Perceptron training rule, linear units, gradient descent, stochastic gradient descent, delta rule

Relevant Readings: Section 4.4 in Mitchell

CS495 - Machine Learning, Fall 2009
Before we build up Artificial Neural Networks, we will first consider how to train single units.
Training ANN units

► Before we build up Artificial Neural Networks, we will first consider how to train single units
► Recall that perceptrons take a weighted sum of their inputs and produce a 1 or -1 output
Training ANN units

- Before we build up Artificial Neural Networks, we will first consider how to train single units.
- Recall that perceptrons take a weighted sum of their inputs and produce a 1 or -1 output.
 - In this case, we will apply the aptly named *perceptron training rule*.
Before we build up Artificial Neural Networks, we will first consider how to train single units.

Recall that perceptrons take a weighted sum of their inputs and produce a 1 or -1 output.

In this case, we will apply the aptly named *perceptron training rule*.

Linear units are like perceptrons, but the output is used directly (not thresholded to 1 or -1).
Training ANN units

- Before we build up Artificial Neural Networks, we will first consider how to train single units.
- Recall that perceptrons take a weighted sum of their inputs and produce a 1 or -1 output.
 - In this case, we will apply the aptly named *perceptron training rule*.
- *Linear units* are like perceptrons, but the output is used directly (not thresholded to 1 or -1).
 - In that case, we will use either *gradient descent* or the *delta rule*.
Training ANN units

- Before we build up Artificial Neural Networks, we will first consider how to train single units.
- Recall that perceptrons take a weighted sum of their inputs and produce a 1 or -1 output.
 - In this case, we will apply the aptly named *perceptron training rule*.
- *Linear units* are like perceptrons, but the output is used directly (not thresholded to 1 or -1).
 - In that case, we will use either *gradient descent* or the *delta rule*.
Perceptron training rule

- The *perceptron training rule* updates perceptron weights according to training examples as follows:

 \[w_i \rightarrow w_i + \Delta w_i \]

 where:

 \[\Delta w_i = \eta (t - o) x_i \]

 - \(w_i \) is the weight associated with the \(i \)th input
 - \(x_i \) is the \(i \)th input
 - \(t \) is the current training example's output value
 - \(o \) is the output of the perceptron under the current training example
 - the learning rate \(\eta \) is a small constant (like .01)
Perceptron training rule

- The *perceptron training rule* updates perceptron weights according to training examples as follows:
 - If the perceptron correctly classifies a training example, don’t do anything
Perceptron training rule

The *perceptron training rule* updates perceptron weights according to training examples as follows:

- If the perceptron correctly classifies a training example, don’t do anything
- If the perceptron incorrectly classifies a training example, each of the input weights is nudged a little bit in the “right direction” for that training example

More precisely:

- \(w_i \) becomes \(w_i + \Delta w_i \)
- \(\Delta w_i = \eta (t - o) x_i \)
- \(x_i \) is the \(i \)th input
- \(w_i \) is the weight associated with the \(i \)th input
- \(\eta \) is the learning rate (like 0.01)
- \(t \) is the current training example’s output value
- \(o \) is the output of the perceptron under the current training example

Try an example or two
Perceptron training rule

- The *perceptron training rule* updates perceptron weights according to training examples as follows:
 - If the perceptron correctly classifies a training example, don’t do anything
 - If the perceptron incorrectly classifies a training example, each of the input weights is nudged a little bit in the “right direction” for that training example

- More precisely:
Perceptron training rule

- The *perceptron training rule* updates perceptron weights according to training examples as follows:
 - If the perceptron correctly classifies a training example, don’t do anything
 - If the perceptron incorrectly classifies a training example, each of the input weights is nudged a little bit in the “right direction” for that training example

- More precisely:
 - w_i becomes $w_i + \Delta w_i$
Perceptron training rule

- The *perceptron training rule* updates perceptron weights according to training examples as follows:
 - If the perceptron correctly classifies a training example, don’t do anything
 - If the perceptron incorrectly classifies a training example, each of the input weights is nudged a little bit in the “right direction” for that training example

- More precisely:
 - \(w_i \) becomes \(w_i + \Delta w_i \)
 - where:
Perceptron training rule

- The *perceptron training rule* updates perceptron weights according to training examples as follows:
 - If the perceptron correctly classifies a training example, don’t do anything
 - If the perceptron incorrectly classifies a training example, each of the input weights is nudged a little bit in the “right direction” for that training example

- More precisely:
 - w_i becomes $w_i + \Delta w_i$
 - where:
 - $\Delta w_i = \eta(t - o)x_i$
The perceptron training rule updates perceptron weights according to training examples as follows:

- If the perceptron correctly classifies a training example, don’t do anything
- If the perceptron incorrectly classifies a training example, each of the input weights is nudged a little bit in the “right direction” for that training example

More precisely:

- w_i becomes $w_i + \Delta w_i$
- where:
 - $\Delta w_i = \eta(t - o)x_i$
 - x_i is the i^{th} input
The *perceptron training rule* updates perceptron weights according to training examples as follows:

- If the perceptron correctly classifies a training example, don’t do anything.
- If the perceptron incorrectly classifies a training example, each of the input weights is nudged a little bit in the “right direction” for that training example.

More precisely:

- w_i becomes $w_i + \Delta w_i$.
- where:
 - $\Delta w_i = \eta (t - o) x_i$.
 - x_i is the i^{th} input.
 - w_i is the weight associated with the i^{th} input.
The *perceptron training rule* updates perceptron weights according to training examples as follows:

- If the perceptron correctly classifies a training example, don’t do anything.
- If the perceptron incorrectly classifies a training example, each of the input weights is nudged a little bit in the “right direction” for that training example.

More precisely:

- w_i becomes $w_i + \Delta w_i$
- $\Delta w_i = \eta(t - o)x_i$
- x_i is the i^{th} input.
- w_i is the weight associated with the i^{th} input.
- The learning rate η is a small constant (like .01).
Perceptron training rule

- The *perceptron training rule* updates perceptron weights according to training examples as follows:
 - If the perceptron correctly classifies a training example, don’t do anything
 - If the perceptron incorrectly classifies a training example, each of the input weights is nudged a little bit in the “right direction” for that training example

- More precisely:
 - w_i becomes $w_i + \Delta w_i$
 - where:
 - $\Delta w_i = \eta(t - o)x_i$
 - x_i is the i^{th} input
 - w_i is the weight associated with the i^{th} input
 - the *learning rate* η is a small constant (like .01)
 - t is the current training example’s output value

- Try an example or two
The perceptron training rule updates perceptron weights according to training examples as follows:

- If the perceptron correctly classifies a training example, don’t do anything
- If the perceptron incorrectly classifies a training example, each of the input weights is nudged a little bit in the “right direction” for that training example

More precisely:

- w_i becomes $w_i + \Delta w_i$
- where:
 - $\Delta w_i = \eta(t - o)x_i$
 - x_i is the i^{th} input
 - w_i is the weight associated with the i^{th} input
 - the learning rate η is a small constant (like .01)
 - t is the current training example’s output value
 - o is the output of the perceptron under the current training example

Try an example or two.
The perceptron training rule updates perceptron weights according to training examples as follows:

- If the perceptron correctly classifies a training example, don’t do anything
- If the perceptron incorrectly classifies a training example, each of the input weights is nudged a little bit in the “right direction” for that training example

More precisely:

- w_i becomes $w_i + \Delta w_i$
- where:
 - $\Delta w_i = \eta(t - o)x_i$
 - x_i is the i^{th} input
 - w_i is the weight associated with the i^{th} input
 - the learning rate η is a small constant (like .01)
 - t is the current training example’s output value
 - o is the output of the perceptron under the current training example

Try an example or two
Perceptron training rule

The *perceptron training rule* updates perceptron weights according to training examples as follows:

- If the perceptron correctly classifies a training example, don’t do anything
- If the perceptron incorrectly classifies a training example, each of the input weights is nudged a little bit in the “right direction” for that training example

More precisely:

- w_i becomes $w_i + \Delta w_i$
- where:
 - $\Delta w_i = \eta (t - o) x_i$
 - x_i is the i^{th} input
 - w_i is the weight associated with the i^{th} input
 - the *learning rate* η is a small constant (like .01)
 - t is the current training example’s output value
 - o is the output of the perceptron under the current training example

Try an example or two
Perceptron training rule

- **Strength:**
 - If the data is linearly separable and η is set to a sufficiently small value, it will converge to a hypothesis that classifies all training data correctly in a finite number of iterations.
 - Weakness:
 - If the data is not linearly separable, it will not converge.
Perceptron training rule

- **Strength:**
 - If the data is *linearly separable* and η is set to a sufficiently small value, it will converge to a hypothesis that classifies all training data correctly in a finite number of iterations.
Perceptron training rule

- **Strength:**
 - If the data is *linearly separable* and η is set to a sufficiently small value, it will converge to a hypothesis that classifies all training data correctly in a finite number of iterations.

- **Weakness:**
Perceptron training rule

- **Strength:**
 - If the data is *linearly separable* and η is set to a sufficiently small value, it will converge to a hypothesis that classifies all training data correctly in a finite number of iterations

- **Weakness:**
 - If the data is not linearly separable, it will not converge
Perceptron training rule

Strength:
- If the data is *linearly separable* and η is set to a sufficiently small value, it will converge to a hypothesis that classifies all training data correctly in a finite number of iterations.

Weakness:
- If the data is not linearly separable, it will not converge.
Linear units and gradient descent

- A linear unit can be thought of as an unthresholded perceptron

\[
\text{The output of an } k\text{-input linear unit is } \sum_{i=0}^{k-1} w_i x_i
\]

It isn't reasonable to use a boolean notion of error for linear units, so we need to use something else. We will use a sum-of-squares measure of error \(E \), under hypothesis (weights) \((w_0, \ldots, w_{k-1})\) and training set \(D \):

\[
E(w_0, \ldots, w_{k-1}) = \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2,
\]

where:

- \(t_d \) is training example \(d \)'s output value
- \(o_d \) is the output of the linear unit under \(d \)'s inputs

This \(E \) is a parabola, and has a global minimum.

Gradient descent aims to find the minimum by repeatedly taking a small step in the direction of the gradient:

\[
\Delta w_i = \eta \sum_{d \in D} (t_d - o_d) x_d i
\]

Pseudocode is given in Table 4.1 in Mitchell.
Linear units and gradient descent

- A linear unit can be thought of as an unthresholded perceptron
- The output of an \(k \)-input linear unit is \(\sum_{i=0}^{k-1} w_i x_i \)

It isn't reasonable to use a boolean notion of error for linear units, so we need to use something else. We will use a sum-of-squares measure of error \(E \), under hypothesis (weights) \((w_0, \ldots, w_{k-1}) \) and training set \(D \):

\[
E(w_0, \ldots, w_{k-1}) = \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2,
\]
where:
- \(t_d \) is training example \(d \)'s output value
- \(o_d \) is the output of the linear unit under \(d \)'s inputs

This \(E \) is a parabola, and has a global minimum. Gradient descent aims to find the minimum by repeatedly taking a small step in the direction of the gradient:

\[
\Delta w_i = \eta \sum_{d \in D} (t_d - o_d) x_d i
\]
Pseudocode is given in Table 4.1 in Mitchell.
Linear units and gradient descent

- A linear unit can be thought of as an unthresholded perceptron
- The output of an k-input linear unit is $\sum_{i=0}^{k-1} w_i x_i$
- It isn’t reasonable to use a boolean notion of error for linear units, so we need to use something else
Linear units and gradient descent

- A linear unit can be thought of as an unthresholded perceptron
- The output of an k-input linear unit is $\sum_{i=0}^{k-1} w_i x_i$
- It isn’t reasonable to use a boolean notion of error for linear units, so we need to use something else
- We will use a sum-of-squares measure of error E, under hypothesis (weights) (w_0, \ldots, w_{k-1}) and training set D:

$$E(w_0, \ldots, w_{k-1}) = \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2,$$

where:

- t_d is training example d’s output value
- o_d is the output of the linear unit under d’s inputs

This E is a parabola, and has a global minimum

Gradient descent aims to find the minimum by repeatedly taking a small step in the direction of the gradient

$$\Delta w_i = \eta \sum_{d \in D} (t_d - o_d) x_d$$

Pseudocode is given in Table 4.1 in Mitchell
Linear units and gradient descent

- A linear unit can be thought of as an unthresholded perceptron
- The output of an k-input linear unit is $\sum_{i=0}^{k-1} w_i x_i$
- It isn’t reasonable to use a boolean notion of error for linear units, so we need to use something else
- We will use a sum-of-squares measure of error E, under hypothesis (weights) (w_0, \ldots, w_{k-1}) and training set D:
 - $E(w_0, \ldots, w_{k-1}) = (1/2) \sum_{d \in D} (t_d - o_d)^2$, where:
Linear units and gradient descent

- A linear unit can be thought of as an unthresholded perceptron
- The output of an \(k \)-input linear unit is \(\sum_{i=0}^{k-1} w_i x_i \)
- It isn’t reasonable to use a boolean notion of error for linear units, so we need to use something else
- We will use a sum-of-squares measure of error \(E \), under hypothesis (weights) \((w_0, \ldots, w_{k-1}) \) and training set \(D \):
 - \(E(w_0, \ldots, w_{k-1}) = \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2 \), where:
 - \(t_d \) is training example \(d \)’s output value
Linear units and gradient descent

- A linear unit can be thought of as an unthresholded perceptron
- The output of an k-input linear unit is $\sum_{i=0}^{k-1} w_i x_i$
- It isn’t reasonable to use a boolean notion of error for linear units, so we need to use something else
- We will use a sum-of-squares measure of error E, under hypothesis (weights) (w_0, \ldots, w_{k-1}) and training set D:
 - $E(w_0, \ldots, w_{k-1}) = (1/2) \sum_{d \in D} (t_d - o_d)^2$, where:
 - t_d is training example d’s output value
 - o_d is the output of the linear unit under d’s inputs
Linear units and gradient descent

- A linear unit can be thought of as an unthresholded perceptron
- The output of an k-input linear unit is $\sum_{i=0}^{k-1} w_i x_i$
- It isn’t reasonable to use a boolean notion of error for linear units, so we need to use something else
- We will use a sum-of-squares measure of error E, under hypothesis (weights) (w_0, \ldots, w_{k-1}) and training set D:
 - $E(w_0, \ldots, w_{k-1}) = (1/2) \sum_{d \in D} (t_d - o_d)^2$, where:
 - t_d is training example d’s output value
 - o_d is the output of the linear unit under d’s inputs
- This E is a parabola, and has a global minimum
Linear units and gradient descent

- A linear unit can be thought of as an unthresholded perceptron
- The output of an k-input linear unit is $\sum_{i=0}^{k-1} w_i x_i$
- It isn’t reasonable to use a boolean notion of error for linear units, so we need to use something else
- We will use a sum-of-squares measure of error E, under hypothesis (weights) (w_0, \ldots, w_{k-1}) and training set D:
 - $E(w_0, \ldots, w_{k-1}) = (1/2) \sum_{d \in D} (t_d - o_d)^2$, where:
 - t_d is training example d’s output value
 - o_d is the output of the linear unit under d’s inputs
- This E is a parabola, and has a global minimum
- Gradient descent aims to find the minimum by repeatedly taking a small step in the direction of the gradient
A linear unit can be thought of as an unthresholded perceptron

The output of an k-input linear unit is $\sum_{i=0}^{k-1} w_ix_i$

It isn’t reasonable to use a boolean notion of error for linear units, so we need to use something else

We will use a sum-of-squares measure of error E, under hypothesis (weights) (w_0, \ldots, w_{k-1}) and training set D:

$E(w_0, \ldots, w_{k-1}) = (1/2) \sum_{d \in D} (t_d - o_d)^2$, where:

- t_d is training example d’s output value
- o_d is the output of the linear unit under d’s inputs

This E is a parabola, and has a global minimum

Gradient descent aims to find the minimum by repeatedly taking a small step in the direction of the gradient

$\Delta w_i = \eta \sum_{d \in D} (t_d - o_d)x_{di}$
Linear units and gradient descent

- A linear unit can be thought of as an unthresholded perceptron
- The output of an \(k \)-input linear unit is \(\sum_{i=0}^{k-1} w_i x_i \)
- It isn’t reasonable to use a boolean notion of error for linear units, so we need to use something else
- We will use a sum-of-squares measure of error \(E \), under hypothesis (weights) \((w_0, \ldots, w_{k-1})\) and training set \(D \):
 - \(E(w_0, \ldots, w_{k-1}) = (1/2) \sum_{d \in D} (t_d - o_d)^2 \), where:
 - \(t_d \) is training example \(d \)’s output value
 - \(o_d \) is the output of the linear unit under \(d \)’s inputs
- This \(E \) is a parabola, and has a global minimum
- **Gradient descent** aims to find the minimum by repeatedly taking a small step in the direction of the gradient
 - \(\Delta w_i = \eta \sum_{d \in D} (t_d - o_d)x_i \)
- Pseudocode is given in Table 4.1 in Mitchell
Linear units and gradient descent

- A linear unit can be thought of as an unthresholded perceptron
- The output of an k-input linear unit is $\sum_{i=0}^{k-1} w_i x_i$
- It isn’t reasonable to use a boolean notion of error for linear units, so we need to use something else
- We will use a sum-of-squares measure of error E, under hypothesis (weights) (w_0, \ldots, w_{k-1}) and training set D:
 - $E(w_0, \ldots, w_{k-1}) = (1/2) \sum_{d \in D} (t_d - o_d)^2$, where:
 - t_d is training example d’s output value
 - o_d is the output of the linear unit under d’s inputs
- This E is a parabola, and has a global minimum
- *Gradient descent* aims to find the minimum by repeatedly taking a small step in the direction of the gradient
 - $\Delta w_i = \eta \sum_{d \in D} (t_d - o_d) x_d$
- Pseudocode is given in Table 4.1 in Mitchell
Stochastic gradient descent

- Gradient descent can be slow, and there are no guarantees if there are multiple local minima in the error surface.

The idea: instead of using the actual error surface's gradient, we use the gradient with respect to one training example at a time.

This leads to the following definition of error with respect to instance d:

$$E_d(w_0, \ldots, w_{k-1}) = \frac{1}{2} (t_d - o_d)^2$$

Then gradient descent becomes the delta rule:

$$\Delta w_i = \eta (t - o) x_i$$

This is the LMS rule we used in checkers.

Note that the delta rule is almost the same as the perceptron rule.

The difference is that the output value o is continuous, rather than ± 1.
Stochastic gradient descent

- Gradient descent can be slow, and there are no guarantees if there are multiple local minima in the error surface
- *Stochastic gradient descent* can help deal with these issues somewhat

\[
E_d(w_0, \ldots, w_k - 1) = \frac{1}{2} (t_d - o_d)^2
\]

Then gradient descent becomes the delta rule:

\[
\Delta w_i = \eta (t - o) x_i
\]

This is the LMS rule we used in checkers.

Note that the delta rule is almost the same as the perceptron rule.

The difference is that the output value o is continuous, rather than ± 1.
Stochastic gradient descent

- Gradient descent can be slow, and there are no guarantees if there are multiple local minima in the error surface.

- *Stochastic gradient descent* can help deal with these issues somewhat.

- The idea: instead of using the actual error surface’s gradient, we use the gradient with respect to one training example at a time.

\[
E_d(w_0, \ldots, w_{k-1}) = \frac{1}{2} (t_d - o_d)^2
\]

Then gradient descent becomes the delta rule:

\[
\Delta w_i = \eta (t - o) x_i
\]

This is the LMS rule we used in checkers.

Note that the delta rule is almost the same as the perceptron rule. The difference is that the output value \(o \) is continuous, rather than \(\pm 1 \).
Stochastic gradient descent

- Gradient descent can be slow, and there are no guarantees if there are multiple local minima in the error surface.
- *Stochastic gradient descent* can help deal with these issues somewhat.
- The idea: instead of using the actual error surface’s gradient, we use the gradient with respect to one training example at a time.
- This leads to the following definition of error with respect to instance d:
Stochastic gradient descent

- Gradient descent can be slow, and there are no guarantees if there are multiple local minima in the error surface
- *Stochastic gradient descent* can help deal with these issues somewhat
- The idea: instead of using the actual error surface’s gradient, we use the gradient with respect to one training example at a time
- This leads to the following definition of error with respect to instance d:

 $$E_d(w_0, \ldots, w_{k-1}) = (1/2)(t_d - o_d)^2$$
Stochastic gradient descent

- Gradient descent can be slow, and there are no guarantees if there are multiple local minima in the error surface
- *Stochastic gradient descent* can help deal with these issues somewhat
- The idea: instead of using the actual error surface’s gradient, we use the gradient with respect to one training example at a time
- This leads to the following definition of error with respect to instance d:
 - $E_d(w_0, \ldots, w_{k-1}) = (1/2)(t_d - o_d)^2$
- Then gradient descent becomes the *delta rule*:
Stochastic gradient descent

- Gradient descent can be slow, and there are no guarantees if there are multiple local minima in the error surface
- *Stochastic gradient descent* can help deal with these issues somewhat
- The idea: instead of using the actual error surface’s gradient, we use the gradient with respect to one training example at a time
- This leads to the following definition of error with respect to instance d:
 - $E_d(w_0, \ldots, w_{k-1}) = (1/2)(t_d - o_d)^2$
- Then gradient descent becomes the *delta rule*:
 - $\Delta w_i = \eta(t - o)x_i$
Stochastic gradient descent

- Gradient descent can be slow, and there are no guarantees if there are multiple local minima in the error surface.
- *Stochastic gradient descent* can help deal with these issues somewhat.
- The idea: instead of using the actual error surface’s gradient, we use the gradient with respect to one training example at a time.
- This leads to the following definition of error with respect to instance d:
 - $E_d(w_0, \ldots, w_{k-1}) = (1/2)(t_d - o_d)^2$
- Then gradient descent becomes the *delta rule*:
 - $\Delta w_i = \eta(t - o)x_i$
- This is the LMS rule we used in checkers.
Stochastic gradient descent

- Gradient descent can be slow, and there are no guarantees if there are multiple local minima in the error surface
- *Stochastic gradient descent* can help deal with these issues somewhat
- The idea: instead of using the actual error surface’s gradient, we use the gradient with respect to one training example at a time
- This leads to the following definition of error with respect to instance d:

 $$E_d(w_0, \ldots, w_{k-1}) = \frac{1}{2}(t_d - o_d)^2$$

- Then gradient descent becomes the *delta rule*:

 $$\Delta w_i = \eta(t - o)x_i$$

- This is the LMS rule we used in checkers.
- Note that the delta rule is *almost* the same as the perceptron rule.
Stochastic gradient descent

- Gradient descent can be slow, and there are no guarantees if there are multiple local minima in the error surface
- **Stochastic gradient descent** can help deal with these issues somewhat
- The idea: instead of using the actual error surface’s gradient, we use the gradient with respect to one training example at a time
- This leads to the following definition of error with respect to instance \(d \):
 \[
 E_d(w_0, \ldots, w_{k-1}) = \frac{1}{2}(t_d - o_d)^2
 \]
- Then gradient descent becomes the **delta rule**:
 \[
 \Delta w_i = \eta(t - o)x_i
 \]
- This is the LMS rule we used in checkers.
- Note that the delta rule is *almost* the same as the perceptron rule.
 - The difference is that the output value \(o \) is continuous, rather than \(\pm 1 \).
Stochastic gradient descent

- Gradient descent can be slow, and there are no guarantees if there are multiple local minima in the error surface.
- *Stochastic gradient descent* can help deal with these issues somewhat.
- The idea: instead of using the actual error surface’s gradient, we use the gradient with respect to one training example at a time.
- This leads to the following definition of error with respect to instance d:
 \[E_d(w_0, \ldots, w_{k-1}) = \frac{1}{2}(t_d - o_d)^2 \]
- Then gradient descent becomes the *delta rule*:
 \[\Delta w_i = \eta(t - o)x_i \]
- This is the LMS rule we used in checkers.
- Note that the delta rule is *almost* the same as the perceptron rule.
 \[\text{The difference is that the output value } o \text{ is continuous, rather than } \pm 1. \]
Delta rule

▶ Strengths:

- Converges to least squares error for the training data
- The data doesn't need to be linearly separable
- Can be used with multi-layer ANNs

▶ Weakness:

- Doesn't necessarily converge to a "perfect" hypothesis on linearly separable data
Delta rule

- **Strengths:**
 - Converges to least squares error for the training data

- **Weakness:**
 - Doesn't necessarily converge to a "perfect" hypothesis on linearly separable data
Delta rule

- **Strengths:**
 - Converges to least squares error for the training data
 - The data doesn’t need to be linearly separable
Delta rule

- **Strengths:**
 - Converges to least squares error for the training data
 - The data doesn’t need to be linearly separable
 - Can be used with multi-layer ANNs

- **Weakness:**
 - Doesn’t necessarily converge to a “perfect” hypothesis on linearly separable data
Delta rule

- **Strengths:**
 - Converges to least squares error for the training data
 - The data doesn’t need to be linearly separable
 - Can be used with multi-layer ANNs

- **Weakness:**

Delta rule

Strengths:
- Converges to least squares error for the training data
- The data doesn’t need to be linearly separable
- Can be used with multi-layer ANNs

Weakness:
- Doesn’t necessarily converge to a “perfect” hypothesis on linearly separable data
Delta rule

- **Strengths:**
 - Converges to least squares error for the training data
 - The data doesn’t need to be linearly separable
 - Can be used with multi-layer ANNs

- **Weakness:**
 - Doesn’t necessarily converge to a “perfect” hypothesis on linearly separable data