
Evaluating Several Different Web Prediction Algorithms

Randy Appleton, Josh Thompson, and Matthew Menze
Department of Mathematics and Computer Science, Northern Michigan University

Marquette, Michigan, 49855, United States
(rappleto, joshthom, mmenze)@nmu.edu

Abstract

Web performance is very important. One way to
improve performance is through caching. But caching is
already widely used, and studies suggest that much of the
theoretically achievable performance from caching is
already being realized. Prefetching techniques could
improve performance beyond that of caching but require
future knowledge. This paper evaluates several different
prediction algorithms for gaining this future knowledge by
exploring the trade offs between prediction rate, erroneous
prediction rate, and the resources needed to make the
prediction. Previous studies[1,2,3,14,15] have developed
many prediction algorithms; each one evaluated with a
unique pattern of requests in a unique environment. By
evaluating several algorithms in the same environment
using the same data, we can more clearly compare the
algorithms.

keywords: prefetching, prediction, web cache.

1. Introduction

Users want the web to be fast. But there are
several sources of delay when a user requests a web page.
The request must be sent from client to server. The server
must generate the data, which can be slow if the page is
computationally expensive to generate or requires
querying databases. The reply must be sent to the client.
Finally the client must render the page into a visual form.

If one could predict future requests, it would be
possible to make the web much faster. Predictions of the
future might be generated by the web server or the web
client, but the web server has a significant advantage over
the web client. The server has seen the pattern of access
of (potentially thousands) of other users, and can use this
to make better predictions. Once the web server has made
predictions about future web requests, it can send the data
to the client. This can be done several ways, using for
example SPDY's “server push” or “server hint”
technologies[11], which have been incorporated into
HTTP/2.0 [13].

Many studies have shown that the combination of
caching and prefetching doubles the performance
compared to single caching [4,5,6,7,8,9,10,14]. According
to [6,7] , a combination of web caching and prefetching
can potentially improve latency up to 60%, whereas web
caching alone improves the
 latency up to 26%[10].

This paper explores how web servers might
predict the future needs of clients. Many different
algorithms exist and significant research has been done on
this problem. Different studies show different levels of
predictive success. However it is difficult to compare one
algorithm against another since they were evaluated
against different workloads and measured using different
metrics. This work compares several different prediction
algorithms against one another using the same workloads
and scored using the same metrics.

2. Methodology

We evaluate the prediction algorithms using
simulations based on log files from real web servers. We
use data from both an academic web site and a
commercial web site, since it is important to test
prediction algorithms against a variety of web access
patterns. We use simulations since we want to test a
variety of algorithms against the same log files.

Input to the simulator is a list of file requests, and
the associated user (or host) who generated the request. It
is important to know which user made which request since
otherwise unrelated accesses that occur close in time
might be incorrectly considered as related.
We score each algorithm using several metrics

· SuccessRate – How often did the algorithm
predict the next web request.

· WrongRate – How often did the algorithm
wrongly predict the next web request.

· Accuracy – Percent of predictions that were
correct. Accuracy=SuccessRate/
(SuccessRate+WrongRate).

· SuccessRate10 – How often was the algorithm's
prediction within the next ten requests.
Sometimes a prediction algorithm will predict a
file, and although that file is not the next request,
it is requested in the near future. Prefetching
based on such predictions is still productive and
useful.

· WrongRate10 – The fraction of predictions that
were not within the next ten requests.

· Accuracy10 – Accuracy10=SuccessRate10/
(SuccessRate10+WrongRate10).

· Adaptability – Can the algorithm offer either a
few great prediction, or many good ones, as
needed. In other words, is the algorithm tunable
to different situations and different needs,

Obviously, a perfect algorithm would have a successful
prediction rate of 100%, and a wrong prediction rate of
0%. No known algorithm can achieve this.

Note that the successful prediction rate added to
the wrong prediction rate is rarely 100%. Good prediction
algorithms will often fail to make any prediction; for
certain situations there is not enough information to make
a prediction.

In practice, there is often a trade-off between
number of predictions made and the error rate. Often one
can either make a few very likely predictions, or make
many predictions where each one of which has only a
moderate chance of correctness. Each successful
prediction improves performance. Each wrong
performance may or may not reduce performance,
depending on how many resources were needed to
generate and send the unneeded data, and whether those
resources were idle or in use. In particular, sending
unneeded data over a busy network channel might slow
the entire system, whereas sending unneeded data over a
free network channel might not slow the system much at
all.

Often the algorithms will have a threshold
parameter that adjusts the amount and riskiness of
predictions. The appropriate tolerance for risk depends
greatly on particular environment and conditions at that
moment. The best prediction algorithms can adjust,
making either more or better predictions as needed.

3. The Algorithms

We evaluated each of the algorithms below using
the metrics above.

SimpleLookBack

The SimpleLookBack algorithm is the simplest
reasonable algorithm we know of. When a request for a
file A arrives, look back into the past to see what request
came immediately after the last request of A, and predict
this file.

Table 1: SimpleLookBack Performance
Adaptable No

Academic Business Avg

SuccessRate 19.7% 25.2% 22.5%

WrongRate 35.6% 59.1% 47.4%

Accuracy 35.7% 29.9% 32.8%

SuccessRate10 30.2% 38.5% 34.4%

WrongRate10 25.0% 46.0% 35.5%

Accuracy10 34.2% 45.5% 40.0%

This algorithm is not adaptable; there is no way
to tell it to only make predictions when the algorithm is
either reasonably certain or only very certain. Instead, it
will always make a prediction except on the first instance
of a file, when the file has no history upon which to make
predictions.

This algorithm is very computationally simple.
One easy way to compute it is to have a hash table of all
files that are referenced, who's key is the previous file and
who's value is the file that followed. For realistic web
sites, these tables fit easily in RAM and can be accessed in
O(1) times.

LookBackByUser

This algorithm is just like SimpleLookBack,
except instead of examining all previous requests, it only
looks back at the history of the current user. Making this
change means that the predictions are more accurate (47%
vs 33%) since other users with possibly different access
patterns will not effect the current user's prediction.
Predictions however are less common (33% vs 70%)
because those times when other people have requested a
file, but it is not in the current user's history will produce
no prediction using this algorithm, but would have made a
prediction under SimpleLookBack.

Like SimpleLookBack this algorithm is not
adaptable; it will make a prediction every time a user
requests a file except for the first instance of that
particular file by that particular user..

This algorithm is again very computationally
simple. One easy way to compute it is to have a hash
table of all files that are referenced, who's key is the
previous file concatenated with the user's ID (login name,
IP number, or any other identifier) and who's value is the
file that followed. For realistic web sites, these tables fit
easily in RAM and can be accessed in O(1) times.

Table 2: LookBackByUser Performance
Adaptable No

Academic Business Avg

SuccessRate 12.5% 18.7% 15.6%

WrongRate 13.9% 20.3% 17.1%

Accuracy 47.3% 47.9% 47.6%

SuccessRate10 16.8% 24.8% 20.8%

WrongRate10 9.7% 14.1% 11.9%

Accuracy10 63.4% 63.8% 63.6%

PatternPredictor

The intuition behind this predictor is that if we
can find another instance of your access pattern, we can
make reliable predictions, and that longer patterns are
more reliable that shorter ones.

The PatternPredictor looks for the an exact
duplicate of long sequences of the most recent accesses,
and then projects the future based on these duplicates. For
example, if the last four files requested were (fileA, fileB,
fileC, fileD), the pattern predictor will first look for
another instance in the history of accesses for the pattern
(fileA, fileB, fileC, fileD). If it finds such an instance it
will predict whatever followed the instance. Otherwise it
will look for the shorter pattern (fileB, fileC, fileD) and if
found predict whatever followed that. If there are no
copies of the length four and three patterns, it will look for
the length two pattern (fileC, fileD), and eventually just
(fileD). In practice we do not look for infinite length
patterns, but start at length twenty because
experimentation shows there are few patterns of greater
length.

The PatternPredictor generates more correct
predictions measured by SuccessRate10 than either the
SimpleLookBack or LookbackByUser predictor, but at the
cost of significantly more CPU and memory usage. It can
be implemented at least two ways. One is to use a very
large hash table with keys for every pattern of all lengths 2
.. 20, and the other to simply store the most recent history
and search it using quick algorithms inspired by text
searching[12]. Experimentation shows that one can
produce answers on reasonable hardware in less than
0.001 seconds(i.e. much quicker than a network transfer).

Table 3: PatternPredictor Performance
Adaptable No

Academic Business Avg

SuccessRate 22.9% 30.6% 26.8%

WrongRate 25.7% 49.7% 37.7%

Accuracy 47.1% 38.1% 42.6%

SuccessRate10 31.7% 43.6% 37.7%

WrongRate10 16.9% 36.7% 26.8%

Accuracy10 65.2% 54.3% 59.8%

SubsetPredictor

The SubsetPredictor can be viewed as a
modification of the PatternPredictor where, instead of
looking for an exact duplicates of long sequences of the
most recent accesses, we search for an approximately
identical set. The most recent accesses form a set of n
files when we disregard the order in which they occurred.
We search for the most recent set (ignoring order) of n
files which contain at least K percent of the recently
accessed files.

The idea here is that two long sequences of file
accesses that differ only by a few files regardless of order
to precede the same set of files. For example, if the last
four files requested were (fileA, fileB, fileC, fileD), the
SubsetPredictor will find the most recent set of four files
which contain at least three of files A through D.

Note this table below is in a different format from
the others. This format shows how the SuccessRate and
WrongRate can vary as the subset size is adjusted;
choosing the right subset length is an engineering question
whose answer depends on the computational and network
environment. Also note that the accuracy is nearly
constant across varying subset lengths (which surprised
us).

Computationally, this algorithm can be
implemented by storing the recent history, and searching
upon file requests. Again, this can be done much quicker
than a network transfer.

Table 4: SubsetPredictor Performance
Adaptable Yes

Academic Business Avg

Subset
Length

2 10 2 10 2 10

Success
Rate

21.5% 5.0% 22.3% 5.4% 21.9% 13.5%

WrongRate 29.4% 5.6% 34.4% 17.5% 31.9% 18.8%
Accuracy 42.2% 47.2% 39.4% 66.7% 40.8% 44.0%
Success
Rate10

32.4% 7.0% 37.8% 8.7% 35.1% 21.1%

Wrong
Rate10

18.6% 3.6% 7.2% 7.2% 12.9% 8.3%

Accuracy
10

63.5% 65.9% 42.7% 68.9% 53.1% 59.5%

MostCommonFollowerPredictor

In this predictor, we find all previous occurrences
of the current file. Each of these occurrences has a file
that follows, and we predict the file that occurs most often
in that set. In other words, if fileA is the current file, we
predict the file that followed fileA in the history most
often with the proviso that it must have occurred at least
25% of the time. Two tuning parameters are to vary the
length of the history to consider, and to vary the 25%
threshold.

We chose the 25% threshold by experimentation.
Larger thresholds would reduce the number of predictions
while increasing the accuracy. Smaller thresholds would
do the opposite.

Computationally this algorithm can be
implemented by a hash table of liked lists. The key is the
current file, and the value of the hash table is a linked list
of files that have followed, along with a count of each files
occurrence. Both memory usage and computational time
are reasonable.

Table 5: MostCommonFollowerPredictor Performance
Adaptable Yes

Academic Business Avg

Adaptable Yes

SuccessRate 16.4% 21.4% 18.9%

WrongRate 25.7% 32.8% 29.2%

Accuracy 32.0% 39.5% 36%

SuccessRate10 24.5 31.5% 28.0%

WrongRate10 17.7 22.8% 20.2%

Accuracy10 58.0 58.0% 58.0%

4. Conclusion

After reviewing our findings it is clear that
despite the speed of modern hardware there is still a
significant performance increase to be found from
intelligent prefetching over simple caching methods.

The table below summarizes our results. Two
algorithms are of note. The SubsetPredictor while using a
small subset size produces a large number of predictions
with a high accuracy. The LookBackByUser algorithm
produces a smaller set of predictions with a similar
accuracy, but at a lower computational cost.

Using these algorithms will allow a web server to
predict which file a web client will use, and then send the
predicted file to the web client before the client asks for
them, and do so with high probability (~60%) that the file
will actually be needed. The web server can do this any
time there is unused bandwidth between the client and
server, and for typical networks this is very often. Doing
so will improve substantially improve performance.

Table 6: Summary of Algorithm Performance

Algorithm SuccessRate10 WrongRate10

SimpleLookBack 34.4% 35.5%

LookBackByUser 20.8% 11.9%

PatternPredictor 37.7% 26.8%

SubsetPredictor
(size=2)
(size=10)

35.1%
21.1%

12.9%
8.3%

MostCommonPredictor 28.0% 20.2%

References
[1] James Griffioen and Randy Appleton. "Reducing File System Latency using a Predictive Approach",
 Proceedings of the 1994 Summer USENIX Technical Conference, Cambridge MA, June, 1994.
[2] Venkata Padmanabhan , Jeffrey C. Mogul. “Using Predictive Prefetching to Improve World Wide Web Latency”,
Computer Communication Review, 1996.
[3] Davison, Brian D. "A survey of proxy cache evaluation techniques."Proceedings of the Fourth International Web
Caching Workshop (WCW99). 1999.
[4] Wang, Jia. "A survey of web caching schemes for the internet." ACM SIGCOMM Computer Communication
Review 29.5 (1999): 36-46.
[5] T. M. Kroeger, D. D. E. Long, and J. C. Mogul, “Exploring the bounds of web latency reduction from caching and
prefetching”, Proceedings of the USENDC Symposium on Internet Technology and Systems, (1997), pp. 13-22.
[6] U. Acharjee, Personalized and Artificial Intelligence Web Caching and Prefetching. Master thesis, University of
Ottawa,Canada(2006).
[7] Y.f. Huang and J.M. Hsu, “Mining web logs to improve hit ratios of prefetching and caching”. Knowledge-Based
Systems, 21(1), (2008), pp. 62-69.
[8] G. Pallis, A. Vakali, and J.Pokorny, “A clustering-based prefetching scheme on a Web cache environment”, Computers
and Electrical Engineering, 34(4), (2008). pp.309-323.
[9] W. Feng, S. Man, and G. Hu, “Markov Tree Prediction on Web Cache Prefetching”, Software Engineering, Artificial
Intelligence(SCI), Springer-Verlag Berlin Heidelberg, 209,(2009). pp. 105–120.
[10]Int. J. Advance. Soft Comput. Appl., Vol. 3, No. 1, March 2011 ISSN 2074-8523
[11] http://www.chromium.org/spdy/link-headers-and-server-hint
[12] Fast String Searching Algorithm, with R.S. Boyer. Communications of the Association for Computing Machinery,
20(10), 1977, pp. 7.
[13] HTTPbis Working group. Hypertext Transfer Protocol version 2.0. http://tools.ietf.org/html/draft-ietf-httpbis-http2-09
[14] Singh, N, Panwar, A. ; Raw, R.S.. Enhancing the performance of web proxy server through cluster based prefetching
techniques, Advances in Computing, Communications and Informatics (ICACCI), 2013 International Conference, 22-25
Aug. 2013
[15] Setia, Sonia. "Survey of Recent Web Prefetching Techniques." IJRCCT 2.12 (2013): 1465-1469.
[16] Domènech, Josep, et al. "Evaluation, analysis and adaptation of web prefetching techniques in current
web." Web-based Support Systems. Springer London, 2010. 239-271.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6621059
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Raw,%20R.S..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Panwar,%20A..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Singh,%20N..QT.&newsearch=true
http://tools.ietf.org/html/draft-ietf-httpbis-http2-09
http://www.chromium.org/spdy/link-headers-and-server-hint

