(B)}
$$

- \blacktriangleright This equation is known as Bayes Theorem
- \blacktriangleright Apply Bayes Theorem to the illness question:
	- \blacktriangleright $A = I$
	- \rightarrow $B = \oplus$

$$
\blacktriangleright \ \Pr(I \mid \oplus) = \frac{\Pr(\oplus | I) \Pr(I)}{\Pr(\oplus)} = \frac{(.98)(.008)}{\Pr(\oplus)}
$$

- $Pr(\neg I \mid \oplus)$ = $Pr(\oplus)$ Pr(\oplus) = $Pr(\oplus)$
 $Pr(\neg I \mid \oplus)$ = $Pr(\oplus)$ $Pr(\oplus)$ = $Pr(\oplus)$ Pr(⊕)
- \triangleright So the more likely hypothesis is that the person *doesn't* have the illness!

- \blacktriangleright Take any events A and B
- \triangleright We know by conditional probability (product rule) that $Pr(A | B) Pr(B) = Pr(A \wedge B) = Pr(B | A) Pr(A)$
- \triangleright Divide both sides by Pr(B) (assume it's nonzero):

$$
\Pr(A \mid B) = \frac{\Pr(B|A)\Pr(A)}{\Pr(B)}
$$

- \blacktriangleright This equation is known as Bayes Theorem
- \blacktriangleright Apply Bayes Theorem to the illness question:
	- \blacktriangleright $A = I$
	- \rightarrow $B = \oplus$

$$
\blacktriangleright \ \Pr(I \mid \oplus) = \frac{\Pr(\oplus | I) \Pr(I)}{\Pr(\oplus)} = \frac{(.98)(.008)}{\Pr(\oplus)}
$$

- $Pr(\neg I \mid \oplus)$ = $Pr(\oplus)$ Pr(\oplus) = $Pr(\oplus)$
 $Pr(\neg I \mid \oplus)$ = $Pr(\oplus)$ $Pr(\oplus)$ = $Pr(\oplus)$ Pr(⊕)
- \triangleright So the more likely hypothesis is that the person *doesn't* have the illness!

 \blacktriangleright Hey wait, maybe we can apply Bayes Theorem concept to machine learning!

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

- \blacktriangleright Hey wait, maybe we can apply Bayes Theorem concept to machine learning!
- \triangleright One way to doing this is the called Naive Bayesian Classifier

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O *

- \blacktriangleright Hey wait, maybe we can apply Bayes Theorem concept to machine learning!
- \triangleright One way to doing this is the called Naive Bayesian Classifier

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

 \blacktriangleright It's simple

- \blacktriangleright Hey wait, maybe we can apply Bayes Theorem concept to machine learning!
- \triangleright One way to doing this is the called Naive Bayesian Classifier

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 → 9 Q @

- \blacktriangleright It's simple
- \blacktriangleright It's computationally efficient

- \blacktriangleright Hey wait, maybe we can apply Bayes Theorem concept to machine learning!
- \triangleright One way to doing this is the called Naive Bayesian Classifier
	- \blacktriangleright It's simple
	- \blacktriangleright It's computationally efficient
	- It can be remarkably effective (depending on the application)

KOD KARD KED KED E VOOR

- \blacktriangleright Hey wait, maybe we can apply Bayes Theorem concept to machine learning!
- \triangleright One way to doing this is the called Naive Bayesian Classifier
	- \blacktriangleright It's simple
	- \blacktriangleright It's computationally efficient
	- It can be remarkably effective (depending on the application)

KOD KARD KED KED E VOOR

 \blacktriangleright Consider the following setting:

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

 \blacktriangleright Consider the following setting:

 \blacktriangleright The task, T , is a concept learning task (boolean valued target function $f: D \rightarrow \{0, 1\}$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

- \triangleright Consider the following setting:
	- \blacktriangleright The task, T , is a concept learning task (boolean valued target function $f: D \rightarrow \{0, 1\}$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

 \triangleright Training experience, E, is input/output examples of f

- \triangleright Consider the following setting:
	- \triangleright The task, T, is a concept learning task (boolean valued target function $f: D \rightarrow \{0,1\}$

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

- \triangleright Training experience, E, is input/output examples of f
- Each piece of training data has attributes a_1 through a_n

- \triangleright Consider the following setting:
	- \triangleright The task, T, is a concept learning task (boolean valued target function $f: D \rightarrow \{0, 1\}$
	- \triangleright Training experience, E, is input/output examples of f
	- Each piece of training data has attributes a_1 through a_n
	- \triangleright We want to find the most likely output, v_{MAP} , of f, given (a_1, a_2, \ldots, a_n)

KORK ERKER ADE YOUR

- \triangleright Consider the following setting:
	- \triangleright The task, T, is a concept learning task (boolean valued target function $f: D \rightarrow \{0, 1\}$
	- \triangleright Training experience, E, is input/output examples of f
	- Each piece of training data has attributes a_1 through a_n
	- \triangleright We want to find the most likely output, v_{MAP} , of f, given (a_1, a_2, \ldots, a_n)

KORK ERKER ADE YOUR

I Sidebar: *MAP* stands for Maximum A Posteriori

- \triangleright Consider the following setting:
	- \blacktriangleright The task, T , is a concept learning task (boolean valued target function $f: D \rightarrow \{0, 1\}$
	- \triangleright Training experience, E, is input/output examples of f
	- Each piece of training data has attributes a_1 through a_n
	- \triangleright We want to find the most likely output, v_{MAP} , of f, given (a_1, a_2, \ldots, a_n)

KORK ERKER ADE YOUR

- \triangleright Sidebar: MAP stands for Maximum A Posteriori
- \blacktriangleright Then (where $B = \{0, 1\}$):

- \triangleright Consider the following setting:
	- \blacktriangleright The task, T , is a concept learning task (boolean valued target function $f: D \rightarrow \{0, 1\}$
	- \blacktriangleright Training experience, E, is input/output examples of f
	- Each piece of training data has attributes a_1 through a_n
	- \triangleright We want to find the most likely output, v_{MAP} , of f, given (a_1, a_2, \ldots, a_n)

KORK ERKER ADE YOUR

- \triangleright Sidebar: MAP stands for Maximum A Posteriori
- \blacktriangleright Then (where $B = \{0, 1\}$):
	- \triangleright v_{MAP} = argmax_{b∈B} Pr(b | a₁, a₂, ..., a_n)

- \triangleright Consider the following setting:
	- \blacktriangleright The task, T , is a concept learning task (boolean valued target function $f: D \rightarrow \{0, 1\}$
	- \blacktriangleright Training experience, E, is input/output examples of f
	- Each piece of training data has attributes a_1 through a_n
	- \triangleright We want to find the most likely output, v_{MAP} , of f, given (a_1, a_2, \ldots, a_n)
		- ▶ Sidebar: MAP stands for Maximum A Posteriori
- \blacktriangleright Then (where $B = \{0, 1\}$):
	- \triangleright v_{MAP} = argmax_{b∈B} Pr(b | a₁, a₂, ..., a_n) \triangleright $V_{MAP} = \arg \max_{b \in B} \frac{\Pr(a_1, a_2, ..., a_n | b) \Pr(b)}{\Pr(a_1, a_2, ..., a_n)}$ $\frac{P_{1},P_{2},\ldots,P_{n}|D\}\mathsf{Pr}(D)}{\mathsf{Pr}(a_{1},a_{2},\ldots,a_{n})}$ (by Bayes Theorem)

- \triangleright Consider the following setting:
	- \blacktriangleright The task, T , is a concept learning task (boolean valued target function $f: D \rightarrow \{0, 1\}$
	- \blacktriangleright Training experience, E, is input/output examples of f
	- Each piece of training data has attributes a_1 through a_n
	- \triangleright We want to find the most likely output, v_{MAP} , of f, given (a_1, a_2, \ldots, a_n)
		- **F** Sidebar: MAP stands for Maximum A Posteriori
- \blacktriangleright Then (where $B = \{0, 1\}$):
	- \triangleright v_{MAP} = argmax_{b∈B} Pr(b | a₁, a₂, ..., a_n)
	- \triangleright $V_{MAP} = \arg \max_{b \in B} \frac{\Pr(a_1, a_2, ..., a_n | b) \Pr(b)}{\Pr(a_1, a_2, ..., a_n)}$ $\frac{P_{1},P_{2},\ldots,P_{n}|D\}\mathsf{Pr}(D)}{\mathsf{Pr}(a_{1},a_{2},\ldots,a_{n})}$ (by Bayes Theorem)

KORKAR KERKER E VOOR

 \triangleright = $\arg\max_{b \in B} \Pr(a_1, a_2, \ldots, a_n | b) \Pr(b)$

- \blacktriangleright Consider the following setting:
	- \triangleright The task, T , is a concept learning task (boolean valued target function $f: D \rightarrow \{0, 1\}$
	- \blacktriangleright Training experience, E, is input/output examples of f
	- Each piece of training data has attributes a_1 through a_n
	- \triangleright We want to find the most likely output, v_{MAP} , of f, given (a_1, a_2, \ldots, a_n)
		- \triangleright Sidebar: MAP stands for Maximum A Posteriori
- \blacktriangleright Then (where $B = \{0, 1\}$):
	- \triangleright v_{MAP} = argmax_{b∈B} Pr(b | a₁, a₂, ..., a_n)
	- \triangleright $V_{MAP} = \arg \max_{b \in B} \frac{\Pr(a_1, a_2, ..., a_n | b) \Pr(b)}{\Pr(a_1, a_2, ..., a_n)}$ $\frac{P_{1},P_{2},\ldots,P_{n}|D\}\mathsf{Pr}(D)}{\mathsf{Pr}(a_{1},a_{2},\ldots,a_{n})}$ (by Bayes Theorem)
	- \triangleright = $\arg \max_{b \in B} \Pr(a_1, a_2, \ldots, a_n | b) \Pr(b)$
	- \triangleright = $\operatorname{argmax}_{b \in B} \Pr(b) \Pr(a_1 | b) \Pr(a_2 | b) \cdots \Pr(a_n | b)$

A O A G A 4 O A C A G A G A 4 O A C A

- \blacktriangleright Consider the following setting:
	- \triangleright The task, T , is a concept learning task (boolean valued target function $f: D \rightarrow \{0, 1\}$
	- \blacktriangleright Training experience, E, is input/output examples of f
	- Each piece of training data has attributes a_1 through a_n
	- \triangleright We want to find the most likely output, v_{MAP} , of f, given (a_1, a_2, \ldots, a_n)
		- \triangleright Sidebar: MAP stands for Maximum A Posteriori
- \blacktriangleright Then (where $B = \{0, 1\}$):
	- \triangleright v_{MAP} = argmax_{b∈B} Pr(b | a₁, a₂, ..., a_n)
	- \triangleright $V_{MAP} = \arg \max_{b \in B} \frac{\Pr(a_1, a_2, ..., a_n | b) \Pr(b)}{\Pr(a_1, a_2, ..., a_n)}$ $\frac{P_{1},P_{2},\ldots,P_{n}|D\}\mathsf{Pr}(D)}{\mathsf{Pr}(a_{1},a_{2},\ldots,a_{n})}$ (by Bayes Theorem)
	- \triangleright = $\arg\max_{b \in B} \Pr(a_1, a_2, \ldots, a_n | b) \Pr(b)$
	- $I = \operatorname{argmax}_{b \in B} Pr(b) Pr(a_1 | b) Pr(a_2 | b) \cdots Pr(a_n | b)$
		- \triangleright By simplifying assumption that $Pr(a_1, a_2, \ldots, a_n | b) = Pr(a_1 | b) Pr(a_2 | b) \cdots Pr(a_n | b)$

- \blacktriangleright Consider the following setting:
	- \blacktriangleright The task, T , is a concept learning task (boolean valued target function $f: D \rightarrow \{0, 1\}$
	- \blacktriangleright Training experience, E, is input/output examples of f
	- Each piece of training data has attributes a_1 through a_n
	- \triangleright We want to find the most likely output, v_{MAP} , of f, given (a_1, a_2, \ldots, a_n)
		- \triangleright Sidebar: MAP stands for Maximum A Posteriori
- \blacktriangleright Then (where $B = \{0, 1\}$):
	- \triangleright v_{MAP} = argmax_{b∈B} Pr(b | a₁, a₂, ..., a_n)
	- \triangleright $V_{MAP} = \arg \max_{b \in B} \frac{\Pr(a_1, a_2, ..., a_n | b) \Pr(b)}{\Pr(a_1, a_2, ..., a_n)}$ $\frac{P_{1},P_{2},\ldots,P_{n}|D\}\mathsf{Pr}(D)}{\mathsf{Pr}(a_{1},a_{2},\ldots,a_{n})}$ (by Bayes Theorem)
	- \triangleright = $\arg\max_{b \in B} \Pr(a_1, a_2, \ldots, a_n | b) \Pr(b)$
	- $I = \operatorname{argmax}_{b \in B} Pr(b) Pr(a_1 | b) Pr(a_2 | b) \cdots Pr(a_n | b)$
		- \triangleright By simplifying assumption that $Pr(a_1, a_2, \ldots, a_n | b) = Pr(a_1 | b) Pr(a_2 | b) \cdots Pr(a_n | b)$

KORK ERKER ADE YOUR

► Sidebar: $\prod_i \Pr(a_i | b) = \Pr(a_1 | b) \Pr(a_2 | b) \cdots \Pr(a_n | b)$

- \blacktriangleright Consider the following setting:
	- \blacktriangleright The task, T , is a concept learning task (boolean valued target function $f: D \rightarrow \{0, 1\}$
	- \blacktriangleright Training experience, E, is input/output examples of f
	- Each piece of training data has attributes a_1 through a_n
	- \triangleright We want to find the most likely output, v_{MAP} , of f, given (a_1, a_2, \ldots, a_n)
		- \triangleright Sidebar: MAP stands for Maximum A Posteriori
- \blacktriangleright Then (where $B = \{0, 1\}$):
	- \triangleright v_{MAP} = argmax_{b∈B} Pr(b | a₁, a₂, ..., a_n)
	- \triangleright $V_{MAP} = \arg \max_{b \in B} \frac{\Pr(a_1, a_2, ..., a_n | b) \Pr(b)}{\Pr(a_1, a_2, ..., a_n)}$ $\frac{P_{1},P_{2},\ldots,P_{n}|D\}\mathsf{Pr}(D)}{\mathsf{Pr}(a_{1},a_{2},\ldots,a_{n})}$ (by Bayes Theorem)
	- \triangleright = $\arg\max_{b \in B} \Pr(a_1, a_2, \ldots, a_n | b) \Pr(b)$
	- $I = \operatorname{argmax}_{b \in B} Pr(b) Pr(a_1 | b) Pr(a_2 | b) \cdots Pr(a_n | b)$
		- \triangleright By simplifying assumption that $Pr(a_1, a_2, \ldots, a_n | b) = Pr(a_1 | b) Pr(a_2 | b) \cdots Pr(a_n | b)$

KORK ERKER ADE YOUR

► Sidebar: $\prod_i \Pr(a_i | b) = \Pr(a_1 | b) \Pr(a_2 | b) \cdots \Pr(a_n | b)$

Bottom line: If we just estimate the $Pr(b)$ and $Pr(a_i | b)$ probabilities based on the training data, we have the most likely output (if our simplifying assumption holds, anyway)

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

Bottom line: If we just estimate the $Pr(b)$ and $Pr(a_i | b)$ probabilities based on the training data, we have the most likely output (if our simplifying assumption holds, anyway)

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

 \triangleright Won't zeros cause problems for this?

- Bottom line: If we just estimate the $Pr(b)$ and $Pr(a_i | b)$ probabilities based on the training data, we have the most likely output (if our simplifying assumption holds, anyway)
- \triangleright Won't zeros cause problems for this?
- \triangleright One way to handle that is to "invent" some faux training examples to start out with (called *m*-estimates)

4 D > 4 P + 4 B + 4 B + B + 9 Q O

- Bottom line: If we just estimate the $Pr(b)$ and $Pr(a_i | b)$ probabilities based on the training data, we have the most likely output (if our simplifying assumption holds, anyway)
- \triangleright Won't zeros cause problems for this?
- \triangleright One way to handle that is to "invent" some faux training examples to start out with (called *m*-estimates)

4 D > 4 P + 4 B + 4 B + B + 9 Q O

 \blacktriangleright Target concept: the function we are trying to learn

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 ... 9 Q Q ·

- \blacktriangleright Target concept: the function we are trying to learn
- \blacktriangleright Hypothesis: one possibility under consideraion for the target concept

K ロ ▶ K @ ▶ K 할 X X 할 X | 할 X 1 9 Q Q ^

- \blacktriangleright Target concept: the function we are trying to learn
- \blacktriangleright Hypothesis: one possibility under consideraion for the target concept
- \blacktriangleright Hypothesis space: set of all possibilities for the target concept

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O *

- \blacktriangleright Target concept: the function we are trying to learn
- \blacktriangleright Hypothesis: one possibility under consideraion for the target concept
- \blacktriangleright Hypothesis space: set of all possibilities for the target concept

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O *

 \triangleright Conjunction: an "and" (in the logical sense)

- \blacktriangleright Target concept: the function we are trying to learn
- \blacktriangleright Hypothesis: one possibility under consideraion for the target concept
- \blacktriangleright Hypothesis space: set of all possibilities for the target concept

KOD KARD KED KED E VOOR

- \triangleright Conjunction: an "and" (in the logical sense)
- \triangleright Disiunction: an "or" (in the logical sense)

- \blacktriangleright Target concept: the function we are trying to learn
- \blacktriangleright Hypothesis: one possibility under consideraion for the target concept
- \blacktriangleright Hypothesis space: set of all possibilities for the target concept
- \triangleright Conjunction: an "and" (in the logical sense)
- \triangleright Disiunction: an "or" (in the logical sense)
- Instance: If $f : X \to \{0,1\}$ is a target concept, X is the set of instances

KORK ERKER ADE YOUR

- \blacktriangleright Target concept: the function we are trying to learn
- \blacktriangleright Hypothesis: one possibility under consideraion for the target concept
- \blacktriangleright Hypothesis space: set of all possibilities for the target concept
- \triangleright Conjunction: an "and" (in the logical sense)
- \triangleright Disiunction: an "or" (in the logical sense)
- Instance: If $f : X \to \{0,1\}$ is a target concept, X is the set of instances

KORK ERKER ADE YOUR

 \triangleright A posteriori: based on experience (empirical)

- \blacktriangleright Target concept: the function we are trying to learn
- \blacktriangleright Hypothesis: one possibility under consideraion for the target concept
- \blacktriangleright Hypothesis space: set of all possibilities for the target concept
- \triangleright Conjunction: an "and" (in the logical sense)
- \triangleright Disiunction: an "or" (in the logical sense)
- Instance: If $f : X \to \{0,1\}$ is a target concept, X is the set of instances

KORK ERKER ADE YOUR

- \triangleright A posteriori: based on experience (empirical)
- \triangleright A priori: independent of experience (logical)

- \blacktriangleright Target concept: the function we are trying to learn
- \blacktriangleright Hypothesis: one possibility under consideraion for the target concept
- \blacktriangleright Hypothesis space: set of all possibilities for the target concept
- \triangleright Conjunction: an "and" (in the logical sense)
- \triangleright Disiunction: an "or" (in the logical sense)
- Instance: If $f : X \to \{0,1\}$ is a target concept, X is the set of instances

KORK ERKER ADE YOUR

- \triangleright A posteriori: based on experience (empirical)
- \triangleright A priori: independent of experience (logical)