Exponent Properties

In this paper, we'll assume the base, b, is positive and that x and y represent any real numbers. Here are the properties of exponents that you must know:
$\mathrm{b}^{0}=1, \quad \mathrm{~b}^{1}=\mathrm{b}, \quad \mathrm{b}^{-\mathrm{x}}=\frac{1}{\mathrm{~b}^{\mathrm{x}}}$
If q is any natural number $(1,2,3, \ldots)$, then $b \frac{x}{q}=\sqrt[q]{b^{x}}=(\sqrt[q]{b})^{x}$.
$b^{x} \cdot b^{y}=b^{x+y} \quad \frac{b^{x}}{b^{b}}=b^{x-y} \quad\left(b^{x}\right)^{y}=b^{x y}$
$b^{x}=b^{y}$ iff $x=y . \quad\left[\right.$ Remember, this means if $b^{x}=b y$, then $x=y$ and if $x=y$, then $b^{x}=b y$]
The graph of $y=b^{x}$ is continuous (so has no holes or jumps).
If k is any positive real number, then there is a real number r such that $\mathrm{br}_{\mathrm{r}}=\mathrm{k}$.

If $\mathrm{b}>1$, the graph looks like the top picture at left.
If $0<b<1$, the graph looks likethe bottom picture at left.

Graphs of $y=b^{x}$ all contain the points $(0,1),(1, b),\left(2, b^{2}\right)\left(-1, \frac{1}{b}\right)$, etc.
The number e is defined to be the number that the sequence $\left(1+\frac{1}{n}\right)^{n}$ is approaching as n gets larger and larger. This is also written $\lim _{\mathrm{n} \rightarrow \infty}\left(1+\frac{1}{n}\right)^{\mathrm{n}}=\mathrm{e}$.

