package compute;
public
interface Task extends java.io.Serializable {
Object execute();
}
-------------------------------------------------------------------
package
client;
import
java.rmi.*;
import java.math.*;
import compute.*;
public
class ComputePi {
public static void main(String args[]) {
if (System.getSecurityManager() == null) {
System.setSecurityManager(new RMISecurityManager());
}
try {
String name = "//" + args[0] + "/Compute";
Compute comp = (Compute) Naming.lookup(name);
Pi task = new Pi(Integer.parseInt(args[1]));
BigDecimal pi = (BigDecimal) (comp.executeTask(task));
System.out.println(pi);
} catch (Exception e) {
System.err.println("ComputePi exception: " +
e.getMessage());
e.printStackTrace();
}
}
}
-----------------------------------------------------------
package client;
import
compute.*;
import java.math.*;
public
class Pi implements Task {
/** constants used in pi computation */
private static final BigDecimal ZERO =
BigDecimal.valueOf(0);
private static final BigDecimal ONE =
BigDecimal.valueOf(1);
private static final BigDecimal FOUR =
BigDecimal.valueOf(4);
/** rounding mode to use during pi computation */
private static final int roundingMode =
BigDecimal.ROUND_HALF_EVEN;
/** digits of precision after the decimal point */
private int digits;
/**
* Construct a task to calculate pi to the specified
* precision.
*/
public Pi(int digits) {
this.digits = digits;
}
/**
* Calculate pi.
*/
public Object execute() {
return computePi(digits);
}
/**
* Compute the value of pi to the specified number of
* digits after the decimal point. The value is
* computed using Machin's formula:
*
* pi/4 = 4*arctan(1/5)
- arctan(1/239)
*
* and a power series expansion of arctan(x) to
* sufficient precision.
*/
public static BigDecimal computePi(int digits) {
int scale = digits + 5;
BigDecimal arctan1_5 = arctan(5, scale);
BigDecimal arctan1_239 = arctan(239, scale);
BigDecimal pi = arctan1_5.multiply(FOUR).subtract(
arctan1_239).multiply(FOUR);
return pi.setScale(digits,
BigDecimal.ROUND_HALF_UP);
}
/**
* Compute the value, in radians, of the arctangent of
* the inverse of the supplied integer to the speficied
* number of digits after the decimal point. The value
* is computed using the power series expansion for the
* arc tangent:
*
* arctan(x) = x - (x^3)/3 + (x^5)/5 - (x^7)/7 +
* (x^9)/9 ...
*/
public static BigDecimal arctan(int inverseX,
int scale)
{
BigDecimal result, numer, term;
BigDecimal invX = BigDecimal.valueOf(inverseX);
BigDecimal invX2 =
BigDecimal.valueOf(inverseX * inverseX);
numer = ONE.divide(invX, scale, roundingMode);
result = numer;
int i = 1;
do {
numer =
numer.divide(invX2, scale, roundingMode);
int denom = 2 * i + 1;
term =
numer.divide(BigDecimal.valueOf(denom),
scale, roundingMode);
if ((i % 2) != 0) {
result = result.subtract(term);
} else {
result = result.add(term);
}
i++;
} while (term.compareTo(ZERO) != 0);
return result;
}
} |