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Abstract

Web performance is very important.  One way to
improve performance is through caching.  But caching is
already widely used, and studies suggest that much of the
theoretically  achievable  performance  from  caching  is
already  being  realized.   Prefetching  techniques  could
improve performance beyond that of caching but require
future knowledge.  This paper evaluates several different
prediction algorithms for gaining this future knowledge by
exploring the trade offs between prediction rate, erroneous
prediction  rate,  and  the  resources  needed  to  make  the
prediction.  Previous studies[1,2,3,14,15] have developed
many  prediction  algorithms;  each  one  evaluated  with  a
unique pattern of  requests in a  unique environment.  By
evaluating  several  algorithms  in  the  same  environment
using  the  same  data,  we  can  more  clearly  compare  the
algorithms.
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1. Introduction

Users  want  the  web  to  be  fast.   But  there  are
several sources of delay when a user requests a web page.
The request must be sent from client to server.  The server
must generate the data, which can be slow if the page is
computationally  expensive  to  generate  or  requires
querying databases.  The reply must be sent to the client.
Finally the client must render the page into a visual form.

If one could predict future requests, it would be
possible to make the web much faster.  Predictions of the
future might be generated by the web server or the web
client, but the web server has a significant advantage over
the web client.  The server has seen the pattern of access
of (potentially thousands) of other users, and can use this
to make better predictions.  Once the web server has made
predictions about future web requests, it can send the data
to the client.   This can be done several  ways, using for
example  SPDY's  “server  push”  or  “server  hint”
technologies[11],  which  have  been  incorporated  into
HTTP/2.0 [13].

Many studies have shown that the combination of
caching  and prefetching  doubles  the  performance
compared to single caching [4,5,6,7,8,9,10,14].  According
to [6,7] , a combination of web caching and prefetching
can potentially improve latency up to 60%, whereas web
caching alone improves the
 latency up to 26%[10].

This  paper  explores  how  web  servers  might
predict  the  future  needs  of  clients.   Many  different
algorithms exist and significant research has been done on
this  problem.  Different  studies  show  different  levels  of
predictive success.  However it is difficult to compare one
algorithm  against  another  since  they  were  evaluated
against different workloads and measured using different
metrics.  This work compares several different prediction
algorithms against one another using the same workloads
and scored using the same metrics.  

2. Methodology

We  evaluate  the  prediction  algorithms  using
simulations based on log files from real web servers.  We
use  data  from  both  an  academic  web  site  and  a
commercial  web  site,  since  it  is  important  to  test
prediction  algorithms  against  a  variety  of  web  access
patterns.   We  use  simulations  since  we  want  to  test  a
variety of algorithms against the same log files.

Input to the simulator is a list of file requests, and
the associated user (or host) who generated the request.  It
is important to know which user made which request since
otherwise  unrelated  accesses  that  occur  close  in  time
might be incorrectly considered as related.
We score each algorithm using several metrics

· SuccessRate  –  How  often  did  the  algorithm
predict the next web request.

· WrongRate  –  How  often  did  the  algorithm
wrongly predict the next web request.

· Accuracy  –  Percent  of  predictions  that  were
correct.  Accuracy=SuccessRate/
(SuccessRate+WrongRate).

· SuccessRate10 – How often was the algorithm's
prediction  within  the  next  ten  requests.
Sometimes a prediction algorithm will predict a
file, and although that file is not the next request,
it  is  requested  in  the  near  future.  Prefetching
based on such predictions is still productive and
useful.

· WrongRate10 – The fraction of predictions that
were not within the next ten requests.

· Accuracy10  –   Accuracy10=SuccessRate10/
(SuccessRate10+WrongRate10).

· Adaptability  – Can the algorithm offer  either  a
few  great  prediction,  or  many  good  ones,  as
needed.  In other words, is the algorithm tunable
to different situations and different needs,



Obviously,  a  perfect  algorithm would have  a  successful
prediction rate of 100%, and a wrong prediction rate of
0%.  No known algorithm can achieve this.

Note that the successful prediction rate added to
the wrong prediction rate is rarely 100%.  Good prediction
algorithms  will  often  fail  to  make  any  prediction;  for
certain situations there is not enough information to make
a prediction.

In  practice,  there  is  often  a  trade-off  between
number of predictions made and the error rate.  Often one
can either  make a  few very  likely predictions,  or  make
many  predictions  where  each  one  of  which  has  only  a
moderate  chance  of  correctness.   Each  successful
prediction  improves  performance.   Each  wrong
performance  may  or  may  not  reduce  performance,
depending  on  how  many  resources  were  needed  to
generate and send the unneeded data, and whether those
resources  were  idle  or  in  use.   In  particular,  sending
unneeded data over a busy network channel might slow
the entire system, whereas sending unneeded data over a
free network channel might not slow the system much at
all.

Often  the  algorithms  will  have  a  threshold
parameter  that  adjusts  the  amount  and  riskiness  of
predictions.   The appropriate  tolerance for  risk depends
greatly on particular  environment  and conditions at  that
moment.   The  best  prediction  algorithms  can  adjust,
making either more or better predictions as needed.

3. The Algorithms

We evaluated each of the algorithms below using
the metrics above.

SimpleLookBack

The SimpleLookBack algorithm is  the  simplest
reasonable algorithm we know of.  When a request for a
file A arrives, look back into the past to see what request
came immediately after the last request of A, and predict
this file.

Table 1: SimpleLookBack Performance
Adaptable No

Academic Business Avg

SuccessRate 19.7% 25.2% 22.5%

WrongRate 35.6% 59.1% 47.4%

Accuracy 35.7% 29.9% 32.8%

SuccessRate10 30.2% 38.5% 34.4%

WrongRate10 25.0% 46.0% 35.5%

Accuracy10 34.2% 45.5% 40.0%

This algorithm is not adaptable; there is no way
to  tell it to only make predictions when the algorithm is
either reasonably certain or only very certain.  Instead, it
will always make a prediction except on the first instance
of a file, when the file has no history upon which to make
predictions.  

This  algorithm is  very  computationally  simple.
One easy way to compute it is to have a hash table of all
files that are referenced, who's key is the previous file and
who's  value is  the file  that  followed.   For realistic web
sites, these tables fit easily in RAM and can be accessed in
O(1) times.

LookBackByUser

This  algorithm  is  just  like  SimpleLookBack,
except instead of examining all previous requests, it only
looks back at the history of the current user.  Making this
change means that the predictions are more accurate (47%
vs 33%) since other users with possibly different access
patterns  will  not  effect  the  current  user's  prediction.
Predictions  however  are  less  common  (  33%  vs  70%)
because those times when other people have requested a
file, but it is not in the current user's history will produce
no prediction using this algorithm, but would have made a
prediction under SimpleLookBack.

Like  SimpleLookBack  this  algorithm  is  not
adaptable;  it  will  make  a  prediction  every  time  a  user
requests  a  file  except  for  the  first  instance  of  that
particular file by that particular user..

This  algorithm  is  again  very  computationally
simple.   One easy way to compute it  is  to have a hash
table  of  all  files  that  are  referenced,  who's  key  is  the
previous file concatenated with the user's ID (login name,
IP number, or any other identifier) and who's value is the
file that followed.  For realistic web sites, these tables fit
easily in RAM and can be accessed in O(1) times.

Table 2: LookBackByUser Performance
Adaptable No

Academic Business Avg

SuccessRate 12.5% 18.7% 15.6%

WrongRate 13.9% 20.3% 17.1%

Accuracy 47.3% 47.9% 47.6%

SuccessRate10 16.8% 24.8% 20.8%

WrongRate10 9.7% 14.1% 11.9%

Accuracy10 63.4% 63.8% 63.6%

PatternPredictor

The intuition behind this predictor is that if we
can find another instance of your access pattern, we can
make  reliable  predictions,  and  that  longer  patterns  are
more reliable that shorter ones.



The  PatternPredictor  looks  for  the  an  exact
duplicate of long sequences of the most recent accesses,
and then projects the future based on these duplicates.  For
example, if the last four files requested were (fileA, fileB,
fileC,  fileD),  the  pattern  predictor  will  first  look  for
another instance in the history of accesses for the pattern
(fileA, fileB, fileC, fileD).  If it finds such an instance it
will predict whatever followed the instance.  Otherwise it
will look for the shorter pattern (fileB, fileC, fileD) and if
found  predict  whatever  followed  that.   If  there  are  no
copies of the length four and three patterns, it will look for
the length two pattern (fileC, fileD), and eventually just
(fileD).   In  practice  we  do  not  look  for  infinite  length
patterns,  but  start  at  length  twenty  because
experimentation shows there are few patterns  of  greater
length.

The  PatternPredictor  generates  more  correct
predictions  measured  by  SuccessRate10  than  either  the
SimpleLookBack or LookbackByUser predictor, but at the
cost of significantly more CPU and memory usage.  It can
be implemented at least two ways.  One is to use a very
large hash table with keys for every pattern of all lengths 2
.. 20, and the other to simply store the most recent history
and  search  it  using  quick  algorithms  inspired  by  text
searching[12].   Experimentation  shows  that  one  can
produce  answers  on  reasonable  hardware  in  less  than
0.001 seconds(i.e.  much quicker than a network transfer).

Table 3: PatternPredictor Performance
Adaptable No

Academic Business Avg

SuccessRate 22.9% 30.6% 26.8%

WrongRate 25.7% 49.7% 37.7%

Accuracy 47.1% 38.1% 42.6%

SuccessRate10 31.7% 43.6% 37.7%

WrongRate10 16.9% 36.7% 26.8%

Accuracy10 65.2% 54.3% 59.8%

SubsetPredictor

The  SubsetPredictor  can  be  viewed  as  a
modification  of  the  PatternPredictor  where,  instead  of
looking for an exact duplicates of long sequences of the
most  recent  accesses,  we  search  for  an  approximately
identical  set.  The most recent accesses form a set of n
files when we disregard the order in which they occurred.
We search for the most recent  set  (ignoring order)  of  n
files  which  contain  at  least  K  percent  of  the  recently
accessed files.  

The idea here is that two long sequences of file
accesses that differ only by a few files regardless of order
to precede the same set of files.  For example, if the last
four files requested were (fileA,  fileB,  fileC, fileD), the
SubsetPredictor will find the most recent set of four files
which contain at least three of files A through D.  

Note this table below is in a different format from
the others.  This format shows how the SuccessRate and
WrongRate  can  vary  as  the  subset  size  is  adjusted;
choosing the right subset length is an engineering question
whose answer depends on the computational and network
environment.   Also  note  that  the  accuracy  is  nearly
constant  across  varying  subset  lengths  (which  surprised
us).  

Computationally,  this  algorithm  can  be
implemented by storing the recent history, and searching
upon file requests.  Again, this can be done  much quicker
than a network transfer.

Table 4: SubsetPredictor Performance
Adaptable Yes

Academic Business Avg

Subset
Length

2 10 2 10 2 10

Success
Rate

21.5% 5.0% 22.3% 5.4% 21.9% 13.5%

WrongRate 29.4% 5.6% 34.4% 17.5% 31.9% 18.8%
Accuracy 42.2% 47.2% 39.4% 66.7% 40.8% 44.0%
Success
Rate10

32.4% 7.0% 37.8% 8.7% 35.1% 21.1%

Wrong
Rate10

18.6% 3.6% 7.2% 7.2% 12.9% 8.3%

Accuracy
10

63.5% 65.9% 42.7% 68.9% 53.1% 59.5%

MostCommonFollowerPredictor

In this predictor, we find all previous occurrences
of the current file.  Each of these occurrences has a file
that follows, and we predict the file that occurs most often
in that set.  In other words, if fileA is the current file, we
predict  the  file  that  followed  fileA in  the  history  most
often with the proviso that it must have occurred at least
25% of the time.  Two tuning parameters are to vary the
length of  the  history to  consider,  and to  vary the 25%
threshold.

We chose the 25% threshold by experimentation.
Larger thresholds would reduce the number of predictions
while increasing the accuracy.  Smaller thresholds would
do the opposite.

Computationally  this  algorithm  can  be
implemented by a hash table of liked lists.  The key is the
current file, and the value of the hash table is a linked list
of files that have followed, along with a count of each files
occurrence.  Both memory usage and computational time
are reasonable.

Table 5: MostCommonFollowerPredictor Performance
Adaptable Yes

Academic Business Avg



Adaptable Yes

SuccessRate 16.4% 21.4% 18.9%

WrongRate 25.7% 32.8% 29.2%

Accuracy 32.0% 39.5% 36%

SuccessRate10 24.5 31.5% 28.0%

WrongRate10 17.7 22.8% 20.2%

Accuracy10 58.0 58.0% 58.0%

4. Conclusion

After  reviewing  our  findings  it  is  clear  that
despite  the  speed  of  modern  hardware  there  is  still  a
significant  performance  increase  to  be  found  from
intelligent prefetching over simple caching methods.  

The  table  below summarizes  our  results.   Two
algorithms are of note.  The SubsetPredictor while using a
small subset size produces a large number of predictions
with  a  high  accuracy.   The LookBackByUser  algorithm
produces  a  smaller  set  of  predictions  with  a  similar
accuracy, but at a lower computational cost.  

Using these algorithms will allow a web server to
predict which file a web client will use, and then send the
predicted file to the web client before the client asks for
them, and do so with high probability (~60%) that the file
will actually be needed.  The web server can do this any
time there  is  unused  bandwidth  between  the  client  and
server, and for typical networks this is very often.  Doing
so will improve substantially improve performance.

Table 6: Summary of Algorithm Performance

Algorithm SuccessRate10 WrongRate10

SimpleLookBack 34.4% 35.5%

LookBackByUser 20.8% 11.9%

PatternPredictor 37.7% 26.8%

SubsetPredictor
(size=2)
(size=10)

35.1%
21.1%

12.9%
8.3%

MostCommonPredictor 28.0% 20.2%
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