Assume the following code:

class Node

{
 public:

int data;

Node *next;

Node(int newData = 0, Node *newNext = nullptr)

{

data = newData;

next = newNext;

}

}

class LL

{

 public:

Node *head;

LL()

{

head = nullptr;

}

void add(int item)

{

Node *n = new Node(item, head);

head = n;

}

}

1) Add up all the items in the list.

Category: EASY

Example:

LL head = new LL();

head.add(3);

head.add(5);

… a whole bunch more adds and deletes and such

cout << head.sum();

Returns:

An integer .. the total of the nodes in the list.

Run time:

Should take time proportional to the number of list items, and not more.

Concerns:

Does it work if the list is empty?

Does it work if the list has just one node?

Does it work if the list has just two nodes?

2) Print the value of the last item in the list.

Category: EASY

Example:

LL head = new LL();

head.add(3);

head.add(5);

… a whole bunch more adds and deletes and such

head.add(99);

cout << head.last();

Returns:

The value of the tail node.

Run time:

Should take time proportional to the number of list items, and not more.

Concerns:

Does it work if the list has just one node?

What does it return if there are no nodes?

3) Does the list contain a 42?

Category: EASY

Example:

LL head = new LL();

head.add(3);

head.add(5);

… a whole bunch more adds and deletes and such

if (head.contains(42))

cout << “Yes”;

else

cout << “No”;

Returns:

An bool .. Is there a 42.

Run time:

Should take time proportional to the depth of the first 42 if there is a 42. Otherwise, should take run time proportional to number of list items, and not more. SHOULD NOT SEARCH THE WHOLE LIST TO FIND THE ANSWER, if there is a 42 early in the list.

Concerns:

What if the list is empty?

Does every path result in either a true or a false?

4) Count the number of nodes containing '42' or higher.

Category: MEDIUM

Example:

LL head = new LL();

head.add(3);

head.add(5);

… a whole bunch more adds and deletes and such

cout << head.count(42);

Returns:

An integer .. the number of nodes more containing more than 42.

Run time:

Should take time proportional to the number of list items, and not more.

Concerns:

Does it work if the list has just one node?

Does it work if the list has just two nodes?

Does it return zero if there are zero nodes with 42 or higher?

5) Is the list in order?

Category: MEDIUM

Example:

LL head = new LL();

head.add(3);

head.add(5);

… a whole bunch more adds and deletes and such

if (head.inOrder())

cout << “Yes”;

else

cout << “No”;

Returns:

An bool .. Does the list go from lowest to highest.

Run time:

Should take time proportional to the depth of the first error if there is an error. Otherwise, should take run time proportional to number of list items, and not more. SHOULD NOT SEARCH THE WHOLE LIST TO FIND THE ANSWER, if there is an error early in the list.

Concerns:

What if the list is empty?

What if the last item is the out-of-order item?

What if the first item is the out-of-order item?

Does every path result in either a true or a false?

6) Delete all nodes containing a 42 or higher.

Category: HARDER

Example:

LL head = new LL();

head.add(3);

head.add(5);

… a whole bunch more adds and deletes and such

head.deleteAll(42);

Returns:

void

Run time:

Should take time proportional to the number of list items, and not more.

Concerns:

Does it work if the list has just one node?

Does it work if the list has just two nodes?

What happens if all the nodes are a 42?

What happens if the LAST node is a 42?

What happens if the FIRST node is a 42?

7) Delete every other node.

Category: HARDER

Example:

LL head = new LL();

head.add(3);

head.add(5);

… a whole bunch more adds and deletes and such

head.cutInHalf();

Returns:

void

Run time:

Should take time proportional to the number of list items, and not more.

Concerns:

Does it work if the list has just one node?

Does it work if the list has just two nodes? Do yo get the first or the second node.

Does it work if there is an even number of nodes?

Does it work if there is an odd number of nodes?

R1) Print the list using recursion and operator overloading

Category: EASY if you know recursion

Example:

LL head = new LL();

head.add(3);

head.add(5);

… a whole bunch more adds and deletes and such

cout << head;

Returns:

Void. Just print the list

Run time:

Should take time proportional to the size of the list.

Concerns:

What if the list is empty?

What if there is one item?

Did you think about recursion?

R2) Print the list backwards

Category: EASY if you know recursion, HARDER otherwise

Example:

LL head = new LL();

head.add(3);

head.add(5);

… a whole bunch more adds and deletes and such

head.printBackwards();

Returns:

Void. Just print the list

Run time:

Should take time proportional to the size of the list.

Concerns:

What if the list is empty?

What if there is one item?

Did you think about recursion?

