
Naive Bayesian Classifier Example, m-estimate of
probability

Relevant Readings: Section 6.9.1

CS495 - Machine Learning, Fall 2009



Training data for function playTennis [Table 3.2, Mitchell]

Day Outlook Temperature Humidity Wind PlayTennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Overcast Mild High Strong Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No



Classifying a new instance

I Consider the instance: (Sunny, Cool, High, Strong)

I We will use Naive Bayes to classify it (v = Yes/No)
I v = argmaxb∈{Yes,No} Pr(b)

∏
i Pr(ai | b)

I v = argmaxb∈{Yes,No} Pr(b)
·Pr(Outlook = Sunny | b)
·Pr(Temperature = Cool | b)
·Pr(Humidity = High | b)
·Pr(Wind = Strong | b)

I So just try b = Yes and b = No and see which comes out
higher

I We can estimate each term using the data, for example:
I Pr(Yes) = 9/14
I Pr(No) = 5/14
I Pr(Outlook = Sunny | Yes) = 2/9
I Pr(Outlook = Sunny | No) = 3/5
I We end up with 9
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9
= .0053 for Yes and

5
14
· 3

5
· 1

5
· 4

5
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5
= .0206 for No.

I We thus predict that No is the output
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m-estimate of probability

I Note that we estimated conditional probabilities Pr(A | B) by
nc
n where nc is the number of times A ∧ B happened and n is

the number of times B happened in the training data

I This can cause trouble if nc = 0
I To avoid this, we fix the following numbers p and m

beforehand:
I A nonzero prior estimate p for Pr(A | B), and
I A number m that says how confident we are of our prior

estimate p, as measured in number of samples

I Then instead of using nc
n for the estimate, use nc+mp

n+m

I Just think of this as adding a bunch of samples to start the
whole process

I If we don’t have any knowledge of p, assume the attribute is
uniformly distributed over all possible values
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